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18.440, March 9, 2009 

Stirling’s formula 

The factorial function n! is important in evaluating binomial, hypergeometric, and 
other probabilities. If n is not too large, n! can be computed directly, by calculators 
or computers. For larger n, using there are difficulties with overflow, as for example 
70! > 10100, 254! > 10500, which overflows on one calculator I have, which computes 253!. 
Also, direct multiplication of many factors becomes inefficient. There is a relation with the 
gamma function, n! ≡ Γ(n+1), where Γ(α) = 

� 
0

+∞ 

xα−1e−xdx. The statistical computing 
system R (in the version we have as of this date) can find 170! = Γ(171) = 

. 
7.2574 10306 · 

but it balks at Γ(172), so it breaks down for smaller n than the calculator does. Of course, 
some computer systems can find n! for very large n. Mathematica gave 1000! exactly, 
showing all the many digits, which is not necessarily convenient. 

Stirling’s formula provides an approximation to n! which is relatively easy to compute 
and is sufficient for most purposes. Using it, one can evaluate log n! to better and better 
accuracy as n becomes large, provided that one can evaluate log n as accurately as needed. 
Then to compute b(k, n, p) := 

� 
n 
� 
pkqn−k, for example, where 0 < p = 1 − q < 1, one can 

k 
find log b(k, n, p) = log n!− log k!− log (n − k)! + k log p + (n − k) log q . The probability 
b(k, n, p) cannot overflow, and in interesting cases it will also not underflow (1/b(k, n, p) 
will not overflow). 

Two sequences of numbers, an and bn, are said to be asymptotic, written an bn,∼
if limn→∞ an/bn = 1. This does not imply that limn→∞(an − bn) = 0: for example, 
n2 + n ∼ n2 but (n2 + n) − n2 tends to ∞ with n. But an/bn → 1 is equivalent to 
log (an) − log (bn) = log (an/bn) 0. →

n (n+1/2) Theorem 1. Stirling’s formula.n! ∼ 
n √

2πn = n e −n
√

2π . Thus, 
en 

1 1 
log (n!) − n + 

2 
log n − n +

2
log (2π) → 0 as n → ∞. 

Proof. The sign “:=” will mean “equals by definition.” Let 

1 
dn := log (n!) − n + log n + n . 

2 

Then we need to prove dn converges to a constant, [log (2π)]/2. First, 

1 3 
dn − dn+1 = − log (n + 1) − n + log n + n + log (n + 1) − 1 

2 2 

1 n + 1 
= n + log − 1 . 

2 n 

We have the Taylor series 

t2 t3 

log (1 + t) = +t −
2 3 

− · · · 

1 
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for t < 1. For t > 0 the terms alternate in sign. A transformation will help to get terms | |
of the same sign. The trick is to notice that 

n + 1 1 + 
2n

1
+1 = . 

n 1 −
2n

1
+1 

Then 
1 + t t3 t5 

log 
1 − t 

= log (1 + t) − log (1 − t) = 2 t +
3

+
5

+ · · · , 

where now all terms are of the same sign. Thus 

2n + 1 1 + 
2n

1
+1 dn − dn+1 = 

2 
log 1 − 1 

1 − 2n+1 

1 1 1 
(1) = + + + > 0 . 

3(2n + 1)2 5(2n + 1)4 7(2n + 1)6 
· · · 

So dn decreases as n decreases. Comparing the last series to a geometric one with ratio 
(2n + 1)−2 gives 

(2n + 1)−2 1 
0 < dn − dn+1 < 

3[1 − (2n + 1)−2] 
= 

3[(2n + 1)2 − 1] 

1 1 1 1 1 
=

12n(n + 1) 
=

12n 
−

12(n + 1) 
, so dn −

12n 
< dn+1 −

12(n + 1) 
. 

So we see that dn − 1/(12n) increases as n does. As n → ∞, dn decreases to some C with 
−∞ ≤ C < +∞ and dn − 1/(12n) increases up to some D with −∞ < D ≤ +∞. Since 
1/(12n) converges to 0, we must have −∞ < C = D < +∞, and dn converges to a finite 
limit C. By definition of dn we then have 

n!/(n n+1/2)e −n e C or n! ∼ e C n n+1/2 e −n .→

The last step in the proof is to show that eC = (2π)1/2 . This will involve another 
famous fact: 

π 2 2 4 4 6 6 2m 2m 
Theorem 2. Wallis’ product. = , or 

2 1 
· 
3 
· 
3 
· 
5 
· 
5 
· 
7 
· · · · · 

2m − 1 
· 
2m + 1 

· · · 

π 24m(m!)4 

= lim . 
2 m→∞ (2m)!(2m + 1)! 

