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Abstract

"SPACE AND FUNCTION ANALYSIS"

"A Computer System for the generation of
functional layouts in the S.A.R. Methodology".

Alfonso Govela

Submitted to the Department of Architecture on February 1977
in partial fulfillment of the requirements for the degree of Master
of Architecture in Advanced Studies.

As part of the S.A.R. Methodology, a set of computer

programs has been implemented to carry on the systematic generation
of all the possible functional layouts for a given design criteria.

They are intended to help the designer analyze and evaluate
the relationships between a space and its function, and display the
consequences of different design standards on different sizes and
layouts of spaces.

The main assumption is that a space can be analyzed
functionally by looking at characteristic arrangements of furniture
or equipment, that correspond to a certain function.

A function can be defined in terms of the location,
dimensions and relations between furniture elements and spaces.

A set of design standards describe a spatial system and
constraint a solution space where particular layouts can be
effectively, and if necessary, exhaustively explored by a procedure
that generates as many arrangements as desired.

This generative capability is aimed to help in the
development and evaluation of standards for spatial performance. By
studying the different layouts that each set of standards permits,
different evaluation techniques can be defined to compare, select
and agree on the most adequate criteria for an actual situation or
an hypothetical case.

T S a
Thesis Supervisor: Nicholas Negroponte

Title: Associate Professor of Architecture.
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I.- PROBLEM DEFINITION AND ASSUMPTIONS.

1.1.- Background:

Spaces in human environments, must

have a purpose, they exist as containers

activities. Within them, actions of different

continuously performed in a multitude of

Importance of their purpose, shows in fact

identifying them, in everyday language, with

refer to the action or actions that can be reali

its limits.

frequently

for humzn

kinds are

ways. The

, in our

names that

zed within

This series of

call, or think as, the

the "function* that has

or carrying on a series

careful planning proce

activities constitute

*use* that is made of a

beer assigned to it. Usi

of activities can resul

ss at the time when th

what we

space, or

ng a space

t from a

e space is

created, or simply result from a spontaneous adaptation,

at a later point In time, to a function that was neither

considered in its creation, nor planed to be contained by

it. In either case, the success or fallure of this "use"

depends In the relations between different characteristics

of the space, such as shaoe, proportions or dimensions, to
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name a few, and the kind of function that can be assigned

to it. Spatial characteristics permit or prevent,

sometimes in a definite strong way, the performance of

certain functions.

In the process of design, the assignment of

spatial types to activities or uses, Is one of the

initial, if not the first step taken in the generation of

spatial solutions. These types are almost always roughly

set up at the beginning of the process and their

definition fluctuates until the very end, according to

other, often more global, circumstances in the design.

Must of the time, assumptions already exist in

the form of cultural preferences or in the form of

standards that delimit the range of possible spaces

corresponding to a function. These norms or personal

oreferences, set the acceptable characteristics for a

space, but very seldom provide a framework for

understanding the reasons behind their existence, or the

implications when a change in their definition is made. By

being unaware of their rationale, we sometimes fall to

comprehend the relations between the two, and consequently

fall to understand what the impact of different spatial

solutions might be on different uses.
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level, however, there has been an

uring the last years, fcr

f different kinds. The economic

being shifted from the more

the building construction, to tte

the builoing use over Its whole

tion of costs between the Initial

) and the maintenance bills ( X)

ings can become more substantial,

and has pointed out the importance of understanding how

spaces are used.(1)

At a deeper, more significant level, on the

other hand, there has been an increasing questioning of

values and assumptions behind design solutions, as it

becomes aparent that desigr problems are not we Il defined

technical situations with clearcut solutions, but

difficult problems which solutions represent implicit set

of values, and which values must be agreed upon before

attempting any technical implementation.
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As Rittel (2), has pointed out quite

the increasing critique on prof

challenging the tests for ef

preocupation with their consequ

professional's lob, "....once

assortment of problems that ap

understandab le and consensual...",

with the fact that "...the seeming

eroded by ... differentiation of

seems to be a growing realization

professional's support system li

correctly,

essional work stems from

ficiency, by renewed

ences for equity. The

seen as solving an

peared to be definable,

is being confronted now

consensus .... Is beirg

values...". "...There

that a weak strut in the

es at the juncture where

goal-formulation, problem-definition, and

meet...".

How to provide

spatial analysis, and

and evaluation of standa

level, are the main two

-of course- they were not

a basis for the first kind of

how to coordinate the formulation

rds or values at this second

issues which motivated, although

solved, the work done In this

thesis.

1.2.- Problem definition:

The idea behind SPACE and FUNCTION analysis

to develop, along the lines of the S.A.R. methodology

equi ty Issues

was

(3),
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a systematic way of -figuring out the relations between a

space and its function or its set of possible functions.

Its main objectives were to understand what

makes a space adequate for a certain use, when can we

realistically assign activities to a given soace, or what

are the consequences of changing spatial characteristics

or functional requirements.

How to formulate functions, describe spaces, and

analyze the relations between these two, are the main

parts of the thesis work. How to find out, for a given

function, one or all the spaces where it can be contained

in a satisfactory way; or for a given soace, how to find

out, one or all the functiors ti-at can be contained by it,

are the particular questions that we would attempt to

answer.

1.3.- Assumotions:

A design problem In itself, the development of

this SPACE and FUNCTION analysis has been approached with

certain assumptions In mind:

- Independently of defending, rationalizing or

explaining where personal values for a function come from,

it was considered more relevant to find out how can
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attempted as definite laws or patterns, but rather as

statements open to refutation, as implications are

evaluated through the enumeration of their possible

consequences.

The formulatior of functional standards and the

enumeration of their possible layouts are the main

assumptions behind SPACE and FUNCTION analysis. The

methodological basis for these two parts are explored in

the next chapter, its final form In chapter three, and the

Implementation of a generative computer system in chapter

four.
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Chapter

No test ------

(1) "Life-Cycle costing in the Public BulIdings Servi
G.S.A. General Services Administration,
Public Building Service,
Study made by Booz-Allen & Hamilton Inc.

G.S.A. ,P.B.S.

(2) RITTEL HORST,
PlannIng",

"0ilemmas in a General Theory of

Working Paper 194, University of California,
Berkeley, Cal. Nov. 1972.

(3) BOEKHOLT J.TH.,
HABRAKEN N.J.

"Variations:
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THIJSSEN A.P., 0INJENS P.J.M.,

The Systematic Design of Supports",
M.I.T. Press. Cambrldge Mass. 1976.
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2.- METHODOLOGICAL BASIS AND ENUME

Standaros or norms must

that permits the evaluation of

should be described, at least,

testing particular layouts; but,

so obvious, they should be stru

permits the systematic enumeration

That standards must be s

permit the evaluation of layouts,

be solved in different ways. Tha

permit the exaustive enumeration o

if necessary, might be clear

understanding their implications

transparent how it can be implemen

In this chapter two ma

First the general principles o

RATION TECHNIQUES

be formulated in a way

their conseauences. They

in a way that allohs

more important, and not

ctured in a way that

of these layouts.

ufficiently defined to

is a clear point and can

t their formulation must

f all possible layouts

from the standpoint of

, but

ted.

in

f

Id

the

Architecten Research> Group (1), are

methodological basis that, having solve

problem at the scale of housing, can

rather, reduced- to the scale of s

analysis; and second, the general

Problem-Solving and Enumeration techni

as a framework that can be used in the

it is not so

eas are revised.

S.A.R. <St1tching

presen ted as a

d this formulation

be aoplled -or

pace and functlon

principles of

cues are presented

actual generation
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of layouts.

2.1.- S.A.R. formulation of Design Problems$

2.1.1.- Parts and Relations:

In the S.A.R. methooology, design problems can

be formulated in terms of "...an environment and elements

that have to be placed in that environment..."(2). There

is always a site, environment or context where different

elements can be positioned, and the stanoards that define

a set of values in design solution can always be expressed

in terms

vary

space,

fro

an

of that site, its elements and their positions.

Depending on the scale we work, the site can

m the spaces in city block, to one area in room

d accordingly, the elements that are positioned
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In them

perform a

can range from the pieces of furniture needed to

function to the support structures where oeople

dwell in an urban environment.

Sites can appear in design problems as given

situations, that is contexts or constrains that exist

already and that are external to the designer actions, or

they can be defined during the design process. They can

represent one specific situation, as might be the case of

a site as an urban blcck, where infrastructure, size,

dimensions, and surrounding buildings are established and

well defined; or they can be used to describe multiple

situations, and stand then as general schemes or models

for several instances of similar sites.

The elements that are positioned In a site can
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be defined by the designer or selected from some range of

possible options. In either case, to formulate standards

that relate elements and site, elements have to be

described with sufficient exactitude. Tyoe and number of

elements, shape and dimensions, are the basic information

IzzIIzzzzz~
-. A I

t 71 1 J-

777f t

0 7t
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that aoula be required for any description of them.

Among these elements there are certain relations

that should have to be defined. Elements can relate to

each other in different ways, that is in terms of their

being adjacent, near to each other, seDarated from,

contained by, etc.. Their relations result from program

requirements that should be present In the design

solution, ard as part of these requirements they should

also be aescribed precisely.

A "well defined" designed problem in the

methodology, is formed then by the following parts and

relations:

1. A descriotion of

2. A defined set of

in the environment.

3. Data about the I

to one another.

4. Data about the I

the envir6nment.

2.1.2.- Levels of d

The formulation of

Positions,

different

can be

scales

the environment.

elements that could

ocation of

be used

elements relative

ocation ot the elements In

ef inItion:

Site, Elements, Relations and

applied at different

of the design problem.

I evel s

As said

and at

before,
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the Site can be an urban block, or a s

the elements can be housing struc

pieces.

It is characteristic in this

the Site at one scale, becomes an

pace in a room, and

tures, or furniture

formulatIon,

Element at the

that

next

L--J
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level

f or

of el

their

can

up, and its elements

the next formulation

ement layouts at one

positions in their s

be used in the defin

con

one

scal

ite,

itio

A room can be the Site for f

with one possible functional

dwelling site. A dwelling w

an element In the building

elements in the urban block.

sequently, stand as Sites

level down. The variations

e become then, together with

one of the elements that

n of standards one level up.

urnitur

layout

ith all

site,

e layouts, and together

be an element for a

its rooms becomes then

and buildings become

hierarchy

layouts f

structure

agree to

for the

possible

selected

levels, u

2.1.3.- Operations of Analysis:

The evaluation of standards at a

, is performed by generating al

or a given site at a given level.

We start with the smaller

, explore its alternatives an

select some basic layout variatio

next level up. In there we genera

variations among wh1ch, in t

to pop up as elements to the nex

ntil we reach the layouts of the

ny

I

la

d

ns

te

ur

t

fi

level

the

yer

if

as

aga

n, -

el

na

em

I

of this

possible

in t1e

satisfled,

elements

in all the

some are

ent in the

layer.

