
Fast Sorting on a Distributed-Memory Architecture
David R. Cheng1, Viral Shah2, John R. Gilbert2, Alan Edelman1

1Massachusetts Institute of Technology, 2University of California, Santa Barbara

Abstract— We consider the often-studied problem of sorting,
for a parallel computer. Given an input array distributed evenly
over p processors, the task is to compute the sorted output array,
also distributed over the p processors. Many existing algorithms
take the approach of approximately load-balancing the output,
leaving each processor withΘ(n

p
) elements. However, in many

cases, approximate load-balancing leads to inefficiencies in both
the sorting itself and in further uses of the data after sorting.
We provide a deterministic parallel sorting algorithm that uses
parallel selection to produce any output distribution exactly,
particularly one that is perfectly load-balanced. Furthermore,
when using a comparison sort, this algorithm is 1-optimal in
both computation and communication. We provide an empirical
study that illustrates the efficiency of exact data splitting, and
shows an improvement over two sample sort algorithms.

Index Terms— Parallel sorting, distributed-memory algo-
rithms, High-Performance Computing.

I. INTRODUCTION

Parallel sorting has been widely studied in the last couple
of decades for a variety of computer architectures. Many
high performance computers today have distributed memory,
and commodity clusters are becoming increasingly common.
The cost of communication is significantly larger than the
cost of computation on a distributed memory computer. We
propose a sorting algorithm that is close to optimal in both
the computation and communication required. The motivation
for the development of our sorting algorithm was to implement
sparse matrix functionality in Matlab*P [13].

Blelloch et al. [1] compare several parallel sorting algo-
rithms on the CM–2, and report that a sampling based sort
and radix sort are good algorithms to use in practice. We
first tried a sampling based sort, but this had a couple of
problems. A sampling sort requires a redistribution phase at
the end, so that the output has the desired distribution. The
sampling process itself requires “well chosen” parameters to
yield “good” samples. We noticed that we can do away with
both these steps if we can determine exact splitters quickly.
Saukas and Song [12] describe a quick parallel selection
algorithm. Our algorithm extends this work to efficiently find
p− 1 exact splitters in O(p log n) rounds of communication,
providing a 1-optimal parallel sorting algorithm.

II. ALGORITHM DESCRIPTION

Before giving the concise operation of the sorting algorithm,
we begin with some assumptions and notation.

We are given p processors to sort n total elements in a vector
v. Assume that the input elements are already load balanced, or

evenly distributed over the p processors.1 Note that the values
may be arbitrary. In particular, we rank the processors 1 . . . p,
and define vi to be the elements held locally by processor i.
The distribution of v is a vector d where di = |vi|. Then we
say v is evenly distributed if it is formed by the concatenation
v = v1 . . . vp, and di ≤ �np � for any i.

In the algorithm description below, we assume the task is
to sort the input in increasing order. Naturally, the choice is
arbitrary and any other comparison function may be used.

Algorithm.
Input: A vector v of n total elements,
evenly distributed among p processors.
Output: An evenly distributed vector w
with the same distribution as v,
containing the sorted elements of v.

1) Sort the local elements vi into a
vector v′i.

2) Determine the exact splitting of
the local data:

a) Compute the partial sums r0 = 0
and rj =

∑j

k=1
dk for j = 1 . . . p.

b) Use a parallel select
algorithm to find the elements
e1, . . . , ep−1 of global rank
r1, . . . , rp−1, respectively.

c) For each rj, have processor i
compute the local index sij so
that rj =

∑p

i=1
sij and the first

sij elements of v′i are no larger
than ej.

3) Reroute the sorted elements in v′i
according to the indices sij:
processor i sends elements in the
range sij−1 . . . sij to processor j.

4) Locally merge the p sorted
sub-vectors into the output wi.

The details of each step now follow.

A. Local Sort

The first step may invoke any local sort applicable to the
problem at hand. It is beyond the scope of this study to devise
an efficient sequential sorting algorithm, as the problem is
very well studied. We simply impose the restriction that the
algorithm used here should be identical to the one used for a
baseline comparison on a non-parallel computer. Define the
computation cost for this algorithm on an input of size n
to be Ts(n). Therefore, the amount of computation done by
processor i is just Ts(di). Because the local sorting must

1If this assumption does not hold, an initial redistribution step can be added.

be completed on each processor before the next step can
proceed, the global cost is maxi Ts(di) = Ts(�np �). With a
radix sort, this becomes O(n/p); with a comparison-based
sort, O(n

p
lg n
p
).