Remarks. To see the relationship between the two statements, first note that 2 4 6 8· · · · 
2m = (2 1)(2 2)(2 3) (2 m) = 2mm!, then that 1 3 5 7 (2m + 1) = · · · · · · · · · · · · · · · · · · · 

(2m + 1)!/(2 4 6 2m), etc. Note that the product converges to π/2 rather slowly; · · · · · · · 
it would not give a good way to compute π. 
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Proof. Integrating by parts gives, for n ≥ 2, 

sinn xdx = sinn−1 xd(cosx)− 

= − cos x sinn−1 x + (n − 1) sinn−2 x cos 2 xdx 

= − cos x sinn−1 x + (n − 1) (sinn−2 x − sinn x)dx , so 

n sinn xdx = − cos x sinn−1 x + (n − 1) sinn−2 xdx , and 

sinn xdx = 
cos x sinn−1 x 

+ 
n − 1 

sinn−2 xdx . Thus − 
n n 

(2)	

� π/2 

sinn xdx = 
n − 1 

� π/2 

sinn−2 xdx . 
0 n 0 

Then for m = 1, 2, . . . , iterating (2) gives 

� π/2	 � π/2 

sin2m xdx =
2m − 1 2m − 3 1 π 

since 1dx = 
π

. 
0	 2m 

· 
2m − 2 

· · · · · 
2 
· 
2 0 2 

� π/2 � π/2 

sin2m+1 xdx =
2m 2m − 2 2 

1 since sin xdx = 1 . 
0	 2m + 1 

· 
2m − 1 

· · · · · 
3 
· 

0 

Let Am := 
� 
0 
π/2 

sin2m xdx/ 
0 
π/2 

sin2m+1 xdx. Then 

π 2 2 4 4 6 6 2m 2m 
= Am	 for all m = 1, 2, . . . . 

2 
· 
1 
· 
3 
· 
3 
· 
5 
· 
5 
· 
7 
· · · · · 

2m − 1 
· 
2m + 1 

· · · 

Now we will prove limm→∞ Am = 1. For 0 ≤ x ≤ π/2, 

0 ≤ sin2m+1 x ≤ sin2m x ≤ sin2m−1 x, so 

� π/2	 π/2 π/2 

0 < sin2m+1 xdx < sin2m xdx < sin2m−1 xdx . 
0 0 0 

Now by (2) above, 

�	 π/2 π/2 

sin2m+1 xdx/ sin2m−1 xdx =
2m 

1 as m → ∞ 
2m + 1 

→
0	 0 

and 
0 
π/2 

sin2m xdx, being between numerator and denominator, also has the ratio Am 

converging to 1, proving Wallis’ product. 
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Now to finish proving Stirling’s formula, let B := eC . As n → ∞, n!en/nn+1/2 →
B, (2n)!e2n/(2n)2n+1/2 B, and (n!)2e2n/n2n+1 B2 . Dividing gives 

1/2]
→ →

(n!)222n+1/2/[(2n)!n B. Now, Wallis’ product gives (n!)222n/[(2n)!(2n + 1)1/2]→ →
(π/2)1/2 . Since (2n + 1)−1/2 (2n)−1/2, we get b/21/2 = 21/2(π/2)1/2, B = (2π)1/2 ,∼
proving Stirling’s formula. � 

The proof provides further information on how good an approximation Stirling’s for­
mula gives to n!. Since dn > C > dn − 1/(12n), where C = [log (2π)]/2, so C < dn < 
C + 1/(12n), we have the bounds 

(3) (2π)1/2 n n+1/2 e −n < n! < (2π)1/2 n n+1/2 e −n+[1/(12n)] . 

Even closer bounds are available. From (1), 

∞ 
� � 

� 1 1 1 1 
dn − dn+1 − 

3j(2n + 1)2j 
> 

5 
−

9 (2n + 1)4 
, so 

j=1 

dn − dn+1 > 
3−1(2n + 1)−2 

+ 
4

(2n + 1)−4 

1 − 3−1(2n + 1)−2 45

1 16 1 16 
= + = + 

3(2n + 1)2 − 1 180(2n + 1)4 12n2 + 12n + 2 180(4n2 + 4n + 1)2 

� �

−1 � �

−2
1 1 1 1 

= 1 + + 1 + 
12n(n + 1) 6n(n + 1) 180n2(n + 1)2 4n(n + 1) 

1 1 1 1 
> 

12n(n + 1) 
1 −

6n(n + 1) 
+ 

180n2(n + 1)2 
1 −

2n(n + 1) 

