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On the Equivalence of Algebraic Conditions
for Convexity and Quasiconvexity of Polynomials

Amir Ali Ahmadi and Pablo A. Parrilo

Abstract— This paper is concerned with algebraic relax-
ations, based on the concept of sum of squares decomposition,
that give sufficient conditions for convexity of polynomials and
can be checked efficiently with semidefinite programming. We
propose three natural sum of squares relaxations for polynomial
convexity based on respectively, the definition of convexity, the
first order characterization of convexity, and the second order
characterization of convexity. The main contribution of the
paper is to show that all three formulations are equivalent;
(though the condition based on the second order characteriza-
tion leads to semidefinite programs that can be solved much
more efficiently). This equivalence result serves as a direct
algebraic analogue of a classical result in convex analysis.

We also discuss recent related work in the control literature
that introduces different sum of squares relaxations for polyno-
mial convexity. We show that the relaxations proposed in our
paper will always do at least as well the ones introduced in
that work, with significantly less computational effort. Finally,
we show that contrary to a claim made in the same related
work, if an even degree polynomial is homogeneous, then it is
quasiconvex if and only if it is convex. An example is given.

I. INTRODUCTION

Algebraic relaxations for polynomial optimization prob-
lems have seen a lot of attention from the control community
in the past decade. The primary reason for this interest
is the fact that several fundamental problems in controls,
such as Lyapunov analysis and synthesis of nonlinear or
hybrid systems with polynomial or rational dynamics, can
often be reduced to the problem of deciding whether certain
polynomials are nonnegative either globally or on some
regions of the space. This problem is unfortunately known
to be computationally intractable (already NP-hard for poly-
nomials of degree four [1]). On the other hand, algebraic
conditions based on the decomposition of polynomials as
sum of squares (sos) of polynomials have shown to provide
very effective sufficient conditions for polynomial nonneg-
ativity. The success of sums of squares techniques stems
from several facts such as their computational tractability for
reasonable size problems, capability of being incorporated in
search problems, explicitness of certificates of nonnegativity,
and availability of a hierarchical procedure that often con-
verges to necessary conditions for polynomial nonnegativity.
For a range of applications of sum of squares programs in
systems and control, we refer the reader to the by no means
exhaustive list of works [2], [3], [4], [5], [6], [7], [8], [9],
[10], and references therein.
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Aside from nonnegativity, convexity is another important
property of polynomials that one would like to establish.
Here again one might want to decide if a given polynomial is
convex, or parameterize a family of polynomials with certain
properties. For example, if we are trying to find a global
minimum of a given polynomial, it could be very useful to
decide first if the polynomial is convex. If convexity of the
polynomial is a priori guaranteed, then very basic techniques
(e.g. gradient descent) can find a global minimum, a task that
is in general intractable in absence of convexity. As another
example, if we can certify that a homogenous polynomial is
convex, then we can use it to define a norm (see Theorem 5.1
in Section V), which may be useful in many applications. To
name an instance where parametrization of convex polyno-
mials may come up, we can mention the problem of finding
a convex polynomial that closely approximates the convex
envelope of a more complicated non-convex function. Or
in systems analysis, we could be searching for a convex
polynomial Lyapunov function whose convex sublevel sets
contain relevant information about the trajectories of the
system.

The question of determining the computational complexity
of deciding convexity of polynomials appeared in 1992 on
a list of seven open problems in complexity theory for
numerical optimization [11]. Very recently, in joint work
with A. Olshevsky and J. N. Tsitsiklis, we have shown
that the problem is NP-hard for polynomials of degree four
or larger [12]. If testing membership in the set of convex
polynomials is hard, searching or optimizing over them is
obviously also hard. This result, like any other hardness
result, stresses the need for good relaxation algorithms that
can deal with many instances of the problem efficiently.