B. Exact Splitting

This step is nontrivial, and the main result of this paper
follows from the observation that exact splitting over locally
sorted data can be done efficiently.

The method used for simultaneous selection was given by
Saukas and Song in [12], with two main differences: local
ranking is done by binary search rather than partition, and
we perform O(lg n) rounds of communication rather than
O(lg cp) for some constant c. For completeness, a description
of the selection algorithm is given below.

1) Single Selection: First, we consider the simpler problem
of selecting just one target, an element of global rank r. 2 The
algorithm for this task is motivated by the sequential methods
for the same problem, most notably the one given in [2].

Although it may be clearer to define the selection algorithm
recursively, the practical implementation and extension into
simultaneous selection proceed more naturally from an itera-
tive description. Define an active range to be the contiguous
sequence of elements in v ′i that may still have rank r, and let ai
represent its size. Note that the total number of active elements
is
∑p
i=1 ai. Initially, the active range on each processor is the

entire vector v′i and ai is just the input distribution di. In each
iteration of the algorithm, a “pivot” is found that partitions the
active range in two. Either the pivot is determined to be the
target element, or the next iteration continues on one of the
partitions.

Each processor i performs the following steps:

1) Index the median mi of the active range of v ′i, and
broadcast the value.

2) Weight median mi by ai∑
p

k=1
ak

. Find the weighted

median of medians mm. By definition, the weights of
the {mi|mi < mm} sum to at most 12 , as do the weights
of the {mi|mi > mm}.

3) Binary search mm over the active range of v ′i to de-
termine the first and last positions fi and li it can be
inserted into the sorted vector v ′i. Broadcast these two
values.

4) Compute f =
∑p
i=1 fi and l =

∑p
i=1 li. The element

mm has ranks [f, l] in v.
5) If r ∈ [f, l], then mm is the target element and we exit.

Otherwise the active range is truncated as follows:
Increase the bottom index to li+1 if l < r; or decrease
the top index to fi − 1 if r < f .
Loop on the truncated active range.

We can think of the weighted median of medians as a pivot,
because it is used to split the input for the next iteration. It is
a well-known result that the weighted median of medians can

2To handle the case of non-unique input elements, any element may actually
have a range of global ranks. To be more precise, we want to find the element
whose set of ranks contains r.

1

2

3

4

5

Iteration
[1 2 3|]

[1 2|]

[1|2]

[1] [|2]

[3|]

[|3]

[3|]

Fig. 1. Example execution of selecting three elements. Each node corresponds
to a contiguous range of v′i, and gets split into its two children by the pivot.
The root is the entire v′i, and the bold traces which ranges are active at each
iteration. The array at a node represents the target ranks that may be found by
the search path, and the vertical bar in the array indicates the relative position
of the pivot’s rank.

be computed in linear time [11], [4]. One possible way is to
partition the values with the (unweighted) median, accumulate
the weights on each side of the median, and recurse on the
side that has too much weight. Therefore, the amount of
computation in each round is O(p) + O(lg ai) + O(1) =
O(p+ lg n

p
) per processor.

Furthermore, as shown in [12], splitting the data by the
weighted median of medians will decrease the total number
of active elements by at least a factor of 14 . Because the step
begins with n elements under consideration, there are O(lg n)
iterations. The total single-processor computation for selection
is then O(p lg n+ lg n

p
lg n) = O(p lg n+ lg2 n).

The amount of communication is straightforward to com-
pute: two broadcasts per iteration, for O(p lg n) total bytes
being transferred over O(lg n) rounds.

2) Simultaneous Selection: The problem is now to select
multiple targets, each with a different global rank. In the
context of the sorting problem, we want the p − 1 elements
of global rank d1, d1 + d2, . . . ,

∑p−1
i=1 di. One simple way

to do this would call the single selection problem for each
desired rank. Unfortunately, doing so would increase the
number communication rounds by a factor of O(p). We can
avoid this inflation by solving multiple selection problems
independently, but combining their communication. Stated
another way, instead of finding p− 1 paths one after another
from root to leaf of the binary search tree, we take a breadth-
first search with breadth at most p− 1 (see Figure 1).