1 3n(n + 1) + 1 1 1 3 
> 

12n(n + 1) 
−

360n3(n + 1)3 
(since 

180 
−

72 
= −

360
) 

1 1 1 1 1 1 
3 

=
12 n 

−
n + 1 

−
360 n

−
(n + 1)3 

. So, 

1 1 1 1

dn −

12n 
+

360n3 
> dn+1 −

12(n + 1) 
+

360(n + 1)3 
,


and the sequence dn − 1/(12n) + 1/(360n3) decreases as n → ∞ down to its limit, which 
is also C, so dn − 1/(12n) + 1/(360n3) > C. Writing exp(x) := ex, we have the following 
improvement on the left side of (3): for all n = 1, 2, . . . , 

(4) 
√

2πnn+1/2 exp −n +
12

1 

n 
−

360

1 

n3 
< n! < 

√
2πnn+1/2 exp −n +

12

1 

n
. 

As n → ∞, the ratio of the upper to lower bound converges to 1 rather fast since 
1/(360n3) 0 rather fast. →
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There are further improvements, although they won’t be proved here: Whittaker and 
Watson, Modern Analysis, p. 252, gives an asymptotic expansion 

1 1 1 1 1

dn − C ∼

12n 
−

360n3 
+

1260n5 
−

1680n7 
+

1188n9 
− · · · .


The series does not converge for any n, but if the sum of the first k terms is used as an 
approximation to the left side dn − C, the error in the approximation has the same sign 
as, and smaller absolute value than, the next ((k + 1)st) term. This was proved above for 
k = 0 by (3) and for k = 1 by (4). 

Now Stirling’s formula with error bounds can be used to give upper and lower bounds 
for (n)k := n(n − 1) (n − k + 1) = n!/(n − k)! for integers 0 ≤ k ≤ n. Specifically, (4) · · · 
implies 

nn+1/2 exp −n + 
12
1 
n 

+ 
360(n

1 
−k)3 

(n)k < � � and 
(n − k)n−k+1/2 exp −(n − k) + 1 

12(n−k) 

nn+1/2 exp −n + 12
1 
n − 360(n

1 
−k)3 

(n)k > � � . 
(n − k)n−k+1/2 exp −(n − k) + 1 

12(n−k) 

nn+1/2 1 
Let j(n, k) := exp . The above inequalities on (n)k

(n − k)n−k+1/2 
−k −

12n(n − k) 
show that it is approached by j(n, k) within a factor of exp[1/(360(n − k)3)], which is 
very close to 1 if n − k is large. For n − k large, exp[−k/(12n(n − k))] also approaches 1, 
although not as fast. 

Let p(n, k) := (n)k/nk, the probability that k numbers, chosen at random from 
1, . . . , n with replacement, are all different. Then, to the accuracy of the above approxi­
mation for (n)k, p(n, k) is approximated by 

−k 

� 
n 

�n−k+1/2 � 
k 

� 

e exp . 
n − k 

−
12n(n − k) 

For a simpler and rougher approximation, omit the “exp . . . ” factor. 
Now, suppose that for a given n and α, with 0 < α < 1, we want to find the smallest 

k such that p(n, k) < α. For example, if n = 365 and α = 1/2, the question is how 
many people are needed to give an even chance that at least two of them have the same 
birthday (neglecting leap years and assuming that births are evenly distributed throughout 
the year). 

To find the desired k, one can compute p(n, k) and use trial and error. To speed up 
the process one can use a simpler approximation where we can solve for k to get a good 
first approximation to k. Then most likely only a few values of k near the first one need to 
be tried. Here is how one can get such a simple approximation. For 0 ≤ k < n, the Taylor 
series of log (1 − x) gives 

k k k2 k3 

log 1 −
n 

= −
n 
−

2n2 
−

3n3 
− · · · . 
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If k/n is small, later terms in the series can be neglected, and log p(n, k) is approximated 
by 

1 k2 k3 k 
(5) log p(n, k) ∼ −k − n − k +

2 
∼ − 

2n 
−

6n2 
+

2n 
+ · · · , 

where the next largest terms would be of the order of k4/n3 and k2/n2 (and k/[12n(n−k)] 
is still smaller). Note that if we approximated log (1 − k/n) bu just the first term −k/n, 
we would not even get the first term in (5) correct (the 2 in the denominator would be 
missing). Using the first term −k2/(2n) in (5) as our first approximation, solving for k 
gives k2/(2n) ∼ − log α, or 

(6) k ∼ [2n log (1 − α)]1/2 . 