The focus of this work is on algebraic sum of squares
based relaxations for establishing convexity of polynomials.
The motivation for doing this is that all the attractive features
of sum of squares programming carry over to this problem
immediately. In fact, the idea of using sum of squares to
establish convexity of polynomials has already appeared in
several places in the literature in different contexts. In [13],
Helton and Nie formally introduce the term sos-convexity,
which is based on an appropriately defined sos decomposi-
tion of the Hessian matrix of polynomials; (see Definition 2
in Section II-B.) They use sos-convexity in their work to
give sufficient conditions for semidefinite representability
of semialgebraic sets. In [14], Lasserre uses sos-convexity
to extend Jensen’s inequality in probability theory to linear
functionals that are not necessarily probability measures. Pre-
dating the paper of Helton and Nie, Magnani, Lall, and Boyd
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[15] use the same relaxation to find convex polynomials that
best fit a set of data points or to find minimum volume
convex sets, given by sublevel sets of convex polynomials,
that contain a set of points in space.

Another work in the control literature that tackles exactly
this problem and to which we will make several references
in this paper is the work of Chesi and Hung [16]. Rather than
working with the Hessian matrix, Chesi and Hung use an sos
relaxation on an equivalent formulation of the definition of
convexity.

Our main contribution in this paper is to revisit the
following basic questions: what are some natural ways to use
the sos relaxation for formulating sufficient conditions for
convexity of polynomials? How do the different formulations
relate? We will show in Section III that three most natural sos
relaxations that are based on (i) the definition of convexity,
(ii) the first order characterization of convexity, and (iii) the
second order characterization of convexity all turn out to
be exactly equivalent (Theorem 3.1). We will comment on
how the computational efficiency of solving the resulting
SDPs compare. In Section IV, we show that any of these
three equivalent formulations always performs at least as
well as the formulations proposed in [16] (Theorem 4.1),
at a considerably lower computational cost.

Another problem that we will touch upon in this pa-
per is that of establishing quasiconvexity (convexity of
sublevel sets) of polynomials. Even though every convex
function is quasiconvex, the converse is not true in general.
In [16] and [17], the authors argue for several applications
of establishing quasiconvexity of Lyapunov functions and
develop some sos relaxations for parameterizing quasiconvex
polynomials. However, it is claimed (incorrectly) in these
works that quasiconvexity is a strictly weaker condition than
convexity even for positive homogenous polynomials. In
fact, separate conditions for quasiconvexity of homogenous
polynomials are proposed in [17]. We will give a simple
proof in Section V that shows that a positive homogenous
polynomial is quasiconvex if and only if it is convex. We
will reaffirm this point by revisiting an example of [16] in
Section VI.

The organization of our paper is as follows. In Sec-
tion II we give preliminary material on nonnegativity, sum
of squares, convexity, and sos-convexity of polynomials and
the connection to semidefinite programming. In Section III,
we present our main result that establishes the equivalence of
three natural algebraic relaxations for convexity of polynomi-
als. We compare these relaxations with those given in [16]
in Section IV. The result on equivalence of convexity and
quasiconvexity for homogenous polynomials is presented in
Section V. An example is given in Section VI. Finally, our
conclusions are discussed in Section VII.

II. PRELIMINARIES
A. Nonnegativity, sum of squares, and semidefinite program-
ming

We denote by K[x] := K[x1, . . . , xn] the ring of poly-
nomials in n variables with coefficients in the field K. A

polynomial p(x) ∈ R[x] is said to be nonnegative or positive
semidefinite (psd) if p(x) ≥ 0 for all x ∈ Rn. Clearly,
a necessary condition for a polynomial to be psd or to be
globally convex is for its total degree to be even. So, for the
rest of the paper we will always be dealing with polynomials
of even degree. We say that p(x) is a sum of squares
(sos), if there exist polynomials q1(x), . . . , qm(x) such that
p(x) =

∑m
i=1 q

2
i (x). It is clear that p(x) being sos implies

that p(x) is psd. Hilbert [18] showed that the converse is not
true except for specific degrees and dimensions; see [19].

A polynomial where all the monomials have the same
degree is called a form. A form p(x) of degree d is a
homogenous function of degree d (since it satisfies p(λx) =
λdp(x)). It is easy to show that if a form of degree d
is sos, then d is even and the polynomials qi in the sos
decomposition are forms of degree d/2.

For a fixed dimension and degree the set of psd polyno-
mials and the set of sos polynomials are both closed convex
cones. The fact that the sos cone is closed is not so obvious
and was first proven by Robinson [20]. His result will be
key to our main theorem.