To continue the example in the IlIustrations

layouts, or the uses that can beabove the possible room
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assigned to a room of 3.60 x 4.10 m would be: (

And the variations of room arrangements in an

apartment floor, would be genericallyt4fiSc V4A%9/74WS>

some of which could result in the oossible floor

p I a n s ,(i!-V)e45W.

ano which could be Positioned, similarly in

urban block as: 6/-,A r7ststrE}

This formulation structures a design problem

a way that permits the systematic enumeration of layo

In chapter 3 these general principles will be applied

the scale of SPACE and FUNCTION ANALYSIS, and it wil

shown through an.example how is the enumeration car

an

In

uts.

to

I be

-red
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on.

In the fol Iowing sections,

techniques from other fields will be described

drawn from then the basic aporoach for our

some relevant

as we have

method of

enumeration.
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2.2.- Enumeration Techniques:

At the beginning of the Thesis, techniques from

Combinatorial Theory were explored as it was thought that

furniture arrangements constitute a problem of assigning

furniture pieces to parts in the site, and therefore the

enumeration of layouts and the existence of configurations

are both problems of a strong combinatorial nature.

These techniques presented the atractive of a

whole booy of theory that could be brought to use In our

particular case. A furniture layout for examole, could be

represented as a SYSTEM of DISTINCT REPRESENTATIVES

problem, where we define for each space in the site a set

of elements that can be positioned in it, and we see each

furniture configuration as a selection of pieces, one

among each set, that are positioned respectively in each

of the spaces. Considering then each positioned piece a

*representative' of the spatial set, and considering the

collection of positioned pieces as a 'system of distinct

(not repeated) representatives' for all the sets we have.

Unfortunately, in our case, this assignment

depends on several factors, like size, fitting in site,

relations to other elements, that cannot be defined in the

formulation of our problem, as our problem consist In fact
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In finding out first, what of these assignments can be

aone at all, and then enumerating the layouts that

correspond to them.

As an alternative, "problem-solving"

representations and 'tree-searching' methods from

Artificial Intelligence, were explored as models of our

problem and as techniques that we can use for the

evaluation of functional standards.

Generated from an interest in expanding the

areas of application for computers, Artificial

Intelligence has evolved during the last 20 years to

explore, among other things, the formulation of general

frameworks for *problem-solving". From psychological

studies of how people proceed in solving particular tasks,

to the development of techniques that per.mit a procedurzi

definition of these approaches, it has produced, besides

quite heated polemics (3), a series of principles and

techniques that are relevant to our problem.

Whether the existance of these techniques show

any degree of Intel ligence in the person or system that

uses them, or whether there can be such a thing as a

general problem solver, are questions not only beyond the

Interests of this thesis, but questions that tend to
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distract us from the relevance that these methods have In

themselves.

The

representations

2.2.1.-

Representation and Sea

We can say t

when we perceive a d

Is and a

Confronte

the actio

this dif

the prese

character

recogniti

and the p

from the

we think

situation

d with this

n, or the col

ference and

nt situation

istics of our

A problem,

on of discre

roposal of a

conditions

we ought to t

basic outline of

and tree-searching methods

Problem-Solving

rch:

problem-solving

follows on.

in general,

tat there is a problem to be solved

iscrepancy between a situation as it

as we think that it should be.

discrecance, we are forced to find

lection of actions, that can reduce

bring the actual characteristics of

as near as possible to the desired

ideal situatlon.

in these terms, consists in the

pancles between different situations

plan of actions that can take us

that we

ave. (4)

have, to the conditions that

There

actually

case, it

is enough

go about

might be

room for discussion on how it is

producing plans of action, but

sufficient to say that effective

that we

for our
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actions, must of the time, result from previous thought

anO evaluation, and such thought and evaluation arise from

an understanding, through an internal model, of the

Problem structure that we are confronted with.

A model of this structure consists in an

internalization of the main characteristics of the problem

and the set of possible operations that we can perform to

bridge the gap between present and desired conditions.

To build models or representations of a problem,

we engage in a process of urderstanding, and to do so we

have to demand certain conditions in the descriptions that

we build. Descriptions should not contradict aspects of

reality, since if we wcrk with a representation instead of

dealing directly with the actual situation, we want to

correlate our results with results that the *real'

situation might produce, or otherwise our solutions can

not be of any use. Descriptions should lend themselves to

practical expression of the problem and permit the

expression of the processes that can be used in our

attempts to reach its solutions. We want to describe the

structure of the problem in a consistent way, with a

practical formulation of its Information and a relevant

representation of the processes involved in changing old



35

conditions into new, more desirable ones.(5)

How to build such descriptions for the problem

and how to manipulate then in looking for solutions, are

the two main conceptual issues in *problem-solving*

methods, corresponding to REPRESENTATION and SEARCH.

2.2.2.- Representation:

"Problem-solving* representations describe

problem conditions together with laws of transformation

that specify how to change one condition into another.

Problem conditions describe the actual

initial situation, an intermedlate or partial situati

and the desired or *goal' situation. The legal set

actions that can be used in solving the oroblem

defined by the transformation laws, and the combination

both conditions and transformations, specify the extent

a set of situations among which there might exist

solution that we are looking for.

As Newell and Simon present it "'...To state

problem is to designate (1) a TEST for a class of sym

structures (solutions of the problem), and (2) a GENERA

of symbol structures (potential solutions). To solve

problem is to generate a structure, using (2) t

or

on,

of

are

of

of

the

a

bol

TOR

a

hat
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satisfies the test of (i)..." (6)

2.2.2.1.- Basic Model, Post Production Systems:

The basic principle behind these representations

goes back to a general computation mechanism presented by

Emil Post in 1943. Post proposed to analyze expressions in

logical systems as strings of symbols written in some

finite alphabet, and analyze logical systems as "*sets of

rules that tell how some string of symbols may be

transformed into other string of symbols". (7)

A simple model that represents, for example, the

structure of "palindromes*, words that read identically

forwards and backwards, in a Post's Production System,

would bet

Alphabet. a,b,c

Axioms or initial situationst a,b,c,aabbcc

Productions:

$ -- > a$a (P1)

$--> b$b (P2)

$ -- > c$c (P3)

where, the alphabet represents the symbols we

can use in constructing rew strings. The axioms are our

Initial situations, or the strings that we take as given,
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not derived from any

string, any string, that

that has been generated

other source.

is either an ax

from the success

productions to axioms. The

ordered pair of symbol strings

*$' and a right side such as "

transformations of the string

on the right. That is *$* into

As can be seen from

system will only generate

possible *palindromes* compose

or *c*, given the fact that

already,

elements

"*

lom

ive

productions rep

with a left side,

a$*, which Indicat

on the left Into

'a$a*.

the production r

"palindromes* and

d from the letters

the axioms are " oa

and each production rule mirrors

in both sides of a previous word.

The generation of the word *bacacab*

stands for a

or a string

appilcation of

resent an

such as

e possible

the string

ules, tte

alI the

lindromes'

the same

would bet

/, - .Mi/A e,4'g/ron

2;- c c peda1ron (p;) a - Cac

A- aca . (P/) cac -+a c4

I- b |acb _ dt'4e ( ca4' -4CQCW

and the *Problem* of generating a goal *bacacab*

out of an initial situation 'a' would be equivalent to the

problem of finding out the sequence of production rules

that will take us from *a' Into *bacacab".
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Our problem descr

then, both the capability

iption has built within

for generation and the

i tse If

test for

solutions.

expressed

much as It

elements

Involve law

the Interp

yield resul

that are ex

"f

The structure of palindromes is

as a 'system of transformati

is a system and not a mere

and their properties, these

s! the structure is preserved

lay of its transformation I

ts external to the system nor

ternal to it..."

... (Its) notion of structure is

short) of three key

of transformation,

Ideas: the

and the

Idea of

idea of

understood and

ons " ... In as

collection of

transformations

or enriched by

aws, which never

employ elements

comprised (In

wholeness, the idea

self-regu lation..."

(8).

2.2.2.2.- Graph Notation:

Before going Into the description of variations

of this basic model, we should look first at some

notational principles used in the description of

problem-solving methods that are relevant to this thesis.

Problem-solving representations share, besides

being systems of transformations, the use of the

mathematical notion of a GRAPH as a common notation. (9)
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A "GRAPH": G = (NE), consists of a finite,

nonempty set of 'nodes' "N', and a set of "edges' "E",

used to represent a set of elements and relations that

exist between them. The set of nodes "'N stands for the

elements we want to talk about, and the set of edges "E"

corresponds to the relations that exist between pairs of

these elements in the set. Graphically, nodes are

represented by dots or circles, and edges are shown as

lines that link related nodes. A "GRAPH" would be, for

instance:

G = (NE) 1 0

N = (1,m,n)

E = ((I,.m),(I,n),(m,n))

reoresenta

situations

the corres

notion of

elements,

edges can

If we think, as we did before, of pro

tions being general descriptions of pro

related by transformations, we can begin to

pondance between the notion of a graoh and

problem representation.

At a first level, nodes can correspond

conditions or characteristics in a prob

correspond to desired relations among them,

blem

blem

see

the

to

I em,

and
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nati
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between general schemes of strings, denoted b
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edges,
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as Initial
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relations

y * $', and

new conf

an addi

that the

initial

i

t

gurations that contain the previous scheme plus

ion of the letters "a", "b* or *c*. It is said

graph Is defined implicitly, because by means of

situations and production rules, we can always
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have

the

of

exo I

Impl

a way of finding out whether a string Is a member of

set of nodes, or whether a transformation is a member

the set of links, Instead of having to define

icitty each and everyone of the members of both sets.

A graphical representation of one portion of the

icit "palindrome* graph, would be:

4040

AaCa94=iv "Ccc"

where at the too we have an empty string, from

where we can select each of the possible axioms, to which

we can apply each of the possible productions, and

continue doing so as long as we want, generating new

"palindromes" everytime the graph grows further and

further down.

If this graph notation is going to be used as a
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convention for problem-solving representations, then it is

important to define several concepts that are relevant for

this purpose, besides what we have already said about

nodes and eages.

When we have a seouence of edges of the form:

(nign2),(n2,n3),(n3,n4),....,(nnnn-1)

where the node at the end of each edge

corresponds to the node at the beginning of the next edge,

this sequence Is called a "path". A *oath' goes along a

sequence of linearly connected nodes and for this reason

it can also be represented ast

n1,n2,n3,......,nn

P1'z

and be said to have a "path length* of n-1, that
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Is a length equal to the number of edges included in the

sequence.

When all the nodes in a 'path' are distinct,

with exception

then

and

we

las

another,

to *i*,

but sev

a first

have onl

called

graph, t

their p

Initial

bottom

s

t

a

e

n

possible of the first and the last node,

ay that the 'path* Is *simple'.

nodes of a 'simple path* a

then we call this path a "cycle'.

The graph in figure(2.1) has one

nd the graph In figure(2.2) has n
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ode which no edge enters, each of

one entering edge, and from t

the *root', th

hen the graph
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aths they show
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Important

distinct
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The Initia

path' to ever

a *tree*.
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When the

re equal t
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o cycl e at

second one

the other
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set o
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f situations that might

a solution becomes then

ce of transformations

a

t

'tree' whose branches

given situation, to

constitute a solution;

equivalent to finding

through a certain path

of

are
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that can take us from the tree root to a desired node down

its branches.