To implement simultaneous selection, we augment the sin-
gle selection algorithm with a set A of active ranges. Each
of these active ranges will produce at least one target. An
iteration of the algorithm proceeds as in single selection, but
finds multiple pivots: a weighted median of medians for each
active range. If an active range produces a pivot that is one of
the target elements, we eliminate that active range from A (as
in the leftmost branch of Figure 1). Otherwise, we examine
each of the two partitions induced by the pivot, and add it to
A if it may yield a target. Note that as in iterations 1 and 3
in Figure 1, it is possible for both partitions to be added.

In slightly more detail, we handle the augmentation by

looping over A in each step. The local medians are bundled
together for a single broadcast at the end of Step 1, as are the
local ranks in Step 3. For Step 5, we use the fact that each
active range in A has a corresponding set of the target ranks:
those targets that lie between the bottom and top indices of
the active range. If we keep the subset of target ranks sorted,
a binary search over it with the pivot rank3 will split the
target set as well. The left target subset is associated with
the left partition of the active range, and the right sides follow
similarly. The left or right partition of the active range gets
added to A for the next iteration only if the corresponding
target subset is non-empty.

The computation time necessary for simultaneous selection
follows by inflating each step of the single selection by a factor
of p (because |A| ≤ p). The exception is the last step, where
we also need to binary search over O(p) targets. This amount
to O(p+p2+p lg np+p+p lg p) = O(p

2+p lg np) per iteration.
Again, there are O(lg n) iterations for total computation time
of O(p2 lg n+ p lg2 n).

This step runs in O(p) space, the scratch area needed to
hold received data and pass state between iterations.

The communication time is similarly inflated: two broad-
casts per round, each having one processor send O(p) data
to all the others. The aggregate amount of data being sent is
O(p2 lgn) over O(lg n) rounds.

3) Producing Indices: Each processor computes a local
matrix S of size p × (p + 1). Recall that S splits the local
data v′i into p segments, with sk0 = 0 and skp = dk for
k = 1 . . . p. The remaining p− 1 columns come as output of
the selection. For simplicity of notation, we briefly describe
the output procedure in the context of single selection; it
extends naturally for simultaneous selection. When we find
that a particular mm has global ranks [f, l)
 rk, we also have
the local ranks fi and li. There are rk−f excess elements with
value mm that should be routed to processor k. For stability,
we assign ski from i = 1 to p, taking as many elements as
possible without overstepping the excess. More precisely,

ski = min

fi + (rk − f)−

i−1∑
j=1

(skj − fj), li

The computation requirements for this step are O(p2) to
populate the matrix S; the space used is also O(p2).

C. Element Rerouting

This step is purely one round of communication. There exist
inputs such that the input and output locations of each element
are different. Therefore, the aggregate amount of data being
communicated in this step is O(n). However, note that this
cost can not be avoided. An optimal parallel sorting algorithm
must communicate at least the same amount of data as done
in this step, simply because an element must at least move
from its input location to its output location.

3Actually, we binary search for the first position f may be inserted, and
for the last position l may be inserted. If the two positions are not the same,
we have found at least one target.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4

Height

Fig. 2. Sequence of merges for p not a power of 2.

The space requirement is an additional O(di), because we
do not have the tools for in-place sending and receiving of
data.

D. Merging

Now each processor has p sorted sub-vectors, and we want
to merge them into a single sorted sequence. The simple
approach we take for this problem is to conceptually build
a binary tree on top of the vectors. To handle the case of p
that are not powers of 2, we say a node of height i has at most
2i leaf descendants, whose ranks are in [k · 2i, (k+1) · 2i) for
some k (Figure 2). It is clear that the tree has height ≤ �lg p�.

From this tree, we merge pairs of sub-vectors out-of-place,
for cache efficiency. This can be done by alternating between
the temporary space necessary for the rerouting step, and the
eventual output space.

