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18.440 Exam 2 Review Session 

The examwill be closed book with no notes (such as a formula sheet) allowed.You can 
use calculators, but any other electronic devices such as cell phones need to be turned off 
and stowed away during the exam. If such a device is available, as on yourdesk or in 
your hand, during the examthere will be a 20% penalty (the same as for continuingto 
write after “stop”). 

These notes will indicate the material to be covered, which is the material of problem 
sets 4-6, not including Sessions 23 and 24 which relate to PS7 material. 

Beside the Ross textbook, there have been handouts on Stirling’s formula and on 
gamma and beta probabilities. Relevant parts of those are incorporated in these notes. 

1. Random Variables 

A (real-valued) random variable is a function X defined on the sample space X such 
that for each real number t, the probability F (t) = P (X ≤ t) is defined. Here F is 
called the (cumulative) distribution function of the random variable. It has the following 
characteristic properties: 
1. F is nondecreasing: if u ≤ x then F (u) ≤ F (x); 
2. Limits at ±∞: limx→−∞ F (x) = 0, limx→+∞ F (x) = 1. 
3. F is right-continuous: for all x, limv↓x F (v) = F (x). 

2. Discrete random variables 

A random variable X is called discrete if there is a sequence (finite or infinite) {xj}
of distinct values such that P (X = xj) = 1. For any discrete random variable X, its j

probability mass function is the function f such that f(x) = fX(x) = P (X = x) for all 
x. This will be 0 except when x is one of the possible values xj of X. 

The expectation of a discrete random variable X is defined as 

EX = xfX(x) = xjP (X = xj) 
x j 

provided the sum is absolutely convergent, that is j |xj |P (X = xj) < +∞. 
For a function g of the discrete random variable X we have the following useful way 

of finding Eg(X). (It’s Proposition 5.1 in Section 4.5 of Ross.) 

Theorem 1. (Law of the unconscious statistician — discrete case). Let X be a discrete 
random variable with possible values xj and probability mass function f . Then for any 
function g, 

Eg(X) = g(x)f(x) = g(xj)f(xj) 
x j 

if the series is absolutely convergent, j |g(xj)|f(xj) < ∞. 

Proof. Y = g(X) is a discrete random variable with some possible values yk and P (Y = 
yk) = j: g(xj )=yk 

f(xj) for each k. Thus 

EY = yk f(xj) = f(xj)g(xj) 
k j: g(xj )=yk j 

1 



� � 

2 

where after interchanging sums, there is just one k for each j. The interchange is justified 
by first considering g(xj) where all terms will be nonnegative. �| |

The variance of any random variable X (discrete or not) is defined as 

Var(X) = E((X − EX)2) = E(X2) − (EX)2 . 

Note that E(X2) = (EX)2, in other words Var(X) = 0, if and only if the nonnegative 
random variable (X − EX)2 has expectation 0, which implies that it equals 0, i.e. 
X = EX, with probability 1, in other words X is a constant. So for non-constant 
random variables we will have Var(X) > 0 and (EX)2 < E(X2). 

For any random variable X and constants a, b, Var(a + bX) = b2Var(X). 

3. Families of discrete random variables 

3.1. Binomial and Bernoulli random variables. A random variable X is said to 
have a binomial(n, p) distribution, where 0 ≤ p ≤ 1 and n is a positive integer, if with 
q ≡ 1 − p, 

n 
P (X = k) = b(k, n, p) = p k q n−k 

k 

for k = 0, 1, ..., n, and 0 otherwise. Here X is the number of successes in n independent 
trials with probability p of success on each. In the special case n = 1 the variable is called 
a Bernoulli(p) random variable. A binomial(n, p) random variable X can be viewed as 
X = 

�n
j=1 Xj where Xj = 1 if the jth trial is a success and 0 otherwise. Thus each Xj 

is a Bernoulli(p) random variable. We have EX = np and Var(X) = npq. 

3.2. Poisson random variables. For 0 ≤ λ < ∞, a random variable Y is said to have 
a Poisson(λ) distribution if for each k = 0, 1, ..., 

P (Y = k) = p(k, λ) = e −λλk/k!. 