Everytime we grow a series of edges out of a

node in the tree, we say we expand the node one level

down. The set of nodes at the end of these expanded edges

are called the 'successors* of the expanded node, and

these in turn becomes the *predecessors* to the newly

created nodes.

Nodes and edges, trees and paths, are basic

concepts of Graph Theory which are used as notation for

problem-solving methods not only because of their

expressive possibilities, but because they give us access

to other theoretical notions that will be explained later

on (ref. chapter(3)).

2.2.3.- Main types of Representations:

There have been three general kinds of problem

representations in problem-solving methods: (10)

1.- STATE-SPACE REPRESENTATIONS.

2.- PROBLEM-REDUCTION REPRESENTATIONS.

3.- THEOREM PROVING.

2.2.3.1.- State-Space:
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In the case of STATE-SPACE representations,

problem conditions or problem situations are described by

"STATE DESCRIPTORS" which represent certain

characteristics of the problem solution at a certain poirt

in time.

Initial and final situations are expressed

respectively as existing and desired characteristics which

not necessarely have to be restricted to the format of

strings, but that can take any form of description more

approplate for the problem In hand. In the case of tte

"palindromes*, for instance, strings would have been such

a form and the words *a' and 'bacacab* would have been the

Initial state descriptor and the final state descriptors

for the problem of generating the expression 'bacacab".

. Legal transformations in this representation

appear as "'OPERATORS" or rules that soecify, in very much

the same fashion as In Post Production Systems, how to

change a "STATE DESCRIPTOR" into a new "STATE DESCRIPTOR".

The set of all situations that can be reached by

the aoplication of these operators to the initial state

constitute what is called the "'STATE-SPACE", that Is,

still back In our 'pallndrome' example, all the

combinations of words that contain the letter *a' in the
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middle and whose letters repeat alternatively "a' or "b"

or ec" on each side of it.

An example, taken from Nilsson(1971), where a

STATE-SPACE representation has neither state-descriptors,

nor operators described as strings, is a model for a

sliding-block 8-puzzle.

In this puzzle there are 8 numbered block

located in a 9, 3 by 3, cell space, which can be slide

agains the empty cell to form certain configurations such

as:

1 1,5 71
187

Operators in this case correspond to the valid

and possible movements of the empty cell from one location

to another, as blocks are slided to occupy its previous

olace, and an example of the operators 'rules" wculd be

figure(2.3).

Supposing that the initial situation Is:

and the final, desired configuration is:

then one sequence of transformations that can
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R,-

gA4

RYl,

417,

2~3:
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g4eWOT= zi-

produced the final configuration would bet

STATE-SPACE representations lend themselves to

practical expressions of problems with structures that

have a sequential characteristic. Different situations can

be explored from previous situations. At any point in time
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we can analyze the state we are in, to find what is the

existing difference to our final goal, and the process of

reaching a solution can be composea of a concatenation of
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operations, one after the other, continuously modifying a

state into a new state.

2.2.3.2.- Prcblem-Reduction:

In PROBLEM-REDUCTIOIN representations, we deal

instead with the structure of the problem itself. Rather

than working with descriptions of the different steps

taken to solve a problem, we explore how an original

problem can be reduced or decomposed into simpler

"primitive problems" which solutions imply the solution of

the larger one.

Problem reduction methods are concerned with

strategies that can be pursued to reach a solution. These

strategies are oriented to decompose an original problem

into a set of smaller components which solutions might be

easier to obtain.

The elements that we deal with in this mode of

representation are therefore descriotions of problems,

called "PROBLEM DESCRIPTORS", consisting of Initial

situations, goal situations and operators that transform

one into the other, as was presented in the previous

"state-space' representation. We might, in fact, think cf

this representation as being one level higher from the
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previous one, and contain *state-space' representations as

problem descriptors of components in a hierarchy of

Droblem situations.

The legal transformations in this case, are

decompositions of one problem into its possible

components. They are accomplished through "OPERATORS" that

specify how one problem descriptor might be transformed

into a set of possible subproblem descriptors. Through the

application of these operato

related subproblems and among

those descriptors that we can

If the "state-space'

set of all possible situations

applications of state-space o

problem-reduction operators

possible strategies we can

any particular state-space des
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following *decision tree", p
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roposed by the Nat
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implies the selection among different valid strategies,

the one that provides the desired protection and the

desired cost or performance. fiqure(2.7).

The elements are cifferent actions that can be

taken as protective measures, and their Implementation

implies a subset of problems that have to be solved.

Subproblems which, in their turn, represent different

acti

get

col

imp

ons with smaller subset

some basic "primitives"

The operators b

ection of altern

ementation. For eac

r

a

h

different combinations co

be alternatives which by t

or alternatives which can

other different measures.
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problem descriptor nodes.
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order to to have our problem solved, and therefore we

that al

alternati

proceed i

strategy

through

problems"

attempted

decompose

structure

ternative three,

ve five, must be

n our solution.

As can be seen in t

consists then of

AND*/"OR' nodes, tha

which solution can

Problem-reduction

when the problems

d in a similar f

has this hierarchi

AND alternative four, AND

selected and satisfied to

he picture (figure(2.7)), a

the combination of paths,

t reaches a set of 'primitive

be found.

representations can be

that we want to model can be

ashion, when its soluticn

cal order among its different

parts, and when the process of reaching a solution can be

stated as a synthesis of related "primitive" sol

2.2.3.3.- Theorem-Proving:

In THEOREM-PROVING representations,

are described using a logical formalism, f

"first-order predicate calculus", as a language

initial and final conditions of a problem can be

utions.

situations

or example

in which

expressed

say
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as valid sentences, and where logical analysis can be

performed in order to find out implications, proofs or

deductions about statements of our problem.

The elements in this representation, belong, as

in the case with Post Production Systems, to a given

alohabet. Their combination result from operations that

dictate how symbols can be assembled into legitimate

strings or expressions, called "well formed formulas";

which relevance, besides their legal formulation, can

always be decided by interpreting them as assertions on

some domain of Interest.

The formalism represents the set of all the

valid and meaningful statements that can be made about an

area in particular, as new statements can be deduced or

manipulated by the application of 'rules of Inference' to

previous statements. Its two main parts include first, the

*syntax' or the part that regulates how "we Il formed

formulas" can be constructed out of other "well formed

formulas" or out of symbols in the alphabet; and second,

the 'semantics" or the part that relates "well formed

formulas" to the domain of Interest, by assigning them a

'true' or 'false* value.

Although this representation offers the
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advantages of generality, uniformity of representation and

the logical power of techniques for making deductions, it

always remains difficult to reach the level of

formalization that is demanded, and difficult also to

express our knowledge of specific problems in logical

formalisms as

2.2.

For

the

4.-

all

predicate calculus.

Search:

the previous representations, once we

have formulated our problem in their terms, the second

Issue that remains to be so

sequence of operators or

transform a state descrip

descriptor, break a problem in

a new statement out of an old

Which alternatives

several transformations that

control the growth of branches

t

t

0

t

ved is how to

nference rules,

or into anoth

o its components,

ne.(12)

o select when

can be apolied,

in our tree to a

find the

that can

er state

or deduce

there are

and how to

number of

paths that still can be explored within reasonable tiffe

bounds, are the main problems of search.

2.2.4.1.- Basic Techniquest

For the first problem, that is which
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alternatives to select next, two conventions can be

established on how to explore systematically all the paths

in the solution space of a given problem. Depending on how

we proceed exploring nodes, or in what orded we decide to

generate alternatives at each level of the graph, we can

move along the breadth or along the depth of the paths

that extend out of the tree root.

If we decide to explore all the successor nodes

at a given point, before continuing to expand them into

other levels further down, we say we conduct the search in

a BREADTH-FIRST manner as shown

in figure(2.8). If we decide to explore only one

node at each level of the tree, and proceed doing so, for

each successive nodes until we reach a terminal branch, or

until we have explored all of the possible paths, we say

that we conduct the search then in a DEPTH-FIRST way, see

figure(2.9).

BREADTH-FIRST or DEPTH-FIRST searches are

conventions on how to visit each of the nodes in a

solution space, and depending on the structure of the

problem, each of them has particular advantages or

disadvantages. When solutions are unevenly distributed

through the levels of the tree, as in figure(2.8), a
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Sl=( 1,2,)

S2*( 2,3,4,)

S3x( 4,)

S4-( 4,5,6,)

S5=( 5,)

SS=( 6,1,2,)

S7s( 1,8,)

SO-( 1,2,9,)

SOa( 1)

S1=C(1112)

SIe (13)

Sl=( 1,2,3,)

S2-( 2,3,4,)

53( 3,4,1,)

54u( 4,1,2,)

PAWM&57 Z-
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depth-first
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in figure(2.4). Problems with larger

and with operators that expand

oossibilities can quite easy reduce

numb

I arg

a r

er o

er

epre

these terms, to a non-operative alternative.

The control of this *ever present

exponential explosion of search" (6), demands

of the problem structure. We can, in fact,

understanding of a problem In terms of rep

which processes reduce search to a minimal ope

say that the less we know about a problem,

have to search for its solution.

A *pruning" of branches, or a reduct

combinations that have to be explored in a pr
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branch selection and generation of alternative
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of particular characteristics of the problem,
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substan

figure(

problem

operati

reverse

applica

smaller

each n

path a

'EVALUA

number

nodes i

the tre

tially a problem space. In the 8-puzzle tree of

2.6), all operators were applied blindly to each

state, without recognizing that for every type of

on -centersidecorner- there is a movement that

s the situation to the state we had before its

tion. Preventing their application results in the

partial tree of figure(2.10).

If besides ttese reductions, the *promise* of

ode can be evaluated in terms of the length of the

nd the number of misolaced blocks, then the

TION FUNCTION (10)2

f (n)=g(n)+W(n)

where g(n) is the path length, and W(n) is the

of misplaced blocks, can help us to select the

n a "EST-FIRST" manner and reduce the search to

e in figure (2.11).



63

2.2.4.2.- Backtrackingl

One of the exhaustive techniques for searching

AV4t47T

)1 1 eV10

1iaer F, //
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the set of all possible solutions to a given problem Is

'BACKTRACKING*. (13)

It explores systematically the solution space of

a problem, by partially expanding solutions an element at

the time, in a depth-first fashion, and by "backtracking"

or retracing its steps to the state of a previous decision

in order to try another possibility, whenever It reaches a

point where no further elements can be aaded, or whenever

all the components have beer, added to form a valid result.

Problems amenable to being solved by this

technique have a combinatorial structure that permits tte

sequential expansion of their solutions. These are formed

by several parts, each of them capable of taking one of

several values, depending on some general definition of

the. problem. In this definition the set of parts is

clearly established together with all their values and the

restrictions or "constraints' that stipulate what

constitutes a valid result.