Notice that a merge will move a particular element exactly
once (from one buffer to its sorted position in the other buffer).
Furthermore, there is at most one comparison for each element
move. Finally, every time an element gets moved, it goes into
a sorted sub-vector at a higher level in the tree. Therefore each
element moves at most �lg p� times, for a total computation
time of di�lg p�. Again, we take the time of the slowest
processor, for computation time of � n

p
��lg p�.

E. Theoretical Performance

We want to compare this algorithm against an arbitrary
parallel sorting algorithm with the following properties:

1) Total computation time T ∗s (n, p) =
1
p
Ts(n) for 1 ≤

p ≤ P , linear speedup in p over any sequential sorting
algorithm with running time Ts(n).

2) Minimal amount of cross-processor communication
T ∗c (v), the number of elements that begin and end on
different processors.

We will not go on to claim that such an algorithm is truly
an optimal parallel algorithm, because we do not require
Ts(n) to be optimal. However, optimality of Ts(n) does imply
optimality of T ∗s (n, p) for p ≤ P . Briefly, if there were a faster
T ′s(n, p) for some p, then we could simulate it on a single
processor for total time pT ′s(n, p) < pT

∗
s (n, p) = Ts(n),

which is a contradiction.
1) Computation: We can examine the total computation

time by adding together the time for each step, and comparing

against the theoretical T ∗s (n, p):

Ts(�
n
p
�) +O(p2 lg n+ p lg2 n) + �n

p
��lg p�

≤
1

p
Ts(n+ p) +O(p

2 lg n+ p lg2 n) + �np ��lg p�

= T ∗s (n+ p, p) +O(p
2 lg n+ p lg2 n) + �n

p
��lg p�

The inequality follows from the fact that T ∗s (n) = Ω(n).
It is interesting to note the case where a comparison sort

is necessary. Then we use a sequential sort with Ts(n) ≤
c�n
p
� lg�n

p
� for some c ≥ 1. We can then combine this cost

with the time required for merging (Step 4):

c�np � lg�
n
p �+ �

n
p ��lg p�

≤ c�np � lg(n+ p) + �
n
p �(�lg p� − c lg p)

≤ c�n
p
� lgn+ c�n

p
� lg(1 + p

n
) + �n

p
�(�lg p� − c lg p)

≤
cn lgn

p
+ lgn+ 2c+ (�np � if p not a power of 2)

With comparison sorting, the total computation time becomes:

T ∗s (n, p)+O(p
2 lgn+ p lg2 n)+ (�np � if p not a power of 2)

(1)
Furthermore, T ∗s (n, p) is optimal to within the constant factor
c.

2) Communication: We have already established that the
exact splitting algorithm will provide the final locations of the
elements. The amount of communication done in the rerouting
phase is then the optimal amount. Therefore, total cost is:

T ∗c (v) in 1 round+O(p2 lg n) in lgn rounds

3) Space: The total space usage aside from the input is:

O

(
p2 +

n

p

)

4) Requirements: Given these bounds, it is clear that this
algorithm is only practical for p2 ≤ n

p
⇒ p3 ≤ n. Returning

to the formulation given in Section II-E, we have p = �n 1/3�.
This requirement is a common property of other parallel
sorting algorithms, particularly sample sort (i.e. [1], [14], [9],
as noted in [8]).

5) Analysis in the BSP Model: A bulk-synchronous parallel
computer, described in [15], models a system with three pa-
rameters: p, the number of processors; L, the minimum amount
of time between subsequent rounds of communication; and g,
a measure of bandwidth in time per message size. Following
the naming conventions of [7], define π to be the ratio of
computation cost of the BSP algorithm to the computation cost
of a sequential algorithm. Similarly, define µ to be the ratio
of communication cost of the BSP algorithm to the number
of memory movements in a sequential algorithm. We say an
algorithm is c-optimal in computation if π = c + o(1) as
n→∞, and similarly for µ and communication.

We may naturally compute the ratio π to be Equation 1 over
T ∗s (n, p) =

cn lgn
p

. Thus,

π = 1+
p3

cn
+
p2 lg n

cn
+
1

c lg n
= 1 + o(1) as n→∞

Furthermore, there exist movement-optimal sorting algorithms
(i.e. [6]), so we compute µ against gn

p
. It is straight-

forward to verify that the BSP cost of exact splitting is
O(lg nmax{L, gp2 lgn}), giving us

µ = 1 +
pL lgn

gn
+
p3 lg2 n

n
= 1 + o(1) as n→∞

Therefore the algorithm is 1-optimal in both computation and
communication.