Such a Y has EY = λ and Var(Y ) = λ. The Poisson limit theorem says that if 
n → ∞ and p = pn → 0 in such a way that npn → λ then the binomial probability 
b(k, n, pn) p(k, λ), as was proved in a lecture. This gives a Poisson approximation →
to some binomial probabilities. According to the proposed rules given for this course, 
if n ≥ 20 and np2 ≤ 0.1 then b(k, n, p) can be approximated by p(k, np). If p is close 
to 1 one may be able to use the “reverse Poisson” approximation. Namely, if n ≥ 20 
and nq2 0.1 then b(k, n, p) = b(n − k, n, q) can be approximated by p(n − k, nq). ≤

.
For example, b(99, 100, 0.98) = 100(0.98)99(0.02) = 0.27065. This equals b(1, 100, 0.02) 
which has the Poisson approximation p(1, 2) = e−2 2/1! = 

. 
0.27067. Partly by good luck, ·

this approximation works very well. But to take p(k, np) = p(99, 98) = e−98(98)99/99! = 
. 

0.0399 gives a terrible approximation, from failing to do the needed reversal. 

3.3. Geometric random variables. In a sequence of independent trials with proba
bility p of success, let X be the number of trials needed to give the first success. Then 
P (X = k) = qk−1p for k = 1, 2, 3, .... Such a random variable has EX = 1/p and 
Var(X) = q/p2 . It’s natural that if p is small, it takes longer on average to get a first 
success, so EX is inversely proportional to p. If p = 1 then X = 1, a constant, with 
probability 1, and q = 0, so the variance of X is 0 as it should be. 
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3.4. Hypergeometric random variables. Suppose given a finite set of N objects, of 
which m have a property A, for example, “defective.” Suppose a random sample of k 
distinct objects is taken (without replacement) from the N , with probability 1/ 

�

N
k 

� 

for 
each possible sample. Let X be the number of objects having A in the sample. For 

m N−m Neach j = 0, 1, ..., min(k, m), P (X = j) = 
j k−j 

/ 
k 

. What we did so far with hy
pergeometric probabilities didn’t go beyond that one formula, and of course recognizing 
when hypergeometric probabilities apply (sampling without replacement from a finite 
population). We have EX = km/N = kp where p = m/N is the probability of having 
A. To see this let Xj = 1 if the jth element of the sample has A and 0 otherwise. Then 
X = X1 + + Xk and EXj = m/N for each j, which implies the given form for EX.· · · 
Here E(X1 + +Xk) = EX1 + +EXk which holds for any random variables having · · · · · · 
finite expectations, including dependent ones such as these. For the variance, however, 
the dependence matters. As it hasn’t appeared in the course so far, it won’t be given 
here. 

4. Stirling’s formula 

Two sequences of numbers, an and bn, are said to be asymptotic, written an ∼ bn, 
if limn→∞ an/bn = 1. This does not imply that limn →∞(an − bn) = 0: for example, 
n2 + n ∼ n2 but (n2 + n) − n2 tends to ∞ with n. But an/bn → 1 is equivalent to 
log (an) − log (bn) = log (an/bn) 0. →

In some other places f ∼ g might be meant in the sense of a rather vague approxi
mation, but the definition above gives a precise meaning. Note that to write an bn in →
place of an ∼ bn is nonsense: it’s a syntax error to write that as n → ∞, an converges 
to something that itself depends on n. And also, if it were interpreted to imply that 
an − bn → 0 that is wrong in a lot of cases. 

Theorem 2. Stirling’s formula: as n +∞,→

n (n+1/2) n! ∼ 
n √

2πn = n e −n
√

2π. 
en 

Thus, 

1 1 
log (n!) − n + 

2 
log n − n +

2
log (2π) → 0 as n → ∞. 

A proof was given in the handout, but it’s rather long and certainly not covered in 
the course. 