Unlike nonnegativity, the problem of deciding whether a
given polynomial admits an sos decomposition turns out to
be a tractable problem. The reason is that the problem can be
reformulated as a semidefinite program (SDP) (perhaps better
known to the control community as a linear matrix inequality
(LMI)) [21]. The following theorem illustrates this.

Theorem 2.1: ( [2], [22]) A multivariate polynomial p(x)
in n variables and of even degree d is a sum of squares if and
only if there exists a positive semidefinite matrix Q (often
called the Gram matrix) such that

p(x) = zTQz, (1)

where z is the vector of monomials of degree up to d/2

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d/2
n ]. (2)

The notions of positive semidefiniteness and sum of
squares of scalar polynomials can be naturally extended to
polynomial matrices, i.e., matrices with entries in R[x]. We
say that a symmetric polynomial matrix P (x) ∈ R[x]m×m

is PSD if P (x) is PSD for all x ∈ Rn. It is straightforward
to see that this condition holds if and only if the polynomial
yTH(x)y in m+ n variables [x; y] is psd. The definition of
an sos-matrix is as follows [23], [24], [25].

Definition 1: A symmetric polynomial matrix
P (x) ∈ R[x]m×m, x ∈ Rn is an sos-matrix if there
exists a polynomial matrix M(x) ∈ R[x]s×m for some
s ∈ N, such that P (x) = MT (x)M(x).

It turns out that a polynomial matrix P (x) ∈ R[x]m×m,
x ∈ Rn is an sos-matrix if and only if the scalar polynomial
yTP (x)y is a sum of squares in R[x; y]; see [23]. This
is a useful fact because it enables us to check whether a
polynomial matrix is an sos-matrix with the machinery of
Theorem 2.1. Once again, it is obvious that being an sos-
matrix is a sufficient condition for a polynomial matrix to
be PSD.
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B. Convexity and sos-convexity

A function f : Rn → R is convex if its domain is a convex
set and for all x and y in the domain and all λ ∈ [0, 1], we
have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3)

Our focus in this paper is on establishing convexity of poly-
nomials on their entire domain Rn. The following theorem
states that for continuous functions (and in particular for
polynomials) it is enough to check condition (3) only for
λ = 1/2 to establish convexity [26, p. 71].

Theorem 2.2: A continuous function f : Rn → R is
convex if and only if

f
(

1
2x+ 1

2y
)
≤ 1

2f(x) + 1
2f(y) (4)

for all x and y in the domain.
The choice of λ = 1

2 in this theorem is arbitrary and any
other fixed λ ∈ (0, 1) would work as well.

Next, we recall a classical result from convex analysis.
The proof can be found in many convex analysis textbooks,
e.g. [27, p. 70]. The theorem is true for any twice dif-
ferentiable function, but for our purposes we state it for
polynomials.

Theorem 2.3: Let p : Rn → R be a multivariate poly-
nomial. Let ∇p(x) denote its gradient and let ∇2p(x) be
its Hessian, i.e., the n × n symmetric matrix of second
derivatives. Then the following are equivalent.

(a) p is convex.
(b) p(y) ≥ p(x) +∇p(x)T (y − x), ∀x, y ∈ Rn.
(c) yT∇2p(x)y is psd; (i.e., ∇2p(x) is a PSD matrix).
Helton and Nie proposed in [13] the notion of sos-

convexity as an sos relaxation for the second order char-
acterization of convexity (condition (c) above).

Definition 2: ( [13]) A polynomial p(x) is sos-convex if
its Hessian ∇2p(x) is an sos-matrix.

With what we have discussed so far, it should be clear
that sos-convexity is a sufficient condition for convexity of
polynomials that can be checked with semidefinite program-
ming. In the next section we show some other natural sos
relaxations for polynomial convexity, which will turn out to
be equivalent to sos-convexity.

III. EQUIVALENT ALGEBRAIC RELAXATIONS
FOR CONVEXITY OF POLYNOMIALS

An obvious way to formulate alternative sos relaxations
for convexity of polynomials is to replace every inequality in
Theorem 2.3 with its sos version. In this section we examine
how these relaxations relate in terms of conservatism. We
also comment on the size of the resulting semidefinite
programs.