Exact splitting dominates the cost beyond the local sort
and the rerouting steps. The total running time is therefore
O(n lgnp + gnp + lgnmax{L, gp

2 lgn}). This bound is an im-
provement on that given by [8], for small L and p 2 lg2 n. The
tradeoff is that we have decreased one round of communicating
much data, to use many rounds of communicating little data.
Our experimental results indicate that this choice is reasonable.

III. RESULTS

The communication costs are also near optimal if we assume
that p is small, and there is little overhead for a round
of communication. Furthermore, the sequential computation
speedup is near linear if p � n, and we need comparison-
based sorting. Notice that the speedup is given with respect
to a sequential algorithm, rather than to itself with small p.
The intention is that efficient sequential sorting algorithms and
implementations can be developed without any consideration
for parallelization, and then be simply dropped in for good
parallel performance.

We now turn to empirical results, which suggest that the
exact splitting uses little computation and communication
time.

A. Experimental Setup

We implemented the algorithm using MPI with C++. The
motivation is for the code to be used as a library with a simple
interface; it is therefore templated, and comparison based. As a
sequential sort, it calls stable_sort provided by STL. For
the element rerouting, it calls MPI_Alltoallv provided by
LAM 6.5.9. We shall treat these two operations as primitives,
as it is beyond the scope of this study to propose efficient
algorithms for either of them.

We test the algorithm on a distributed-memory system built
from commodity hardware, with 16 nodes. Each node contains
a Xeon 2.40 GHz processor and 2 Gb of memory. Each node
is connected through a Gigabit Ethernet switch, so the network
distance between any two nodes is exactly two hops.

In this section, all the timings are based on the average of
eight trials, and are reported in seconds.

B. Sorting Uniform Integers

For starters, we can examine in detail how this sorting algo-
rithm performs when the input values are uniformly distributed
random (32-bit) integers. After we get a sense of what steps
tend to be more time-consuming, we look at other inputs and
see how they affect the times.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l t

im
e

Number of processors

linear speedup
300M
200M
100M
50M
32M
16M
8M
4M
2M
1M

0.5M
0.1M

Fig. 3. Total speedup on various-sized inputs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l t

im
e

Number of processors

linear speedup
300M
200M
100M
50M
32M
16M
8M
4M
2M
1M

0.5M
0.1M

Fig. 4. Speedup when leaving out time for element rerouting

Figure 3 displays the speedup of the algorithm as a function
of the number of processors p, over a wide range of input
sizes. Not surprisingly, the smallest problems already run
very efficiently on a single processor, and therefore do not
benefit much from parallelization. However, even the biggest
problems display a large gap between their empirical speedup
and the optimal linear speedup.

Table I provides the breakdown of the total sorting time
into the component steps. As explained in Section II-C, the
cost of the communication-intensive element rerouting can not
be avoided. Therefore, we may examine how this algorithm

TABLE I

ABSOLUTE TIMES FOR SORTING UNIFORMLY DISTRIBUTED INTEGERS

0.5 Million integers
p Total Local Sort Exact Split Reroute Merge
1 0.097823 0.097823 0 0 0
2 0.066122 0.047728 0.004427 0.011933 0.002034
4 0.038737 0.022619 0.005716 0.007581 0.002821
8 0.029049 0.010973 0.012117 0.004428 0.001531

16 0.030562 0.005037 0.021535 0.002908 0.001082

32 Million integers
p Total Local Sort Exact Split Reroute Merge
1 7.755669 7.755669 0 0 0
2 4.834520 3.858595 0.005930 0.842257 0.127738
4 2.470569 1.825163 0.008167 0.467573 0.169665
8 1.275011 0.907056 0.016055 0.253702 0.098198

16 0.871702 0.429924 0.028826 0.336901 0.076051

300 Million integers
p Total Local Sort Exact Split Reroute Merge
1 84.331021 84.331021 0 0 0
2 48.908290 39.453687 0.006847 8.072060 1.375696
4 25.875986 19.532786 0.008859 4.658342 1.675998
8 13.040635 9.648278 0.017789 2.447276 0.927293

16 6.863963 4.580638 0.032176 1.557003 0.694146

performs when excluding the rerouting time; the speedups in
this artificial setting are given by Figure 4. The results suggest
that the algorithm is near-optimal for large input sizes (of
at least 32 million), and “practically optimal” for very large
inputs.