Their structure consists oft

- A set of parts, or "selection spaces"

( X1, X2, .. **.** .,, Xn )

each of which represents a set of possible

values from where a particular decision or selection can
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be made according to

- Criteria

( xi, x2,

In order t

- Solution

a

of constraints

00000 09 xn
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we would do, Is
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proceed to construct each of the possible complete vectors

resulting from these combinations and once constructed,

test them against our criteria in order to find out If we

have a valid solution.

The way backtracking works however, makes

unnecessary the explicit consideration of all the values

in the *selection spaces' , By proceeding sequentially in

the selection of values for a solution, we can always test

at whatever point we are, what are the chances for

succeeding in the vector being expanded.

Looking at the criteria of constraints we can

always tell whether the next set, from where we can select

an element, contains a candidate for a valid extension of

the vector, or whether by having none of these, our

solution can not be expanded in that direction any more.

At any point in time during the generation of a

solution, we can not guarantee that a valid solution is

being formed, but we can always know when a partially

valid solution can not be extended anymore. We can not

guarantee continuous advance towards a solution, but we

can provide a stopping rule that excludes large sectiors

of our solution space, without having to explore them

explicitly, and without having to wait for a complete
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vector in order to test for its validity.

Backtracking can be better understood using our

Stop( 11)

Se( 2122)

S3nC 3132)

S4( 4142)

S5u( 51)

Sea( 61)

F/6e4rME fZI

graph notation: figure(2.12).

- At the beginring of the tree of possibilities,

we have an initial solution, or a node that represents our

initial vector of length zero, as no decisions have been

made yet.

- From this starting point, we can construct a

tree by representing each of the possible selections as

branches that grow out of this root. Each of the values in

*Xi' would appear as a node at the end of these branches

and stand for a possible selection to be added to our

vector.

- From each of these nodes, we can select now



68

one of the values In "X2' which, in its turn, would expand

into a second level of branches; and from the resulting

nodes we continue branching on until we have included all

the possible selections of "Xn'.

- Constructing a solution, consists then in

pushing our path towards further levels down in the tree,

until we reach a terminal branch, or until we hit a dead

end.

By convention, we can select branches out of a

node, in a left-to-right manner, such that we always pick

out the first branch in the left to exit a node, and we

always return to the next available left branch when we

retrace our steos to return to a previous node.

With these two directions, down and

left-to-right, we can move systematically across all the

paths in the tree, visiting the nodes in the following

way: {{/,4/A 2,I3)

The importance of backtracking as a search

mechanism, however, relies In a stronger criteria for

branch selection that incorporates, as described before,

tests or 'stopping rules' to help reduce the number of

nodes that have to be explicitly explored. With such

criteria, everytime we advance from a given node to its
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successors, we look first for a subset of vaid choices

that do not violate any of the problem constraInts, and

from this subset we pick out Its lef tmost member.

A graphics example In figure(2.14) shows the

consequences of this procedure. Starting from the root,

we find first the node *xt1' as a Possible extension and

we advance there. At this point we took now for the vaid

subset of *X2* and find out that the nodes *x21* and *x22*

are both Invaid selections and only the node *x23*

constitutes a vatid possiblity of extending our path By

doing so, we can see now, how a whole region of the tree,

extending below the invalid nodes, is ruled out of

consideration, since all the paths that go through these
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nodes would by definition be wrong.

This cutting out regions during the search

process is called *preclusion*. By discovering a dead end

at a certain level of the tree, we *preclude* or exclude

from further considerations, all the paths below such

points. To preclude large regions of the tree we have to

formulate our constraints in a way that makes such

sequential analysis possible, and structure our solution

space in a way that brings forward these violations as

soon as possible.

One way of doing this is to sort the *selection

spaces* by increasing number of choices along the

different levels of the tree, so that we have the sets

with the smaller number of elements at the beginning or
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near the root, and the larger sets at the bottom of the

tree. As violations occur in certain combinations of

elements, having the fewest choices at the beginning will

tend to produce larger preclusions of paths than If It

were done otherwise.

Together with *preclusion' and "branch

ordering', some other techniques such as *branch and

bound' and 'branch merging', are used to help reduce the

amount of work spent searching for solutions.

*Branch and Bound' incorporates to the criteria

for branch selection, considerations for preference values

among different successors. Besides knowing if a successor

Is a valid or an Invalid option, we can rank It now

against the ot

preference,

maximize or

solution. Bou

our criteria

modified as

encounter new

hers acc

and pro

minimize

nded by

for acc

we move

choices

we can decide whether

and

out

ording to a predefined scale of

ceed in out selection trying to

the overall preferences in a

lower of upper limits respectively,

eptable solutions is continuously

along the branches of the tree and

that can be made. Looking at them

or not we can Improve our situation,

by increasing or decreasing our previous

branches that extend beyond out limits,

bounds, drop

effectively
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reducing the regions of nodes that have to be considered.

'Branch merging", on the other hand, recognizes

the fact that in many cases what increases

solution space, is not only the explotion In

of elements, but redunaancy in the definition

might spend a lot of time considering diff

that constitute

solution. As

solutions share

of them transfor

solutions out

properties are

transformations,

merging or *isom

for these equiva

and tries to

paths into seque

reduce our sol

only

might

symmetr

mations

of old

said
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slations, all

onstruct new

t share these

under such

other. Branch

ejetion*, as it is also called, loks

either before or during the search

or collapse *clusters' of equivalent

of non-isomorphic solutions which

space, but allow us nevertheless to

expand the results to all the

desired.

possib le variations

2.3. Conclusions:

As a combination of all these

backtracking provides an organized approach

techniques,

to exhaustive

If

r

s
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searches. Increase in size of "selection spaces* can still

bring back combinatorial explosions, and its solution

time, even with the use of digital computers, can take in

some cases, more than anyone could wait. But a clever use

of preclusion, the Implicit vs. explicit enumeration of

solutions and the sequertial expansion, with the

implications that this has on memory resources, stli]4

makes of backtracking a valid method for enumeration

problems which could not be solved otherwise.

The importance that it has in generating

solutions, is frequently critiziced in the same grounds.

Having to construct solutions in orded to find out if they

exist at all, might not be a graceful or elegant way in a

theoretical sense, but must of the time, for good or for

bad, it Is the only choice we have for problems whose

structure stlil lacks a more powerful explanatory theory.

In our particular case, the generation of design

configurations, this criticism should not stop us from

using tree-searching methods, but rather take It as it is,

an Indication to a larger need that demands future and

related development.

And realize that the "...computerization of

these processes is only of secondary importance. The main
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Issues are still the better understanding of the theory of

spatial configurations and of our reasoning In

manipulating them. Here seem to lie the significance of

investigations..." (14).
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3.- SPACE AND FUNCTION ANALYSIS.

This chaoter exoands the general principles of

the S.A.R. methodology to the description of spaces, the

formulation of functional standards and the analysis of

their relations.

It describes in detail first, how standards

about functions can be defined in terms of a site, a set

of elements, their relatlons and their positions; and

proceeds then to present a process that enumerates all the

possible alternatives, along the lines of the

"state-space* and *problem-reduction* methods for

generating alternatives.

3.1.- Formulation of Standards:

3.1.1.- Site:

The site constitutes the environment where we

place elements according to certain rules. At the scale of

functional analysis, the environment is formed by a space

or a set of spaces that define a room or an area within a

room where a function can be performed.

As container for this function, standards aboLt
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the site can be defined at two main levels: one In terms

of what is called the ACTUAL SITE, and another in terms of

the FORMAL SITE.

3.1.1.1.- ACTUAL SITEt

The actual site represents the area under

consideration, a given existing space or a space being

proposed as part of a design. Characteristics of this

site can be defined in terms of its SPATIAL or MATERIAL

ELEMENTS.

As SPATIAL ELEMENTS we can describe the set of

areas that form the total space, and for each of them

define their SHAPE, DIMENSIONS and RELATIONS. Shaoes in

this application, have been restricted to rectangular

figure or any combinatior of rectangular components.

figure (3.1a, 3.1b). Dimensions include the length, width

and height of all spatial parts. The representation of how

these parts fit together to form the total site is done

through the descriptior relations between them, such as

the adjacencles, overlappings and containments shown In

figure 3.1.c.

As MATERIAL ELEMENTS we can describe thte

physical contrapart that delimits the spatial elements,

like blank walls, access walls, windows, etc., and define
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DIMENSIONS and RELATIONS.

The actual site

figure 3.2.

might be thought as the bul I t
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total space that can contain a function. It can be

represented, in the graph notation, as a set of nodes that

correspond to spatial and material elements together with

their shapes and dimensions, and a set of links that

stands for the spatial or material relations that exist

between the two kinds of elements. figure 3.3.

3.1.1.2.- FORMAL SITEt

The formal site, on the other hand, represents

spaces or areas that we might say, do not exist at alI in

the sense of built space, but are conventions used for the

formulation of standards.

As in the case of rooms In the housing

situations described with the S.A.R. Methodology, we can
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look at several functional layouts and notice that among

their variety, furniture pieces tend to be grouped in

certain ways. They are, most of the time, aligned along

the wall In most living spaces, or they are centered in

space, surrounded by circulation or operation spaces, in

most equipment layouts.

To describe such schemes of agrupation, we can

talk, as Is done at the housing scale, of ZONES and

MARGINS. A system of "functional

represents those areas in

functional elements are, or can

Through them we can

about possible arrangements. A

function can be accomplished

lets say a kitchen where furnitu

group along the necessary

represented as the site in figur

(1) ZONES and MARGINS

the actual site, where

be, positioned.

make general statements

room, for example, where a

only on one of Its walls,

ire and appliances tend to

connections, would be

-e 3.4.

As an actual site, we can describe its spatial

dimensions and physical elements (figure 3.4a). As a

formal site we can specify a ZONE and a MARGIN ad]acent to

the wall "W1' where kitchen furniture may be nositioned.

No particular layout has been defined yet, but we have

made a general 'site* statement about possible layouts
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along the wall "W1'.

A zone can help us define where elements can be

POSITIONED, a margin adjacent to the zone can help us

define what are the different lengths that elements can

have. If we agree, for instance, that in a system of

zones and margins, elements positioned in zones must

always end in margins, then the site in figure 3.4., would

represent a statement about possible layouts, and

represent at the same time a restriction on the DIMENSIONS

of kitchen pieces that might fit such a site. (figure

3.5).

Zones and Margins can be used to represent

conventions about the POSITION and DIMENSIONS of elements
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In one direction.

A system of zones and margins can have different

widths, run along one boundary of the space, cross it in

the middle, extend across its whole length or width, or

simply cover one part of our actual site. (figure 3.6).

To define conventions on positions and

dimensions In the opposite direction, we can again use a

S.A.R. concept. A SECTOR Is a part of a zone and margin

which length can be specified. If for instance, in our

kitchen example, the wall *W1' has a window and we want to

say that some of the furniture pieces must always be In

front of the window, then we can break a zone into several

parts, one of which has a length that corresponds to the
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length of the window, and stands for the sector where

OP

V.

I -

those ecs 7,e

those pieces can be positioned. (figure 3.7).