Our results below can be thought of as an algebraic
analogue of Theorem 2.3.

Theorem 3.1: Let p(x) be a polynomial of degree d in n
variables with its gradient and Hessian denoted respectively

by ∇p(x) and ∇2p(x). Let gλ, g∇, and g∇2 be defined as

gλ(x, y) = (1− λ)p(x) + λp(y)− p((1− λ)x+ λy),
g∇(x, y) = p(y)− p(x)−∇p(x)T (y − x),
g∇2(x, y) = yT∇2p(x)y.

(5)
Then the following are equivalent:

(a) g 1
2
(x, y) is sos1.

(b) g∇(x, y) is sos.
(c) g∇2(x, y) is sos; (i.e., ∇2p(x) is an sos-matrix).

Proof: (a)⇒(b): Assume g 1
2
(x, y) is sos. We start by

proving that g 1
2k

(x, y) will also be sos for any integer k ≥ 2.
A little bit of straightforward algebra yields the relation

g 1
2k

(x, y) = 1
2g 1

2k−1
(x, y) + g 1

2

(
x, 2k−1−1

2k−1 x+ 1
2k−1 y

)
.

(6)
The second term on the right hand side of (6) is always
sos because g 1

2
(x, y) is sos. When k = 2, both terms on

the right hand side of this equation are sos by assumption
and hence (6) implies that g 1

4
(x, y) must be sos. Once this

is established, we can reapply equation (6) with k = 3 to
conclude that g 1

8
(x, y) is sos, and so on.

Now, let us rewrite gλ(x, y) as

gλ(x, y) = p(x) + λ(p(y)− p(x))− p(x+ λ(y − x)).

We have

gλ(x, y)
λ

= p(y)− p(x)− p(x+ λ(y − x))− p(x)
λ

. (7)

Next, we take the limit of both sides of (7) by letting λ =
1
2k
→ 0 as k →∞. Because p is differentiable, the right hand

side of (7) will converge to g∇(x, y). On the other hand, our
preceding argument implies that gλ(x,y)

λ is an sos polynomial
(of degree d in 2n variables) for any λ = 1

2k
. Moreover, as

λ goes to zero, the coefficients of gλ(x,y)
λ remain bounded

since the limit of this sequence is g∇(x, y), which must have
bounded coefficients (see (5)). By closedness of the sos cone,
we conclude that the limit g∇(x, y) must be sos.

(b)⇒(a): Assume g∇(x, y) is sos. It is easy to check that

g 1
2
(x, y) = 1

2g∇
(

1
2x+ 1

2y, x
)

+ 1
2g∇

(
1
2x+ 1

2y, y
)
,

and hence g 1
2
(x, y) is sos.

(b)⇒(c): Let us write the second order Taylor approxima-
tion of p around x:

p(y) = p(x) +∇T p(x)(y − x)
+ 1

2 (y − x)T∇2p(x)(y − x) + o(||y − x||2).

After rearranging terms, letting y = x+ εz (for ε > 0), and
dividing both sides by ε2 we get:

(p(x+ εz)− p(x))/ε2 −∇T p(x)z/ε = 1
2z
T∇2p(x)z

+1/ε2o(ε2||z||2).
(8)

1The constant 1
2

in g 1
2
(x, y) of condition (a) is arbitrary and is chosen

for convenience. One can show that g 1
2

being sos implies that gλ is sos for
any fixed λ ∈ [0, 1]. Conversely, if gλ is sos for some λ ∈ (0, 1), then g 1

2
is sos. The proofs are similar to the proof of (a)⇒(b).
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The left hand side of (8) is g∇(x, x+ εz)/ε2 and therefore
for any fixed ε > 0, it is an sos polynomial by assumption.
As we take ε → 0, by closedness of the sos cone, the left
hand side of (8) converges to an sos polynomial. On the other
hand, as the limit is taken, the term 1

ε2 o(ε
2||z||2) vanishes

and hence we have that zT∇2p(x)z must be sos.
(c)⇒(b): Following the strategy of the proof of the clas-

sical case in [28, p. 165], we start by writing the Taylor
expansion of p around x with the integral form of the
remainder:
p(y) = p(x) +∇T p(x)(y − x)

+
∫ 1

0
(1− t)(y − x)T∇2p(x+ t(y − x))(y − x)dt.