We can further infer from Table I that the time for exact
splitting is small. The dominating factor in the splitting time
is a linear dependence on the number of processors; because
little data moves in each round of communication, the constant
overhead of sending a message dominates the growth in
message size. Therefore, despite the theoretical performance
bound of O(p2 lg2 n), the empirical performance suggests
the more favorable O(p lg n). This latter bound comes from
O(lg n) rounds, each taking O(p) time. The computation time
in this step is entirely dominated by the communication. Figure
5 provides further support of the empirical bound: modulo
some outliers, the scaled splitting times do not show a clear
tendency to increase as we move to the right along the x-axis
(more processors and bigger problems).

C. Sorting Contrived Inputs

As a sanity check, we experiment with sorting an input
consisting of all zeros. Table II gives the empirical results. The
exact splitting step will use one round of communication and
exit, when it realizes 0 contains all the target ranks it needs.
Therefore, the splitter selection should have no noticeable
dependence on n (the time for a single binary search is easily
swamped by one communication). However, the merge step is
not so clever, and executes without any theoretical change in
its running time.

We can elicit worst-case behavior from the exact splitting
step, by constructing an input where the values are shifted:
each processor initially holds the values that will end up on

16151413121110 9 8 7 6 5 4 3 2

S
pl

itt
in

g
T

im
e

/ (
p

*
lg

 n
)

Number of Processors
Fig. 5. Evidence of the empirical running time of O(p lgn) for exact
splitting. Inside each slab, p is fixed while n increases (exponentially) from
left to right. The unlabeled y-axis uses a linear scale.

TABLE II

ABSOLUTE TIMES FOR SORTING ZEROS

32 Million integers
p Total Local Sort Exact Split Reroute Merge
2 2.341816 2.113241 0.000511 0.1525641 0.075500
4 1.098606 0.984291 0.000625 0.0758215 0.037869
8 0.587438 0.491992 0.001227 0.0377661 0.056453

16 0.277607 0.228586 0.001738 0.0191964 0.028086

300 Million integers
16 2.958025 2.499508 0.001732 0.1855574 0.271227

its neighbor to the right (the processor with highest rank will
start off with the lowest � n

p
� values). This input forces the

splitting step to search to the bottom, eliciting Θ(lgn) rounds
of communication. Table III gives the empirical results, which
do illustrate a higher cost of exact splitting. However, the time
spent in the step remains insignificant compared to the time for
the local sort (assuming sufficiently large n

p
). Furthermore, the

overall times actually decrease with this input because much
of the rerouting is done in parallel, except for the case where
p = 2.

These results are promising, and suggest that the algorithm
performance is quite robust against various types of inputs.

D. Comparison against Sample Sorting

Several prior works [1], [9], [14] conclude that an algorithm
known as sample sort is the most efficient for large n and p.
Such algorithms are characterized by having each processor
distribute its �n

p
� elements into p buckets, where the bucket

boundaries are determined by some form of sampling. Once
the buckets are formed, a single round of all-to-all communi-
cation follows, with each processor i receiving the contents of
the ith bucket from everybody else. Finally, each processor
performs some local computation to place all its received
elements in sorted order.

TABLE III

ABSOLUTE TIMES FOR SHIFTED INPUT

32 Million integers
p Total Local Sort Exact Split Reroute Merge
2 5.317869 3.814628 0.014434 1.412940 0.075867
4 2.646722 1.809445 0.018025 0.781250 0.038002
8 1.385863 0.906335 0.038160 0.384264 0.057105

16 0.736111 0.434600 0.061537 0.211697 0.028277

300 Million integers
16 7.001009 4.601053 0.074080 2.044193 0.281683

The major drawback of sample sort is that the final distri-
bution of elements is uneven. Much of the work in sample
sorting is directed towards reducing the amount of imbalance,
providing schemes that have theoretical bounds on the largest
amount of data a processor can collect in the rerouting. The
problem with one processor receiving too much data is that
the computation time in the subsequent steps are dominated by
this one overloaded processor. As a result, 1-optimality is more
difficult to obtain. Furthermore, some applications require an
exact output distribution; this is often the case when sorting
is just one part of a multi-step process. Then an additional
redistribution step would be necessary, where the elements
across the boundaries are communicated.