Examples were given near the end of the handout showing that as n gets large the 
nndifference between n! and its Stirling approximation, Dn = n! −

en 

√
2πn, becomes very 

large very fast, just not quite as fast as n! itself. For example 60! is 8.321 1081 to the · 
given number of places and the difference D60 = 

. 
1.155 1079, smaller by a factor of about ·

720, but not small at all in an absolute sense. 
In a binomial coefficient n , if k and n − k both become large, so we can use Stirling 

k 

approximations to all three of n!, k! and (n − k)!, the powers of e will cancel out. 
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If on the other hand k remains fixed while n → ∞, so n − k → ∞ also, then for n 
k 

we have the asymptotic form 

n n(n − 1) (n − k + 1) nk 

k 
= 

· · · 
k! 

∼ 
k!

, 

as n − j ∼ n for each j = 0, 1, ..., k − 1 and there is a fixed number k of factors. The 
above form was used in proving the Poisson limit theorem. In this case it’s not useful 
to apply Stirling’s formula. 

5. Continuous random variables 

A function f defined for all real x is called a probability density function if f(x) ≥ 0 for 
� ∞

all x and 
−∞ 

f(x)dx = 1. A random variable X is said to be continuous with density 
f if for all x, the distribution function 

x 

F (x) = P (X ≤ x) = f(u)du. 
−∞ 

This implies by the fundamental theorem of calculus that given F , we can find f as 
f(x) = F ′ (x) at any x where f is continuous. (The densities in the families to be 
considered are continuous except possibly at one or two points.) 

Suppose X is a continuous random variable with density f and distribution function 
F , and let c > 0. To find the distribution and density of cX we have for any x that 

FcX(x) = P (cX ≤ x) = P (X ≤ x/c) = F (x/c) 

and so by the chain rule, the density of cX is given by 

1 x 
(1) fcX(x) = f 

c c 

at any x such that f is continuous at x/c. 
For a continuous random variable, the expectation is defined by 

� ∞ 

EX = xf(x)dx 
−∞


� ∞

provided 

−∞ 
|x|f(x)dx < +∞. Similarly as in the discrete case we have: 

Theorem 3. (Law of the unconscious statistician — continuous case). Let X be a 
continuous random variable with probability density function f . Then for any random 
variable Y which is a function of X, Y = g(X), we have 

� ∞ 

EY = Eg(X) = g(x)f(x)dx 
−∞ 

� ∞
if the integral is absolutely convergent, |g(x)|f(x)dx < ∞.

−∞ 

In the course a direct proof was given for the special but important case g(x) = x2 

needed in defining the variance. If g is a continuous function one might argue by way 
of approximating X and g(X) by approximations to a finite number of decimal places, 
but no proof is considered to have been covered in the course. 
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5.1. Hazard or failure rate. For a continuous random variable X with X ≥ 0 having 
density f and distribution function F , the hazard rate or failure rate is defined as 

h(t) = f(t)/(1 − F (t)) 

for all t ≥ 0 such that F (t) < 1. Clearly h(t) = d log(1−F (t)). Thus log(1−F (t)) = 
dt 

� t 

−
− h(u)du and 

� t 

(2) 1 − F (t) = exp − h(u)du . 
0 

6. Families of continuous distributions 

6.1. Uniform distributions. If −∞ < a < b < +∞ then the U [a, b] distribution is 
defined to have density f(x) = 1/(b − a) for a ≤ x ≤ b and 0 elsewhere. If X has this 
density then EX = (a + b)/2 (which seems rather obvious) and Var(X) = (b − a)2/12. 
It’s rather intuitive that the variance should be proportional to (b−a)2, but the constant 
1/12 is seen from a calculation (which is easy). 

6.2. Normal distributions. If −∞ < µ < ∞ and 0 < σ < ∞ then the N(µ, σ2) 
density is given by 

1 
� 

(x − µ)2 � 

f(x) = exp . 
σ
√

2π 
− 

2σ2 

The standard normal or N(0, 1) density is then φ(x) = (2π)−1/2 exp(−x2/2). It was 
� ∞ −xshown that this is a probability density by setting I = 
−∞ 

e
2/2dx, then writing 

� ∞ � ∞ 
−x −yI2 = e 

2/2dx e 
2/2dy, 

−∞ −∞ 

and evaluating the double integral in polar coordinates, which gives 2π. It then follows 
by simple changes of variables that each N(µ, σ2) density is indeed a probability density. 