(9)
Since yT∇2p(x)y is sos by assumption, for any t ∈ [0, 1]
the integrand

(1− t)(y − x)T∇2p(x+ t(y − x))(y − x)

is an sos polynomial of degree d in x and y. From (9) we
have

g∇ =
∫ 1

0

(1− t)(y − x)T∇2p(x+ t(y − x))(y − x)dt.

It then follows that g∇ is sos because integrals of sos
polynomials, if they exist, are sos.

We conclude that conditions (a), (b), and (c) are equivalent
sufficient conditions for convexity of polynomials, and can
each be turned into a set of LMIs using Theorem 2.1. It is
easy to see that all three polynomials g 1

2
(x, y), g∇(x, y), and

g∇2(x, y) are polynomials in 2n variables and of degree d.
(Note that each differentiation reduces the degree by one.)
Each of these polynomials have a specific structure that can
be exploited for formulating smaller SDPs. For example,
the symmetries g 1

2
(x, y) = g 1

2
(y, x) and g∇2(x,−y) =

g∇2(x, y) can be taken advantage of via symmetry reduction
techniques developed in [24].

The issue of symmetry reduction aside, we would like to
point out that formulation (c) (which was the original defini-
tion of sos-convexity) can be significantly more efficient than
the other two conditions. The reason is that the polynomial
g∇2(x, y) is always quadratic and homogeneous in y and of
degree d− 2 in x. This makes g∇2(x, y) much more sparse
than g∇(x, y) and g∇2(x, y), which have degree d both in
x and in y. Furthermore, because of the special bipartite
structure of yT∇2p(x)y, only monomials of the form xki yj
will appear in the vector of monomials (2) of Theorem 2.1.
This in turn reduces the size of the Gram matrix, and hence
the size of the SDP. It is perhaps not too surprising that the
characterization of convexity based on the Hessian matrix is
a more efficient condition to check. After all, this is a local
condition (curvature at every point in every direction must be
nonnegative), whereas conditions (a) and (b) are both global.

We shall end this section by commenting on the necessity
of these conditions. In [29], [30], the authors showed with an
explicit example that there exist convex polynomials that are
not sos-convex. In view of Theorems 2.3 and 3.1, it follows
immediately that the same example rejects necessity of

conditions (a) and (b). However, standard Positivstellensatz
results related to Hilbert’s 17th problem can be used to make
these conditions necessary under mild assumptions but at the
cost of solving larger and larger SDPs; see e.g. [31].

IV. COMPARISON WITH THE FORMULATION OF
CHESI AND HUNG

In [16], Chesi and Hung have developed a sum of squares
based sufficient condition for polynomial convexity that is
based on a reformulation of the definition of convexity in
(3). Below, we restate their result and then compare it to the
sufficient conditions of the previous section.

Let p(x) be a polynomial of degree d in n variables. Let
z = [x, y]T ∈ R2n and let

w(z, α) = p(α1x+ α2y)− α1p(x)− α2p(y),

where α = [α1, α2]T ∈ R2 is an auxiliary vector. Rewrite
w(z, α) as

w(z, α) =
d∑
i=1

i∑
j=0

αi−j1 αj2wi,j(z),

where wi,j(z) are suitable polynomials. Define

t(z, α) =
d∑
i=1

(α1 + α2)d−i
i∑

j=0

αi−j1 αj2wi,j(z). (10)

Observe that t(z, α) = w(z, α) for all α such that α1 +α2 =
1. The result of Chesi and Hung (Theorem 1 in [16]) states
that p(x) is convex if and only if

t(z, α2) ≤ 0 ∀(z, α) ∈ R2n × R2,

where α2 , [α2
1, α

2
2]T . The sos relaxation that they propose

is then
−t(z, α2) sos. (11)

The following easy theorem shows that this formulation is
at least as conservative as the formulations of Theorem 3.1.

Theorem 4.1: For a polynomial p(x), define the polyno-
mial t(z, α) as in (10). If −t(z, α2) is sos, then all of the
conditions (a), (b), and (c) in Theorem 3.1 hold.

