
��January (IAP) 2009

MIT OpenCourseWare
http://ocw.mit.edu

6.096 Introduction to C++
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.096: Introduction to C++	 IAP 2009

PROBLEM SET 2

Ternary operator:
The conditional operator ? : is also another way to evaluate conditions. It operates on
three operands, and is thus known as a ternary operator. Here is an example of its usage:

a = x < y ? x : y;

In this example, if the test expression evaluates to true – i.e. if x < y – then the variable
a will be assigned the value that the variable x contains. Otherwise, else it will be
assigned the value of the variable y.

The whole expression containing this operator (the right side of the assignment
statement) is called a conditional expression, and the sub-expression before the question
mark is called the test expression. If this test expression is true, the entire expression
takes on the value of the expression immediately after the question mark. Otherwise, it
takes on the value of the expression following the colon.

Usually you only want to use this construct for choosing between two simple expressions
for a particular value (both choices must be the same data type). Doing otherwise could
run afoul of the syntactic rules of the operator and lead to syntax errors. You cannot, for
instance, make the two options two different return statements.

1.	 Without running, explain what the following set of statements will do:

bool input;

int a;

cin >> input >> a;

char *choice = (input ? "Hello World!" : "I love C++!");

if((input ? a > 1 : a < 1)) {

cout << "Why did you pick \"" << choice << "\"?" << endl;

}

else {

cout << "Yay, you picked " << choice;

}

2.	 Convert this for loop to a do-while loop.

int sum = 0;

for(int i = 0; i < 5; i++)

sum += i;

cout << sum;

break and continue:

Two keywords often used with loops are break and continue.

The break keyword causes the entire construct to exit, and control passes to the statement
immediately after the body of the construct.

For example:

for(n = 10; n > 0; n--)

{

cout << n << ", ";

if(n == 7)

break;

}

In this example, only the first few values of n (the numbers 10, 9, 8) will be executed. As
soon as the value of n becomes 7, the loop will exit.

The continue statement causes the program to skip the rest of the loop in the current
iteration as if the end of the statement block had been reached, causing it to jump to the
start of the next iteration:

for(int n = 10; n > 0; n--)

{

if (n == 7)

continue;

cout << n << ", ";

}

In this example, 10, 9, and 8 will again be displayed, but as soon as the value of n
becomes 7, control will be passed to the beginning of the loop body. The rest of that
iteration is skipped, and the rest of the countdown till 1, will be displayed (so the final
output will be “10, 9, 8, 6, 5, 4, 3, 2, 1”). When you place a continue command within a
for loop, the increase statement (in this case, n--) is executed before the loop iterates
again.

3.	 Write a program to take in a number from a user, find its reciprocal and add it to a
running sum (the running sum will be 0, when the loop initially starts). The
program should repeat this procedure 10 times. However, if the user enters 0, the
loop should exit, and if the user enters 1, nothing should be added. Print the final
sum at the end of the program.

switch statements:
In lecture, the main type of conditional construct discussed was if-else. There is another
type of construct, which is also sometimes used, called the switch-case construct. In this
construct, the value of a variable is compared to a set of constants, and when a
corresponding match is found, the statements associated with that case are executed. It is
like an if-else construct that can only check for equality

For example:
switch(number)

{

case 3:

cout << "Red"; break;

case 2:

cout << "Orange"; break;

case 7:

cout << "Black"; break;

default:

cout << "None of the above";

}

In this switch statement, the value of the variable number is compared with 3, 2 and 7,
and if a match is formed, the corresponding color is printed. If no match is found then
“None of the above” is printed. (The break keyword is required to end each case block
except the last.)

4.	 Using the switch-case construct write a program to input two numbers, display the
following menu, and then print according to the user’s choice:

1.	 Difference of two numbers

−

2.	 Quotient of two numbers
3. Remainder of two numbers

For example, if the user inputs 1, then the difference of the two numbers should
be printed.

5.	 Find the sum of the first n terms of the following series, where n is a number
entered by the user:

2 2

1

1

−1+
 + ...

3
 5

6. Print the following pattern, using horizontal tabs to separate numbers in the same
line. Let the user decide how many lines to print (i.e. what number to start at).

5
5
5
5
5

4
4
4
4

3
3
3

2
2 1

Series:
As specified in lecture, nested loops are used when for one repetition of a process, many
repetitions of another process are needed. Similar to patterns, nested loops can be used to
print the sums of nested series. For example the sum of the series
1+ (1+ 2) + (1+ 2 + 3) + ... can be found by adding one to a running sum for each
execution of the inner loop, instead of printing them as you would for a pattern. As with
patterns, the number of times the inner loop runs in this case depends on the value of the
outer loop.

7.	 Write a program that inputs two numbers x and n, and find the sum of the first n
terms of the following series:

x + (x + x 2) + (x + x 2 + x3) +

8.	 An Angstrom number is one whose digits, when cubed, add up to the number
itself. For instance, 153 is an Angstrom number, since 13 + 53 + 33 = 153 .
Write a program to input a number, and determine whether it is an Angstrom
number or not.
Hint: The modulus operator (%) will be useful here.