A variable X has a N(µ, σ2) distribution (density) if and only if Z = (X −µ)/σ has a 
N(0, 1) distribution. Via that, probabilities for X can be found by way of probabilities 
for Z. The standard normal distribution function 

x 

Φ(x) = φ(u)du 
−∞ 

cannot be evaluated in closed form but is tabulated in many books including Ross. 
A copy of the table will be attached to each exam. For z > 0 and Z with N(0, 1) 
distribution, Φ(−z) ≡ 1 − Φ(z) because φ(−z) ≡ φ(z). So the table need only be given 

.
for z ≥ 0. The table in Ross goes up to z = 3.49 where Φ(3.49) = 0.9998, close to 1. 

6.3. Exponential distributions. The function f(x) = e−x for x ≥ 0 and 0 for x < 0 
is clearly a probability density. It’s called the standard exponential density. A random 
variable X with this density has EX = 1 via an integration by parts. By another 
integration by parts and Theorem 3 we get E(X2) = 2 and so Var(X) = 1. 

If 0 < λ < ∞ and Y = X/λ then by (1), Y has density λe−λx for x ≥ 0 and 0 
elsewhere. This is called an exponential density with parameter λ. It has EY = 1/λ and 
Var(Y ) = 1/λ2 . Often exponential densities are specified by giving their expectations 
EY and then λ = 1/EY . 
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The distribution function of Y is found by direct integration to be P (Y ≤ y) = 1−e−λy 

for any y ≥ 0 and 0 for y < 0. Thus P (Y > y) = e−λy. Exponential distributions have 
the memoryless property, for any y > 0 and h > 0, 

P (Y > y + h|Y > y) = e −λ(y+h)/e−λy = e −λh = P (Y > h). 

For an exponential distribution with parameter λ the failure rate h(t) equals the constant 
λ for all t > 0. This is another form of the memoryless property. It follows from (2) 
that only exponential distributions have constant failure rate. 

6.4. Gamma distributions. The Gamma function is defined for any a > 0 by Γ(a) = 
� ∞ � 1 

xa−1e−xdx. The integral is finite because xa−1dx = 1/a < ∞ and e−x becomes 
0 0 

small for large x much faster than xa−1 → +∞. 
We have Γ(1) = 1 (integral of the standard exponential density). The gamma function 

satisfies the recurrence relation Γ(a+1) = aΓ(a) for all a > 0 via an integration by parts. 
It follows that Γ(2) = 1 (expectation of a standard exponential variable), Γ(3) = 2, and 
in general by induction, for any integer n ≥ 0, n! = Γ(n + 1). 

For any a > 0 we get a probability density γa by setting γa(x) = xa−1e−x/Γ(a) for 
x > 0 and 0 for x ≤ 0. If X has this density then by the definition of the gamma 
function EX = Γ(a + 1)/Γ(a) = a. Likewise E(X2) = Γ(a + 2)/Γ(a) = (a + 1)a, using 
Theorem 3 and then the recurrence formula twice, and so Var(X) = a. 

For any λ with 0 < λ < ∞, if X has the γa density, then by (1), Y = X/λ has the 
density 

γa,λ(x) = λ(λx)a−1 e −λx/Γ(a) = λa x a−1 e −λx/Γ(a) 

for x > 0 and 0 for x ≤ 0. Clearly, EY = a/λ and Var(Y ) = a/λ2 . 
It was proved in class and in a handout (the proof itself is not covered on the exam) 

that if X and Y are independent, X has γa,λ density and Y has γb,λ for the same λ, then 
X +Y has a γa+b,λ density. As a byproduct of the proof, we found for the beta function 
defined for a > 0 and b > 0 by 

� 1 

B(a, b) = x a−1(1 − x)b−1dx 
0 

that B(a, b) = Γ(a)Γ(b)/Γ(a + b). If a and b are integers, thus ≥ 1, then 

B(a, b) =
(a − 1)!(b − 1)! 

= 
1 

� 

a+b−2
� ,

(a + b − 1)! (a + b − 1) 
a−1 

the reciprocal of an integer. 