Proof: Let α = [ 1√
2
, 1√

2
]T . Because −t(z, α2) is sos,

it follows that

−t(z, [ 12 ,
1
2 ]T ) = −

∑d
i=1( 1

2 + 1
2 )d−i

∑i
j=0

1
2

i−j 1
2

j
wi,j(z)

= −w(z, [ 12 ,
1
2 ]T )

= 1
2p(x) + 1

2p(y)− p( 1
2x+ 1

2y)

is sos. Hence g 1
2
(x, y) is sos.

The polynomial −t(z, α2) in (11) has 2n + 2 variables
(x, y, α1, α2). It has a total degree of 3d (degree d in x and
y and degree 2d in α). Checking whether this polynomial is
sos is drastically more expensive than checking our preferred
formulation based on the Hessian matrix. For example, when
p(x) is a homogenous polynomial in n = 2 variables of
degree d = 4, checking condition (11) reduces to an LMI
with a 50× 50 Gram matrix and 960 scalar parameters [16],
whereas the LMI resulting from setting yT∇2p(x)y to be sos
has a 4× 4 Gram matrix and only a single scalar parameter.
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In [16], the authors realize the computational burden
involved with their formulation and propose a further re-
laxation of their result; see Theorem 2 in [16]. We do not
discuss their second result because their examples suggest
that the new formulation is strictly more conservative than
the first one. Moreover, for the example of the previous
paragraph, their further relaxed formulation still reduces to
three LMIs, each with a 10× 10 Gram matrix and 20 scalar
parameters [16].

V. QUASICONVEXITY OF HOMOGENOUS
POLYNOMIALS

A function p(x) is said to be quasiconvex if all its sublevel
sets

Sp(α) := {x| p(x) ≤ α}, (12)

for α ∈ R, are convex sets. It is easy to see that every
convex function is quasiconvex but the converse is not true.
In this section we show that the converse is true for positive
continuous functions that are homogenous. For our purposes,
we state the theorem for polynomials. This result is contrary
to the developments in [16] and [17]; see also the example
in the next section.

Note that for homogeneous polynomials quasiconvexity is
completely determined by convexity of the unit sublevel set
Sp(1), which we will simply denote by Sp.

Theorem 5.1: Let p(x) be a positive2 and homogeneous
polynomial of even degree d. If p(x) is quasiconvex, then it
must also be convex.

Proof: By assumption, the sublevel set

Sp = {x| p(x) ≤ 1}

is convex. Let q(x) := p(x)1/d. We have

Sq = {x| q(x) ≤ 1}
= {x| p(x)1/d ≤ 1}
= Sp.

So, q(x) has a convex unit sublevel set. We also have that

q(λx) = p(λx)1/d = (λdp(x))1/d = |λ|q(x),

for any λ ∈ R, and q(x) > 0 for all x 6= 0. Therefore
q(x) is a positive homogenous function of degree 1 that is
quasiconvex. We will show that q(x) must be convex.

Because q(x) is continuous, by Theorem 2.2 it suffices to
show

q
(

1
2x+ 1

2y
)
≤ 1

2q(x) + 1
2q(y),

which because of homogeneity of degree 1 reduces to

q(x+ y) ≤ q(x) + q(y). (13)

Pick any nonzero x, y ∈ Rn. We have q( x
q(x) ) = q( y

q(y) ) =
1. Therefore x

q(x) ∈ Sq and y
q(y) ∈ Sq . By convexity of Sq

we have

q

(
q(x)

q(x) + q(y)
x

q(x)
+

q(y)
q(x) + q(y)

y

q(y)

)
≤ 1.

2With little more work, the positivity assumption can be dropped;
see [12].

Therefore
1

q(x) + q(y)
q(x+ y) ≤ 1,

and hence (13).3 Convexity of p(x) = q(x)d then follows
from the fact that convex nonnegative functions raised to a
power larger than one remain convex [27, p. 86].
Theorem 5.1 suggests that for homogenous polynomials,
no separate conditions are needed for quasiconvexity. In
particular, the algebraic relaxations for convexity that we
presented in Section III can be used to efficiently test
quasiconvexity.4

VI. AN EXAMPLE
We revisit an example of Chesi and Hung [16, Example 2].
Example 6.1: Consider the homogenous polynomial5

p(x) = 5000x4
1 + 4x2

1x
2
2 − cx1x

3
2 + x4

2. (14)

Our first task is to find the largest value of c, denoted by c∗,
for which the polynomial is convex.