A zone, as a formal construct, has only one

Ir-;;E -.J1

10=76202~~ .--.Z :,
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dimension: width. The sectors can have both dimensionsi

length and width. A zone in an actual site can take its

length from a combination of sectors, or take it from the

actual dimensions of the space where it is positioned. In

such case, we can say that a zone with its length and

=V'k1

74C.3

744'1 f

width defined, has only one sector equal to itse lf.

A system of zones, sectors and margins Is called

a ZONE DISTRIBUTION. It stands for a set of well defined

areas within a room, which can be used to describe general

statements on how elements are positioned, and what

element layouts are acceptable. (figure 3.8).

3.1.2.- Elements:
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The elements are the pieces of furniture or

equipment that are needed to perform a function. As was

said in the assumptions of chapter 1, a function can be

defined in terms of the oossible layouts of elements used

while performing it.

Elements can be defined in terms of their

PHYSICAL UNITS or their USE SPACE, and for each of these

certain RESTRICTIONS might be described.

3.1.2.1.- PHYSICAL UNITS:

The physical units of furniture or equipment are

the actual material pieces that constitute them. For each

element we can describe the SHAPE and DIMENSIONS of its

pieces, together with the RELATIONS that exist among them.

Similar to the restriction of site pieces, the shape of

physical units of an element is limited to rectangular

figures or any combination of them. As shown In figure

3.9 elements can have one or several physical units,

assembled In different ways, but for each of them we have

to define their length, width and height.

3.1.2.2.- USE SPACE:

The use-space is the space that Is needed along

or around a physical unit to be able to use it. Use-space

can be the space we need around a table In order to sit
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down, the free soace needed to swing doors open, the space

needed to open arawers, or the space that should be left

free for equipment parts to move around.

Use-space can be described also as one or

several rectangular shapes with DIMENSIONS and RELATIONS.

The dotted lines in figure 3.9b delimit use-soace

rectangles for several pieces. They can be related among

themselves to form complex use-spaces, or related to

specific physical units through position, or adjacencies.

3.1.2.3.- RESTRICTIONS:

Physical units and use-spaces can be restricted

in certain ways. For a given piece of furniture, certain

of its physical parts or use-soaces could be overlaped by
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parts of different furniture pieces.

Independent on how the relation between two

elements Is stated through the next issue In the

definition of standards (i.e. 3.1.3.- Relation between

elements), we can specify at the level of each furniture

piece, if the piece can or cannot be overlapped by either

physical units or use-spaces of other elements. Together

with this restriction we can define for each piece If a

minimal access side is required and by how much.

3.1.3.- Relations between elementst

Elements can be located related to one another

in several ways.

Relations between elements, called here 'element
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constraints*, are in theory any specification about

relative positions that can be described and that can be

tested. In this application, however, only three -In fact,

three variations of one- relations are supported:

- ADJACENCY.

- OVERLAPPING.

- CONTAINMENT.

Element constraints relate two elements at the

time and express certain conditions that should be

satisfied In a functional layout. They can regulate, for

example, whether "element-1* should be adjacent to

*element-2*, *element-2* should be contained by

*element-3*, or whether *element-1* should overlap
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"element-4*.

3.1.3.1.- Simple and Compound Element RelatIonst

Relations can be expressed in two ways, in one

we can list a series of 'simple' constraints in statements

of the form 'ELEMENT-RELATION-ELEMENT*, as was done in the

last paragraph.

This is quit

clear and simple. But,

formulation of relat

important, all havin

rarely corresponds to

between elements,

constraint over anothe

To include t

which relations can be

"Compound' relations

logical connectives

denied by 'NOT'.

e straightforwards and in this sense

on the other hand, it restricts the

ions to long lists of equally

g to be satisfied, constraints which

the way we think about relations

or the way we might select one

r if we could have the option.

tis option, there is a second way in

exoressedt *compound' constraints.

are simple constraints linked by

AND' 'OR*, and capable of being

With them we can formulate relatlors

such as:

shou I d

never

SI.. "*element-1* cr *element-2* or 'element-3*

be adjacent to *element-4*, but *element-2* should

be adjacent to "element-1', neither should
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element-3* be contained by "element-4'".

Compound relations have a special notation (1),

perhaps sufficiently bisarre to obscure their advantage.

Instead of saying:

element-1 relation element-2

as we said before, simple statements are

expressed now as:

(relation element-1 element-2)

where, inside a pair of parenthesis we define

first the relation and then the list of elements that are

related by it. So that the statement:

***element-1* should be adjacent to *element-2*"

is turned into the statement

(should be-adjacentto *element-i* 'element-2*)

or for simplicity

(adjacent el e2)

The reasons for this inversion might become

clearer, although perhaps not justifiable in terms of a

user, if we think that elements in a relation can be in

themselves other relations, as the case would be for two

statements connected by *and". The relation "and' has two

elements: statement-i and statement-2. So if we want to

say: "'statement-1' and 'statement-2'", we say
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(AND statement-I statement-2)

and, if be each statement we substitute simple

relations with the same format as

(adjacent el e2)

(adjacent e2 e3)

then we have

(AND (adjacent ei e2)(adjacent e2 e3))

or a compound relatLor formed by the binar

relation "AND', that is a relation with two elements, each

of them a nested binary relation 'ADJACENT', with tte

format:

(relationi (relation2 et e2)(relation3 ei e2))

(relationi elementi element2)

Compound element relations use as building

blocks, the 'ADJACENT", "OVERLAP* and "CONTAINS' binary

relatlons, which can be nested at the bottom of a

hierarchy of other binary relations as "AND* and 'OR',

together with the unary relation "NOT*, to form more

complx relations like: (52)

Which corresponds to our previous statement 51.

A graphical representation of these relatiors

can be visualyzed in terms of a tree, which shows a

relation on each node, and for each node two or one
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elements as successors of binary or unary relations

respectively. The statements in (5-1) , and in 04Z)

, would look like the following figure 3.12, which can

help explain the nature of the system of oarenthesis.

Or if we don't break our building blocks, but

show them as a line statement, it would look like the tree

In figure 3.13.

Simple constraints represent one list of

relations to satisfy, compound constraints represent

several alternatives that can be accepted depending on tthe

combination of connectives that we use.

Statements iInked by *AND' have to be both

satisfled. Both relation-cne and relation-two, represent
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of simple statements would be

list of statements linked only by

Statements that are linker by

can be considered in two ways: as

*exclusive-or". Inclusive OR's impl

statementts, we can satisfy either or t

them In the final layout. Exclusive OR'S

have one of the two satisfied, then t

present at the same time.

Statements preceded by "NOT

their final relations.

For our example in figure 3.

0R' connectives,

*Inclusive-or* or

y that for two

he two, or both of

imply that if we

he other cannot be

* simply reverse

11, if the

considered as inclusive OR's then, there w

possible alternatives (figure 3.14) which

accepted as valid combinations If appear in

arrangement.

If the OR's were exclusive, then only

three lists would be considered acceptable.

3.1.4.- Position of elements in the si

The location of elements in the site I

through *POSITION RULES'. These rules specify

OROs are

ould be 7

would be

the final

the first

te.

s defined

a relation

between an element and a site where it can be positioned.
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Position rules can relate elements to

different levels. Elements can be located

space that forms the actual site, *room-x',

located In zones within the room, *zone-1*, o

positioned in sectors within the zones, *sect

Similar to the relations between

ition rules can be expressed as *simple

es, or 'compound* pcsition rules. The simple

ween an element and its site would be:

elementi is positioned in sitel, or

(PUTON elementi sitel)

In the same notation that we used fo

the site

simply In

they can

they can

r-a".

elements,

position

re lation

r element

r

o

r

at

the

be

be

pos

rul

bet
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constraints.

The compound position rules wii11 use again the

connectives 'AND* 'OR* and *NOTO to form nested position

rules that define several alternative locations for an

element, or several alternative elements that a space in

MAPerr.,0a zoredw

('{/7 ;E4 7 ~(F//~4r 4zZxwV))

2/6/4 3/F

the site can contaln, like the rule in figure 3.

ano its tree representation (figure 3

3.1.4.1.- Levels of Definition and Exp

Position Rules:

Even though both express relations,

rules are different from element constraints

15

.16).

ansion of

position

In several

ways:

- First, they relate elements to

relating elements to elements.

site, vs.



10/

4W --- Sw

4/%(p/;'s

(PrQ/

o urtv

zones

def ine

three

these

za#a463M )

, 4/ S
r440a)

- Second, for a site structured as a space with

and sectors, a simple position rule (P.R.) can

relations between elements and site at any of these

evels. A compound P.R. can use any combination of

'bulIoing blocks*, using the same terms as in

(4 4Z 6o' dlginr z1=17)

element constraints, to describe a position standard as:

To generate all the possible layouts that

correspond to this rule, however, we have to know the

I
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positions that *ell can actually have within *spacel*, and

the positions that *e2 can take wittIn *zonel*. For

enumeration, all positions have to be defined at the most

detailed level of the site.

In a sImilar way to the case made for compound

element constraints, there is a conflict between how much

information we should give in a standard to permit

enumeration, and the way we think about positional

constraints.

For a position rule, this conflict can be solved

in the following way:

- Each P.R. defined at any level of the site

Implies all the possible p.r.'s that can be formed by

relating its element to each of the parts that the site

has one level down.

If, for example, a site has two zones: Zi and

Z2, then the p.r.:

(PUTON el sitel)

Implies both:

(PUTON el Zi)

(PUTON ei Z2)

- As the rule is defined generally, i.e. site,

vs. specifically, I.e. Z1 or Z2, then we can assume that



102

either of the two positions is valid, and we

to link them with an *exclusive-or*, to form

can proceed

the new rule:

~V

which simply says,

*site1* then "e1" positioned

'site1' would be accepted

zone, in turn, has two sector

6C //rdA
(lg (r,--04/

if we want *e1* positioned in

in any of the two parts of

as a valid solution. If each

s, for example: Z1 has Si and

C/ S/)

s-/ X ))

/ $$9)

5f 54 )))

S2, and Z2 has S3 and S4, then the rule would turn into:

which again assumes that "ei' In *S1', or 'et*

in *S2*, or *e1* In "S3*, or *e1* In *S4*, would all be

valid positions.

By automatically expanding a rule from one

general level to its constituents in the following levels,

we can avoid having to define each and everyone of the

possible positions that an element can have. Our original
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rule at the beginning of the section, can be expanded then

(Q0tc( PCX (0 5/ 53)f

{o (P-Q E/ %3)

A position standard can be expressed also as:

where if e* stands for all our elements, lets

say: e1* and *e2. It reans: "put all the elements in

any place of the site, as long as element *e2* Is not

positioned in sector "S2"", and by a simitar procedure as

we did before, the expression e+ Is first expanded into

all the elements in the problem definition:

(PUTON el site)

(PUTON e2 site)
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linked then by *AND*, because we want all

sat isf led

( #(/7:w Az 6/!)

and we have the resulting rules

which f or a site with two zones, ZI and Z2, two

sectors Si and S2 in ZI, and only one sector S3 In Z2,

t'Pri~u f/ S ))
(w 6/ 5))

(Plr# 5Z ,i)=)
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would be converteo intot

3.1.4.2.- Position Rules in

A third difference between

constraints results from the site

overlapping zones where one sector

areas.