For such a k, the next two terms in the approximation are smaller by factors of the order 
of 1/n1/2, so they can be reasonably be neglected if n is large. This gives a 

Method. To find the least k such that p(n, k) < α, for given n and α, first try k as the 
next larger integer than the number from (6). Compute p(n, k). If p(n, k) < α, check that 
p(n, k − 1) ≥ α. If not, consider k − 2, etc. until a solution is found. If p(n, k) > α, find 
whether p(n, k + 1) < α. If so, the solution is k + 1. If not, try k + 2, . . . , until a solution 
is found. 

Example 1. The birthday problem. Here n = 365 and α = 1/2. First try k as the 
next integer larger than (2n log 2)1/2, that is k = 23. Then we find p(365, 23) < 1/2, so 
we next compute p(365, 22) and find it is larger than 1/2, so k = 23 is the solution: in a 
group of 23 or more people, there is a better than even chance that at least two have the 
same birthday. 

Example 2. A computer pseudo-random number generator starts with a number s 
called a “seed” and uses a function f to generate numbers s1 = s, s2 = f(s1), s3 = 
f(s2), . . . , sj+1 = f(sj), l . . . . Suppose that the numbers sj will be integers from a to 
n for some n, and f is a randomly chosen function from the set {1, 2, . . . , n} into itself, 
where each of the nn such functions is equally likely. For how large r will there be an 
even chance that sr = sm for some m < r? Once this happens, then sr+1 = sm+1, etc. 
and the si will go round and round a closed cycle. So the event that sr = sm for some 
m < r is the event that the sj for j ≤ r are not all different. The above method applies 
with α = 1/2. If n = 106, for example, (6) gives r = 1178 and it can be checked that 
p(n, 1178) < 1/2 < p(n, 1177). So in this case there is an even chance that the generator 
will fall into a closed cycle after only 1178 of the 1,000,000 available numbers. By the way, 
the average length of the closed cycle is just half of the first number r such that sr = sm 

for some m < r. 
So there is a paradox: a truly random function f makes a bad pseudo-random number 

generator. Better generators are made by using number-theoretic methods to assure that 
there are no short closed cycles. 

Bibliographic Notes. James Stirling published his formula in Methodus Differentialis 

(1730). Abraham De Moivre, another mathematician and friend of Stirling’s, discovered 
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the formula except for finding the value of the constant factor (2π)1/2 . The proof of the 
formula and up through (3) above is due to Herbert Robbins, Amer. Math. Monthly 62 

(1955) pp. 26–29. The refinement of the proof to give (4) is due to T. S. Nanjundiah, ibid. 
66 (1959) pp. 701–703. As mentioned, further terms in the asymptotic expansion (next 
display after (4)) can be found from E. T. Whittaker and G. N. Watson, Modern Analysis 

(Cambridge Univ. Press, 4th ed., 1927, repr. 1962) pp. 252-253. John Wallis published 
his product (without a real proof) around 1650 (see his Opera Omnis, re-published in 
1972). The above proof came from R. Courant, Differential and Integral Calculus I, 2d. 
ed., translated by E. J. McShane (Interscience, N. Y. , 1937). 

Stirling’s formula – examples 
Let S

1
(
/
n
(12
)

n
= 
)]

(n/e)n(2πn)1/2 . Then n! ∼ S(n) as n → ∞, meaning n!/S(n) → 1, and 
n!/[S(n)e 1 faster. But n!−S(n) does not converge to 0; in fact it increases very →
fast, but not as fast as n! or S(n). 
n n! S(n) n! − S(n) n!/S(n) n!/[S(n)e1/(12n)] 

5 1.2000 102 1.1802 102 1.9808 1.0168 .999978024 · · 
10 3.6288 106 3.5987 107 3.0104 104 1.0084 .999997299 · · · 
20 2.4329 1018 2.4228 1018 1.0115 1016 1.0042 .999999649 · · · 
40 8.1592 1047 8.1422 1047 1.6980 1045 1.0021 .999999948 · · · 
60 8.3210 1081 8.3094 1081 1.1549 1079 1.0014 .999999988 · · · 

Note that the ratios in the next to last column decrease toward 1. They are approx­
imately 1 + 1/(12n). The ratios in the last column increase toward 1, faster. They are 
approximately 1 − 1/(360n3). So as n becomes large, in terms of ratio (not difference), n! 
is fairly well approximated by S(n), much better approximated by S(n)e1/(12n), and still 
much better approximated by S(n) exp[1/(12n)− 1/(360n3)]. 

For large n, one needs to take account of rounding error. In log(nn+0.5) = (n + 
0.5) logn, a rounding error in log n is multiplied by n. If n is 10k, for example, this means 
a loss of k decimal places of accuracy. 
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