In [16], a lower bound of 3.271 on c∗ is claimed using
the sos program (11) discussed in Section IV. We will give
a lower bound based on sos-convexity. The Hessian of p(x)
is given by

∇2p(x) =
[
60000x2

1 + 8x2
2 16x1x2 − 3cx2

2

16x1x2 − 3cx2
2 8x2

1 + 12x2
2 − 6cx1x2

]
.

Requiring ∇2p(x) to be an sos-matrix reduces to the follow-
ing SDP:

max c
s.t. yT∇2p(x)y = zTQz

Q � 0,
(15)

where y = (y1, y2)T , and z is the vector of monomials

z = [x1y1, x1y2, x2y1, x2y2]T .

The decision variables of this SDP are the scalar c and one
free parameter in the symmetric 4 × 4 Gram matrix Q. Let
ĉ∗ denote the optimal value of SDP (15). We have used
SOSTOOLS [32] and the SDP solver SeDuMi [33] to get
a numerical value of ĉ∗ = 3.2658 to four significant digits.

Our lower bound is in fact tight for this example.6 Because
the example is simple enough, we can compute the exact
value of c∗ to be

c∗ =

√
179984
16875

≈ 3.2658. (16)

This is the cutoff value for the determinant of ∇2p(x) to
remain nonnegative, and also the exact optimal value of (15).

We now turn to the problem of finding the largest value of
c, denoted by c], for which p(x) has convex sublevel sets.

3In fact it can be shown that q(x) is a gauge (or Minkowski) norm defined
by the symmetric convex set Sq ; i.e., q(x) = inf{t > 0| x ∈ tSq}.

4As for quasiconvexity of non-homogeneous polynomials, the conditions
of [17] and [16] can also be simplified. See midpoint convexity [27, p. 60].
For quasiconvexity of odd degree polynomials, see [12].

5There is a typo in the exponent of the monomial x1x3
2 in [16]. We have

confirmed this with the authors.
6More generally, we can show that convexity and sos-convexity are

equivalent for bivariate forms.
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In [16], a lower bound of 3.785 on c] is asserted and it
is claimed that even though the polynomial is not convex
at c = 3.785, the sos relaxations proposed in [16] prove
convexity of the sublevel sets. In view of our Theorem 5.1,
this claim has to be wrong. Because the polynomial p(x)
is positive for c = c∗, Theorem 5.1 implies that the cutoff
of convexity and quasiconvexity must be the same; i.e., we
must have

c] = c∗ =

√
179984
16875

.

Let us confirm this directly with a curvature argument. To
reject quasiconvexity, it is enough to show a point x and a
direction y such that

yT∇p(x) = 0 and yT∇2p(x)y < 0. (17)

See [27, p. 101]. Let

x̄ = (33
√

31 +
√

33747, 300)T ,

and let

ȳ =
(
− ∂p

∂x2
(x̄),

∂p

∂x1
(x̄)
)T

be the direction tangent to the level set at x̄. Then around c],
the polynomial ȳT∇2p(x̄)ȳ as a function of c has a Taylor
expansion

ȳT∇2p(x̄)ȳ = k1(c− c]) + · · · ,

with k1 < 0. Therefore, for c = c] + ε and ε positive and
arbitrarily small, x̄ and ȳ satisfy (17).

VII. CONCLUSIONS

We proposed three natural approaches for using sum of
squares relaxations to impose polynomial convexity. Our
main result, which was an algebraic analogue of a classical
result in convex analysis, implied that all these relaxations
are equivalent. We also clarified the connection to previous
works in the literature and argued that a relaxation for
positive semidefiniteness of the Hessian matrix leads to the
most computationally efficient SDPs. Finally, we showed that
for positive homogenous polynomials, convexity of sublevel
sets is equivalent to convexity of the function.
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