Over lapping Zonest

p.r.'s and element

having two or more

Is shared by both

If position rules were always simple and always

defined at the level of sectors, this would represent no

problem, as we would have to list all the elements that go

in each sector. If we allow compound rules at several

levels, however, then we have to define a way to find out

which element goes where.

For example, a problem with the following

def inition:

Site: 21 with Si

Elements: el and

and Si, Z2 with S2 and S3,

e2,

(Qa (Pt!EQW EZ zz)1
(pc ' 3 Zi/)) )

cm~ss 3 ZZ )))

Position Rule: does not define which elements

can -be positioned in sector S2. If we think of P.R.'s as



MITLbraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER

Page as been ommitted due to a pagination error
by the author.



107

describing subsets of elements that can be positioned in a

site then,

Zi can have (el or e2 or e3)

Z2 can have (e2 or e3)

and if we expand the rule into its sector

(AV 4/'4 (/f (er X/ .5/1)

(Ol 41P SO

(m (ar S/)(Par £Z 52,)

(pgtog(CX (P17 5 )/

(P4r 4[Z s6))
(e (4r5 z Sz

(pr1 55 )))

defini tion:

then the subsets for each sector would bet

Si can have (e1,e2,e3)

S21 can have (e1,e2,e3) from ZI

S2 can have (e2,e3) from Z2

S3 can have (e2,e3)

where S2 is undefined because it has two

different subsets of elements that can be positioned in
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it. Having these subsets, however, we can decide a

convention on how to position elements in overlapping

zones. If elements In S2 can only be those that appear In

both zones Zi and Z2, then the Intersection of S21 and S22

defines the position rules for S2.

S21 = (eie2,e3)

S22 = (e2,e3)

S2 = (e2,e3)

(4ire' ,E/ S/)

( 50 52 ))

(e~ (Pgen4W 5 5Z /

(fss 5 3 )))),(parN Ow - S-4 ))

(#2(PCgvx 3 2

and the position rul

To expand the rules

can proceed then as we di

overlapping sector, we have

Intersection of rules, and

e would bet

of Intersecting zones, we

d in 3.1.4.1. but for each

to check first for the

select those positions that

(4' (#/T

(0/
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satisfy this test.

3.2.- Standards:

A set of functional standards is defined by a

system of elements and relations. The elements correspond

to the spatial parts of both site and furniture pieces.

The relations correspond first, to element constraints

that regulate relative locations, and second, position

rules that regulate absolute locations of an element in

the site.

In a more formal manner, a set of standards

consists of a 4-tuplet

S, E, R, P

where:

- 'S* Is the set of spatial, actual and formal,

parts that form the environment.

- *E' Is the set of spatial, physical-units and

use-space, parts that form the furniture pieces.

- "R" is the set of desired relations, simple or

compound, between elements in 'E*.

- *P* Is the set of desired positions, simple or

compound, that relate elements In "E* ~ with elements in
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"s*.

A set of stanoards implies a set of possible

graphs L , which are formed by nodes that correspond to

elements In *S* or "E", or both; and are linked by edges

that correspond to relations in 'R' or "P*, or both.

A functional layout, or a furniture varlant, is

one of the possible graphs In L, where the links

correspond to one of the desired combinations of relations

in *R*, together with one of the desired combinations of

positions in *P*, for a given S,E,R,P.

To evaluate a set of standards, the subset L* of

L, which contains all the functional layouts, has to be

enumerated.
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3.3.- Enumeration:

For the set L* we do not

but we have instead a criteria for

know a priori what are the poss

that a standard can have, but we

Judging when a layout Is a valid

arrangement.

To enumerate

the possible graphs

layouts according to t

possible graphs, our

all the variations tha

To do this,

solution-space into

might exist, and equal

reject, as soon as po

any solution at all. (

Not having

situation where all th

the same Importance,

analized to the same I

have a list of members,

membership. We do not

ible functional layouts

have a criteria for

or an invalid furniture

L* then, we have to construct all

in L which qualify as functional

his criteria. From the set L of

"solution space*, we have to extract

t are members of L*.

we need rules that partition the

different "chunks" where solutlors

ly important, we need rules that

ssible, "chunks" that do not contain

figure 3.17)

these rules would mean having a

e points in the design criteria have

and therefore, all have to be

evel of detall, checking all the

inations and variations

iguration.

of this criteria on eachcomb

conf
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Wh

through the

construct or

entire port

necessary.

a layout, or

At

layouts one

are satisfi

developed,

systematical

standard.

en these rules can be defined, we can express

m the structure of our solution-space. We can

reconstruct whatever the case might be,

ions of this space whenever this becomes

We can state, through them, the possibility of

its validity In terms of some conditions.

different levels of detail, we can construct

at the time, and check that some conditions

ed in order to know if the next, more

layouts are worth looking at. We can

ly look for members of L+ needed to evaluate a

figure 3.171

3.3.1.- Overview:

The S.A.R. formulation of standards, with Its

parts and relations, provides a way for expressing these

rules.

The generation of furniture variants can be

carried on by sequentially constructing a solution or

* graph", where we add one element to the site according to

the position rules, and we check at each step tte

satisfaction of the element constraints between the

positioned elements.
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At the most simple level, this generation can be

carried on as a 'depth-first* search, and the enumeration

of layouts can be represented as a 'State-Space* model

where:

- the graph being constructed represent our

*state-descrlptor*,

- the position rules constitute the

*state-operators*, and

Pr/60/W 3,/7
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- the

criteria against

relations between elements are the

which states are tested, as shown in

.44

9, '

figure 3.18:

figure 3.18:

At a higher level, the compound po

can be used to decompose the problem i

subproblems which can make the search s

alternative combination of Position rules

position rules, can be considered as a sepa

with several subproblems expressed as

descriptions, as shown in figure 3.19:

figure 3.19t

3.3.2.- Description of the process:

sition rules

nto different

impler. Each

in compound

rate problem

state-space
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The process for generating L* breaks down the

task of exhaustive enumeration into a hierarchy of smaller

problems with different levels of complexity. The

description of this hierarchy will be done, first in a

quick outline of the problem reduction steos, and second,

in a search for functional layouts presented through a

detailed example. Generalizations and- definition of terms

will be made along the way as it becomes necessary.

3.3.2.1. Problem reductiont

The solution space of a functional standard, can

be constructed through the application of two kind of

rulest

- GENERATION RULES
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- TEST RULES

GENERATION rules produce alternatives or

partition the solution space into subsets that may contain

solutions. TEST rules check the existence of solutions In

those partitions produced by GENERATION. Generate and

Test, through *operators' and *constraint criteria',

systematically expand and preclude regions of the solution

space.

Generate rules are of two different kinds,

corresponding to the two levels, simple and compound, that

oosition rules can have:

- TRUTH TABLE, and

- PERMUTATION OF ELEMENTS

For compound position rules, we can explore the

different alternative position that are acceptable for an

element (figure 3.19) through the construction of a TRUTH

TABLE, as explained in 3.3.2.2.. For simple position

rules, we can explore the different locations an element

can take within its zone or sector through the PERMUTATICN

OF ELEMENTS, or the variations in absolute positions.

Test rules are also of two different kinds:

- POSITI8NAL, and

- DIMENSIONAL
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These are operations that check the POSITION and

DIMENSION of elements in a site, as regulated by a

functional standard.

Positional Tests are thet

- EVALUATION OF POSITION RULES, and the

- EVALUATION OF ELEMENT CONSTRAINTS

Absolute positions of elements can be tested by

the EVALUATION OF POSITION RULES, and relative oositiors

can be tested by the EVALUATION OF ELEMENT CONSTRAINTS.

Dimensional Tests include tests fort

- ZONE DIMENSIONS

- SECTOR DIMENSION

- MARGIN DIMENSION

and check the size of an element against the

width of a zone, as in ZONE DIMENSION, against the length

of a sector, as in SECTOR DIMENSION, and against both the

length and width of a margir, as in MARGIN DIMENSION.

An Important, both dimensional and oositional,

constraint is the CIRCULATION between elements in the

site. It can be defined either by absolute position if

assigned to be In a certain zone, or it can be defined by

relative position if assigned to be through the different

use-spaces or remaining margins in a given layout.



118

These operations have a preference order between

themselves. For Instance, we can not attempt a

permutation of elements in a zone until we know what are

the position rules that assign such elements to the zone.

If these position rules are compound, we have to decide

first what valid alternative location of elements we will

try, before doing any permutations or changes.

Once such locations are known, we have to check

the dimensions of the elements against zones and sectors,

to find out if that location can be, in fact, occupied by

them or not. Only then we can permute elements we kncw

can have valid positions and valid dimensions, and check

while constructing these different arrangements, that the

relative positions are being satisfied, that the margins

can hold all the elements in the adjointing zones, and

that the overall circulation pattern Is respected.

The different levels into which the enumeration

task is broken down, are then in order of Importance:

1.- TRUTH TABLE.

2.- EVALUATION OF POSITION RULES.

3.- PRECLUSION.

4.- ZONE DIMENSION.

5.- SECTOR DIMENSION.
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6.- PERMUTATION OF ELEMENTS.

7.- MARGIN DIMENSION.

8.- EVALUATION OF ELEMENT CONSTRAINTS.

9.- CIRCULATION.

corresponding to the expansion or pruning

"'1.v 4 Ive

operations as

fig

EXA

P###w"1

PWINAr

M941/Nt

AT#17N

shown in figure 3.20.

ure 3.20:

MPLE:

The following example will be used to describe

how these operations interact to enumerate all the

possible layouts for the standard:



120

SITE:

ELEMENTS:

R E L A T I ONS: ( pWeM/ AfC Oea'$/4'

(4a4sNe CZ5< eM/r Z

4(44D (sm 6#1r V /3P Z2)

POSITIONS: (g (0e zz)

f I gure 3. 21: {4VO (4/vr' 4 z

The first operation to be applied to start the

enumeration process would be then:

3.3.2.1. Truth Table:

If the solution space stands for all the

functional layouts that a given standard can have, then

the first partition that we can make corresponds to the

possible alternative position rules that are Implicit in a

compound rule.

To do this, we can consider each *building

block" In a compound rule, as a simple relation that is or

is not satisfied in different alternative position rules.

To each simple relation, we can assign a *value*, lets say

TRUE or FALSE, according to whether or not we decide to

have these positions satisfied in the region of the

solution space that we want to explore.
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All the different combinations

these relations can have, represent al I

that can be made out of a solution space

level of position rules. Without having

of values that

the subdivisions

at the general

explored yet any

actual layout, we decide first what alternatives

pursued among

rules.

the different permited by the

should be

position

Compound statements can

nding on whether the combinat

le position rule, represents a

tion rule.