We compare the exact splitting algorithm of this paper with
two existing sample sorting algorithms.

1) A Sort-First Sample Sort: The approach of [14] is to
first sort the local segments of the input, then use evenly
spaced elements to determine the bucket boundaries (splitters).
Because the local segment is sorted, the elements that belong
to each bucket already lie in a contiguous range. Therefore,
a binary search of each splitter over the sorted input provides
the necessary information for the element rerouting. After the
rerouting, a p-way merge puts the distributed output in sorted
order. Note that the high-level sequence of sort, split, reroute,
merge is identical to the algorithm presented in this paper.
If we assume the time to split the data is similar for both
algorithms, then the only cause for deviation in execution
time would be the unbalanced data going through the merge.
Define s to be the smallest value where each processor ends
up with no more than � n

p
� + s elements. The additional cost

of the merge step is simply O(s lg p). Furthermore, the cost
of redistribution is O(s). The loose bound given in [14] is
s = O(np).

One of the authors of [9] has made available[10] the
source code to an implementation of [14], which we use for
comparison. This code uses a radix sort for the sequential
task, which we drop into the algorithm given by this paper
(replacing STL’s stable_sort). The code also leaves the
output in an unbalanced form; we have taken the liberty of
using our own redistribution code to balance the output, and
report the time for this operation separately. From the results
given in Table IV, we can roughly see the linear dependence on
the redistribution on n. Also, as np decreases (by increasing p
for fixed n), we see the running time of sample sort get closer
to that of the exact splitting algorithm.

TABLE IV

COMPARISON AGAINST A SORT-FIRST SAMPLE SORT ON UNIFORM

INTEGER INPUT

8 Million integers
p Exact Sample Redist
2 0.79118 0.842410 0
4 0.44093 0.442453 0.081292
8 0.24555 0.257069 0.040073

64 Million integers
p Exact Sample Redist
2 6.70299 7.176278 0
4 3.56735 3.706688 0.702736
8 2.01376 2.083136 0.324059

TABLE V

PERFORMANCE OF A SORT-LAST SAMPLE SORT ON A UNIFORM INTEGER

INPUT

32 Million integers
p Sample Bucket Sort Redist
2 0.000223 1.131244 3.993676 0.584702
4 0.000260 0.671177 1.884212 0.308441
8 0.000449 0.373997 0.926648 0.152829

16 0.000717 0.222345 0.472611 0.081180

300 Million integers
16 0.000717 1.972227 4.785449 0.695507

The result of [9] improves the algorithm in the choice
of splitters, so that s is bounded by

√
np. However, such a

guarantee would not significantly change the results presented
here: the input used is uniform, allowing regular sampling to
work well enough. The largest excess s in these experiments
remains under the bound of [9].

2) A Sort-Last Sample Sort: The sample sort algorithm
given in [1] avoids the final merge by performing the local
sort at the end. The splitter selection, then, is a randomized
algorithm with high probability of producing a good (but not
perfect) output distribution. Given the splitters, the buckets are
formed by binary searching each of the � np � input elements
over the sorted set of splitters. Because there are at least p
buckets, creating the buckets has cost Ω(n

p
lg p). The theoret-

ical cost of forming buckets is at least that of merging.

Additionally, the cost of an imbalance s depends on the
sequential sorting algorithm used. With a radix sort, the extra
(additive) cost simply becomes O(s), which is less than
the imbalance cost in the sort-first approach. However, a
comparison-based setting forces an increase in computation
time by a super-linear Ω(s lg np).

We were unable to obtain an MPI implementation of such
a sample sort algorithm, so implemented one ourselves. Ta-
ble V contains the results, with the rerouting time omitted
as irrelevant. By comparing against Table I, we see that the
local sort step contains the expected inflation from imbalance,
and the cost of redistribution is similar to that in Table IV.
Somewhat surprising is the large cost of the bucket step;
while theoretically equivalent to merge, it is inflated by cache
inefficiencies and an oversampling ratio used by the algorithm.