The subdivision of the

rnative combinations of values

TRUTH TABLE, that assigns TRUE

of the simple rules in all the

be TRUE

ion of val

valid or

or

ues

an

FALSE

for each

InvaiId

solution space into

can be expressed then

or FALSE values to

possible c.ombinations.

ch, 0 V //

elf< c c

F/667 01z

depe

simp

posi

alte

by a

each
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figure 3.22:

In our examole (figure 3.

these possibilities. The position

a horizontal tree on the left side,

represented by a matrix where each

row that can take the values Tru

the different possibilities appear

along alternative values for each r

Truth Tables are "oinary

enumerate or "count* with True o

all the alternatives for a compound

seen in figure 3.22, each column r

0 to 31 in binary. As such, and for

there can be a *counting probl

simple rule added to the compound,

22),

rul e

there can be 32

is represented

of

by

and the Truth Table is

single rule appear as a

e or False, 0 or 1, and

as columns that cross

ow.

counters" insofar they

r False, 0 or 1 values,

statement. As can be

epresents a number from

large compound rules,

em*, that Is, each new

increases the number of

alternatives from 2 to 2. So for one simple relatIon

there are two values, for a compound relation with two

simple relations there are four values, for a compound

relation with three simple relations there are 8 values,

and so on; running into the enumeration or *counting* of

large numbers very easy.

For the time being, this problem has been kept

in mind but no solution has been Implemented to reduce
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this generation of alternatives. One possibility

to direct the assignment of values towa

combinations must likely to produce valid Positi

starting our 'counting" from the first valid co

such as column * in figure 3.22. How to find

valid combinations is the problem in EVALU

POSITION RULES.

3.3.2.2. Evaluation of Position Rulest

Only some of the oartitions for

position rules are valid combinations that in

These are combinations of simple relations tha

TRUE value for the compourd statement. To find

alternatives, we EVALUATE each of the columns in

TABLE in the logical sense.

As expressed In 3.1.3.2, the connect

tie together simole relations into compound

have a definite meaning:

- for each, AND*, the two element

relation have to be *true' to have the whol

could be

rds those

on rules,

mb natior,

out these

ATION OF

compound

terest us.

t have a

out these

the TRUTH

ives that

statements

s in the

e relation

1 4 , a /
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evaluated to "true*,

- for each exclusive *0R*, either one of the two

elements have to be "true' to make the compound statement

*true".

- for each Inclusive 'OR', one of the two or

both elements being *true' produces a *true" compound

relation.

- for each 'NOT*, a 'false* element makes a

*true* relation and viceversa.

*ANO,*0R*,'NOT*, are evaluated then according

to these simple tables. When several *AND*,*OR' or 'NOT's

are nested in compound statements, we first find out the
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values for the "lower" relations in the hierarchy, pass

then the resulting values as values of the elements for

the next relation up, and continue doing so until we reach

the final relation, and have the whole statement

4

JoeC

4 <'v

evaluated, as shown in figure 3.23.

figure 3.23:

In the truth-table generated for our

example of figure 3.21, the position rules that

to *true" are only columns: 26,27,28,30,31 and

shown in figure 3.24. Only these combinations

relations represent valid alternatives of the

position rule at the left side of the table,

these combinations make any sense to continue

standard

evaluate

32, as

of simple

compound

and only

exploring
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for possible different layouts. If we think of the

columns in the matrix as branches going out of our tree

root, we can preclude then from further consideration all

/0 3 4 5, 7 89 /'///2/3/4/5//8/.92ZI222 524 25627 r303/32

--A/ O/ / / 0 / ' /

_VW74 011 00

the regions that extend down those paths.

figure 3.24:

Through compcund relations we can decompose a

problem into the different possible locations for the

elements. Through the assignment of truth values, we can

explore all the possible decompositions that can be made

for each problem. Through the evaluation of these values

we can decide which of the alternative positions should be

considered valid and continued being explored.

3.3.2.3. Preclusion of repeating elements:
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Moving In our example in a left-to-right manner

across the different position alternatives, we would look

now Into branch 26, as compound statement

evaluated to be true.

This statement and all the rest that have passed

our previous test, are checked now for PRECLUSION of

reoeating elements.

As can be better seen In brach 30, lumping a

little ahead, there are s

be evaluated to true,

element, In here *bed*,

environment: zone Z

positions for one element

An element can not be

Even though evaluated to

makes no sense when Inter

The test for

elements, would preclude

ome cases when compound rules can

but assign two times the same

to different positions in the

and zone Z2. This repetition of

cannot be, obviously, accepted.

in two places at the same time.

TRUE, this compound statement

preted as a real position rule.

valid branches with repeating

4 S, /4, /00, 7Z4
then columns, or branchesj30 and

32, from further considerations and reduce the search for

functional layouts to branches,1 26,27,28 and 31, as shown

In figure 3.25.

figure 3.25:

3.3.2.4. Zone Dimensions:
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After selecting one combination of position

rules, valid and without repeating elements, there is only

one part in the site where each element can be positioned.

The position of elements is assigned to only one of tte

possible spaces in the environment, and we have to check.

now if dimensionwise this assignment Is correct.

Elements can be positioned in zones or sectors

if, first there is a rule that defines so, and second,

there is an agreement on how the dimensions of element and

site should be considered. If, for Instance, elements are

only allowed to end in margins, then we have to check now

that at least one of the element. dimensions -length or

width- Is equal or larger to the width of the zone where

it is going to be positioned, and equal or smaller than

the width of both zone and adjoining margin.
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figure 3.26:

For our example, both zone

suficclently small to contain any of the

any position. So this test is passed by al

Zi and Z2 are

four elements in

I the remaining

-olow4w7# {j

MM-449AM F

4/M4W#N4'6

as shown In figure 3.27.branches
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figure 3.27:

3.3.2.5. Sector DimensIonst

Valid positions in zones have to

the other dimension: length. Elemen

cated in zones Zi and Z2, for branche

Ithout repetition and fiting within t

and margins.

The test for Sector Dimensions,

elements assigned to a zone can al

h, or along the length of the sector

assigned if this would have been the

Sector Dimensions checks

be ch

ts, we

s 26,

he wid

check

so fit

where

case.

ecked now

know, can

27,28 and

th of both

s if all

along its

they have

that the sum of lengths

or widths, depending on how they are positioned, of all

the elements In a zone/sector does not exceed the length

of such part of our site.

figure 3.28:

When the sum of lengths or widths of all

elements is smaller than the corresponding dimension of

the zone or sector, the difference is occupied by an empty

space with that length or width.

As a convention, this space is treated as one

entity. It is not broken down into several empty spaces

between elements but appears as one unit that can be

along

be lo

31, w

zones

the

I engt

been
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In I loi

changed in position but keeps always its dimension.

Under this test, branch,31 is excluded from

further expansion, but all the rest continue as valid

7 23 T,6 M

~~a# I'A'-
RKECM.0N

, V'rMS P/w-
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options where furniture layouts might exist.

figure 3.29:

.1 *
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3.3.2.7. Permutation of Elements:

For each of these options, as was said before,

we have SORTED each element in the rule to only one valid

and possible space in the site.

For branch 26, this assignment of elements to

site would bet

Z2 with closet and desk.

Z4 with bed.

This sort present two interesting

characteristics:

1.- It produces a CLASS of furniture layouts.

2.- It permits sorting the element constraints

into GLOBAL or LOCAL constraints that can be used for

pruning criteria.

I.- We know that as far as zones and sectors are

concerned, that is without considering margins, we have

already a valid furniture layout, which schematically can

be represented as:

This layout satisfies one alternative position

rule, Its elements fit in the width of the zones where

they have been assigned, and they also fit the length of

the only sector that each zone has.

If we forget for a moment that elements within

the zones can switch positions, we can say we have already

found a furniture variant. If on the other hand, we accept

that each element can vary its location in the zone, we
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can say then that we have found a CLASS of furniture

layouts. We have found, indeed, a region in the solution

space where several arrangements share the same position

rule and are validly assigred to the same sector or zones

of a site.

The different arrangements In this CLASS are

formed by the permutations of the element locations in

each zone. Zone Z2 can be, for Instance, either:

and Zone Z4 can be either:

1~10
r---

The combination of these different locations,

generates several equivalent arrangements that have the

same elements in the same zones, and that constitute and

EQUIVALENCE CLASS of furniture layouts in terms of the

relation *position*.

Exploring our solution space from

*top-to-bottom*, we have partitioned the set of all
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possible layouts into EQUIVALENCE CLASSES where layouts

are grouped by similarities. By *merging" our arrangements

into branches *re. 2.2.4.2) that can be tested without

positioning yet any furniture piece at all, we reduce the

exponential explotion we could have had, had

putting the bed in the lower corner of Z2 then

put the desk in the upper corner of Z4, and

each possible combination.

To enumerate the layouts in each e

class, we have to construct now all the permu

elements in the site. We build a combinatorial t

terms of our State-Space representation, we

class by an Initial state and a series of rule

we

tr

so

star

led

on,

ted

to

for

quivalence

tatlons of

ree, or in

model our

s that can

generate all the equivalent furniture

For our example In branch

class would be generated by the foil

1.- The *state-descriptor'

plus the positioned elements.

2.- The Initial state is t

3.- The goal state is the

elements positioned.

4.- The state-operators are

26, the equivalence

owing representation:

Is the formal site

he empty site.

site with all the

the list of simple

layouts.
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prosition rules with true* values in the Truth Table

column that we are exoloring:

ZE2

£3- 4 ) F-

V4 4

A11, S -jY llq c

Where the operators simply state that a layout

should be formed by the two possible arrangements of

elements In zones Z2 and Z4. That an arrangement in Z+

should be formed by two elements El and E2 either of which

can be a desk or a closet, and that an arrangement for Z2
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kqA SA

A9

Ai6O~ 3~33:
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should be formed by two elements E3 and E4 which can be

either a Ded or an empty soace.

Applying these operators to the initial layout,

first El then E2 then E3 and then E4, we generate the

following 4 layouts as shown in the bottom of our tree In

figure (3.34).
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Elements are positIoned

way, however, elements

within the same zone.

here always

can be positioned

The bed

in the same

differently

for example could be

F/Mc 33

assigned to Z4 as: which corresponds to its four

degrees rotations. From SECTOR DIMENSIONS, we know th

90

at

this piece is smaller than its site (Z4), and ther is a

remaining empty space. Therefore we can decide on any of

these positions to appear In the furniture layout, and

09 OR

II [JemI~ f

F76OME $3

change the operators E3 and E4 Into

The elements desk and closet, on the other hand,

fit exactly in zone Z2, therefore they can only be rotated
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180 degrees, which keeps their dimensions along the zone

flIB0J 0

t he same

ir/Ajj

9//,El

O

H -~

~

~E liDo

changing the operators El and E2 Into

Which could produce a combinatorial tree like

the one partially represented in the following oicture,

Qqeierating 64 possible layouts with sirrilar positions.
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2.- Classes of furniture layouts help us also

sort the element constraints into Global or Local

constraints. If we think of a furnitdre layout as a room

arrangement formed of different arrangements at the

zone-sector level, then we can break down our previous

State-Space representation into the following model:
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room levelt

- state descriptor = same,

- Initial state = same,

- goal state = same,

- state-operators =

arrangements generated by:

assignment of zone

zone level:

- state descrlptor = Z2,

- Initial state = empty Z2,

- goal state = complete Z2,

- state-operators = assignment o f

Z4Z

A764 4Ai;a

elements to zones as?

zone level?