IV. DISCUSSION

The algorithm presented here has much in common with
the one given by [12]. The two main differences are that
it performs the sequential sort after the rerouting step, and
contains one round of O(np) communication on top of the
rerouting cost. This additional round produces an algorithm
that is 2-optimal in communication; direct attempts to reduce
this one round of communication will result in adding another
n
p
lg n
p

term in the computation, thus making it 2-optimal in
computation.

Against sample sorts, the algorithm also compares favor-
ably. In addition to being parameter-less, it naturally exhibits
a few nice properties that present problems for some sample
sort algorithms: duplicate values do not cause any imbalance,
and the sort is stable if the underlying sequential sort is stable.
Furthermore, the only memory copies of size O(np) are in the
rerouting step, which is forced, and the merging, which is
cache-efficient.

There lies room for further improvement in practical set-
tings. The cost of the merging can be reduced by interleaving
the p-way merge step with the element rerouting, merging sub-
arrays as they are received. Alternatively, using a data structure
such as a funnel (i.e. [3], [5]) may exploit even more good
cache behavior to reduce the time. Another potential area of
improvement is in the exact splitting. Instead of traversing
search tree to completion, a threshold can be set; when
the active range becomes small enough, a single processor
gathers all the remaining active elements and completes the
computation sequentially. This method, used by Saukas and
Song in [12], helps reduce the number of communication
rounds in the tail end of the step. Finally, this parallel sorting
algorithm will directly benefit from future improvements to
sequential sorting and all-to-all communication.

V. CONCLUSION

To the best of our knowledge, we have presented a new
deterministic algorithm for parallel sorting that gives a strong
case for exact splitting. Modulo some intricacies of determin-
ing the exact splitters, the algorithm is conceptually simple to
understand, analyze, and implement. Finally, our implemen-
tation is available for academic use, and may be obtained by
contacting any of the authors.

REFERENCES

[1] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha, “A comparison of sorting algorithms for the connection
machine CM-2,” in SPAA, 1991, pp. 3–16.

[2] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Linear
time bounds for median computations,” in STOC, 1972, pp. 119–124.

[3] G. S. Brodal and R. Fagerberg, “Funnel heap - a cache oblivious
priority queue,” in Proceedings of the 13th International Symposium
on Algorithms and Computation. Springer-Verlag, 2002, pp. 219–228.

[4] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms. MIT Press, 1990.

[5] E. D. Demaine, “Cache-oblivious algorithms and data structures,” in
Lecture Notes from the EEF Summer School on Massive Data Sets,
ser. Lecture Notes in Computer Science, BRICS, University of Aarhus,
Denmark, June 27–July 1 2002.

[6] G. Franceschini and V. Geffert, “An in-place sorting with O(n logn)
comparisons and O(n) moves,” in FOCS, 2003, p. 242.

[7] A. V. Gerbessiotis and C. J. Siniolakis, “Deterministic sorting and
randomized median finding on the bsp model,” in SPAA, 1996, pp. 223–
232.

[8] M. T. Goodrich, “Communication-efficient parallel sorting,” in STOC,
1996, pp. 247–256.

[9] D. R. Helman, J. JáJá, and D. A. Bader, “A new deterministic parallel
sorting algorithm with an experimental evaluation,” J. Exp. Algorithmics,
vol. 3, p. 4, 1998.

[10] http://www.eece.unm.edu/∼dbader/code.html, 1999.
[11] A. Reiser, “A linear selection algorithm for sets of elements with

weights,” Information Processing Letters, vol. 7, no. 3, pp. 159–162,
1978.

[12] E. L. G. Saukas and S. W. Song, “A note on parallel selection on coarse
grained multicomputers,” Algorithmica, vol. 24, no. 3/4, pp. 371–380,
1999.

[13] V. Shah and J. R. Gilbert, “Sparse matrices in Matlab*p: Design and
implementation,” HiPC, 2004.

[14] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” J. Parallel
Distrib. Comput., vol. 14, no. 4, pp. 361–372, 1992.

[15] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