- state descriptor = Z4,

- Initial state = empty Z4,

- goal state = complete Z4,
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assgnm1e"t I of- state-operators =

Zr - -

I74J34*u
elements to zone as:

which woul d produce the following room

,OAC le O~ 404
state-operators:

In the generation we would proceed first to

apply one of the operators at the room level, i.e.:

Iw~
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ROOM - Z2, Z

but in order to do this we would have to find

out first an arrangement at zone Z4 which can be used as

this operator, therefore we have to construct It by

o a

applying the operators at the zone level: (344

which produce: (1oe)

that we can apply to form: (5-4of

and continue with ZZ In a similar way, first

with: 3-40f)

to get: {90,d4)
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9

.1e 165A4'b 4

and then:(3,4'I)

E0
to form:

This representation of NESTED State-Space

descriptions, where the result of one search oroduces the

operators for the next search one level up, produces the

same equivalence class, and permits us to sort the
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constraints in the following way:

A GLOBAL CONSTRAINT relates elements in

different zones or sectors,

A LOCAL CONSTRAINT relates elements In the same

zone or sector.

As wiil be seen in the section EVALUATION OF

ELEMENT CONSTRAINTS (3 .3.2.9), the constraint criteria for

the first State-Space at room level would include those

relations that apply between elements In Z2 and Z4, while

the constraints in the second State-Space would include

those relations that apply to element in Z2 and for th-e

third State-Space those relations that constraint element

positions in Z4.

These sorted Element constraints, with MMARGIN

DIMENSIONS and CIRCULATION are the remaining tests ttat

can help us prune branches In our exploration of the

Solution Space.

3.3.2.8. Margin Dimensions:

When two or more zones share a margin between

them, the elements that can be positione in each zone,

might overlap portions of the margin if their dimenslors

are larger than the width of the zone.

As the functior of a margin is precisely to

allow the position of elements with different widths, when

a furniture piece extends beyond the width of its zone It
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occupies a portion of the margin.

When two elements in opposite zones end within a

common margin, conflicts might occurr: if the sum of both

overlappings is smaller or equal than the margin then

the elements fit, if the sum is larger than the margin

dimensions then the elements overlap. For overlapping

elements we have to check If this overlapping Is permited

or not.

As the generation of layouts proceeds at any of

the levels, room, zone or sector, everytime we assign an

element to its position, we test the margin dimensions

against previous arrangements to see if there Is a

conflict that stops the search from going any further.

In branch 7 for example, only two arrangements

would pass the test while in branches 26,27,28 all the 64

possible would pass it withou any conflict in case we

continue our search all the way down to the bottom of our

tree, passlog the tests of EVALUATION OF CONSTRAINTS and

CIRCULATION.

3.3.2.9. Evaluation of Element Constraints:

Element constraints, like position roles, are

expressed by compound statements which can be TRUE or

FALSE, depending on particular combinations of TRUE-FALSE

values in their simple components. Different from position

rules, however, the assignment of these values Is not done
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through a *blnary counter', or a

alternatives to explore, buth

actual, present,

through

decision on which

the evaluation of

re I at Ions.

, Wq-
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If an element is positioned in the site then it

either satisfies some relations to other existing elements

or not. If it does, the relations have a value TRUE, if a

defined elerent constraint is not satisfied among the

present elements then the relation is set to FALSE.

The evaluation of compound element constraints

is done like the evaluation of position rules, from the

bottom-up, that Is from simpler relations to compound

statements as in figure (3.25).

If the relations, however, can be evaluated only

when all the values are set to TRUE or FALSE, then we have

to wait for a complete layout, but if a layout is

generated through a series of nested State-Space

representations, we can break the constraints as was said

before, so that we can evaluate each representation

without having to wait for the results In any other zone

or sector arrang .

In branch 26, this would mean that the relation

( AND (OR (adjacent desk bed)

(adjkanti &ak ch'set ))

have to be broken down into the following

element constraintst
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room: (441 (4,( t'g*;#n 'gg4 A4')

z one Z 2 d't/k d"S9)

zone Z4 117011V

We can do this by applying

f/ekwe 7

the transformations

~-e/,#77ffi zerieZ

shown in the next tables:

which reduce our tree of element constraints

into several trees, each one corresponding to the relation

that have to be satisfied at the level of the site.

pruning away all those combinations in branch 26

that do not satisfy the constraints and reducing the

possible layouts to 12, if there were no further tests

from the original 64 that we could have had in figure
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0 0U

3.39.

In this case the State-Space of zone Z2 always

produces valid arrangements because its two elements are
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always adjacent, and therefore preclusion comes at a

global level, between X2 and Z4 in the relation of

adjacency bed-desk. When a piece is not positioned, like

the case of the chair, in our example branc 26, then we do

not evaluate that constraint, it is assumed that the

position rules have priority over the element constraints.

As long as we can have 'true' values we proceed

with our search, when we don't we stop. True constraints,

however, still have problems because the desk *adjacent'

EUl
to the closet as In: blocks the access to its use

Therefore, after checking element constraints we

check for CIRCULATION.

space.

have to

3.3.2.10 Circulation:

Each element we positioned has to have

its use space. IF this access is defined as

element that is located in a zone, then we treat

other element, and specify the relations that

have with the furniture Pieces it will serve.

If the circulation Is defined simply

acces to

a spatial

it as any

it should

as access
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to every use space withour any particular specification,

then we have to check that there Is a chain of use-spaces,

or leftover spaces through which this access can be

solved.

This last test corresponds to the second case.

Everytime we position a furniture piece we check for this

path. If we think of the layout being constructed as a

graph, finding a circulation path is then a problem of

finding a "spanning-tree' for that graph. A spanning tree

is precisely a path that goues through some of the links

but visits all of its nodes. Our circulation path has to

be a series of spaces use-spaces, margins or leftover

spaces that are linked bh adjacencles of a certain

minimum. that we can walk around, and that should allow

us to reach each piece of furniture in the room.

Finding a spanning tree for a graph Is a well

solved problem with several alforithms that can be used.

(2).

We apply this as a prunning criteria In the

following way:

-everytime an element is added, we construct a

path or spanning tree for it, if we succeed we have a

valid circulation.
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-If we fall we stop any position of elements In

our combinatorial tree.

With this test our possible 12 layouts for

brancn 26, come down to 4 which represent our basic

furniture variants for one case of position rules, and

which are the end of our long search.

When we apply this complete procedure to all the

other branches

7, 27 and 28, we end up with the 19 basic

layouts that our standard permits.

e *

~e %S eW
Ine ol/m

m /Afendr

fdrniture

27.- 26 -
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4. COMPUTER SYSTEM:

A computer system was implemented to carry on

the process defined in the last chapter. It can be used as

an independent "furniture sl-u fler", or be incorporated as

the operation of SPACE and FUNCTION ANALYSIS in the

computer programs being implemented at M.I.T. for the

generation of Basic Variants at the Housing Level by M.

Gerzso.

From the user point of view, the system appears

as having two main partst one corresponding to the

definition of standards, and another corresponding to the

process of querying this Irformations, cuerying first for

existing relatlors such as sizes of furnitdre, adjacencies

in the site, et ., and second for Implicit configurations

or furniture variants.

Internally it is organized in four modules:

- a front end "SARCASM", or user Interface of

the basic variants program, written by M. Gerzso and M.

Gross.

- a Relational Data Base, "RDB",

- a RDB set manipulation routines, OQUERY

LANGUAGE",

- and the SEARCH programs,
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O6C43A. 4,1 :

4.1. Relational Data Base:

The standards formulation, the Information

needed during the enumeration process and the resulting

configurations are stored 1r a RDB(1) which constitutes

the maln bank of Information for the system. There Is only

another representation for rules used in the generation

process. (in the Permutztion of Elements).

A small, in core, ROB was written specifically

for the furniture shuffler and the S.A.R. Basic Variants

program.

In this kind of data base,

as entities and their relations. As

after the description of S.A.R.

Information Is stored

Is aulte obvious now,

and the enumeration
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process, both our standards and our "state-descriptors'

are basically that: entitles and relations. For example,

,%/*7iE4 a / 52A,(c(~ i*

the simple function

would be represented In our ROB as:5/)

Where we have lists of entities, one for tt~e

site entIties, another for our elements entities, and we

have a list of relatiors, in this case binary relations,

one for the position rules, the other for the adjacencies.
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56 E r

5 2

AO-744V7

A RDB consists of a general reoresentation for

Information, it provides a way of cefining lists of

entities and lists of relations. What we put In those

lists is up to us. We can Input a standard as we did

before, or we can input a state-descriptor, during our

search process, as: //E4-) -

Where we can keep track of elements that have

been positioned in the site as El and S1.

This general representatlon is concerned with

the logical structure of the data, rather than its actual

contents, we can change our descriptions as we please,
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include as complex formulaticns

partial relations or construct new

ones.

as desired,

lists out of

retrieve

existirg

Precise description of this structure can

made through relational algebra or relational calcu

together with a set of operations which can be applied

retrieve or

be

I us,

to

In our case the RDB was implemented with the

following data structure:

where we keep the entities and their relations

as two external lists which contain respectively 20

entries for entity lists, and 40 entries for relaticn

lists

entity

site, el

In such entr les we keep basic data about

chains or the relation chains, such as name

ements) (i.e. position rules, adjacencies

t-e

(i.e.

), a
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pointer to the beginning of each list and a pointer to - he

end of each list, plus additional slots that were thought

necessary but were not used at all, such as type and

format of entities and relations.

For each Infcrmation list, we have an entry in

the chain for each entl y that we want to store. Each

entry has a name, a type, a pointer to a property list

,explained further down, and two pointers that link it to

the previous or to the next entry in the same list.

In a property list, additio al Information Is

kept for each element besides its name and type. The idea

of this list has been to be as flexible as possible In

terms of the elements we use for our reDresentations.

From the description in 3.1 we can see that our

Information can be divided in the follcwing way: and we

can see that the relational part is taken care of by the
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entity and the relation lists, while the particular

information row, is incluced in this property list. In

here we can link several 'atributes' that an entry might

have, spatial or nonspatial. For each atribute we have a

*property' entry which keeps track of the name of the

Information, for examplet dimensions, restrictions,

graphics, etc.; the actual data (in different data

structures), and th-e needed pointers to further elements

In the property list.

By subdividing information In this way we can

store different kinds of elements in the entity lists, ard

keep their different data in different entries of property

lists.

In the other part of our RDB, we have for each

relation list, an entry representing a pair of elements

being related by it. In this entry we donot need to store
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the elements again, but we store Insteaa an *id" for such

elements, a reference that can help us get to them In tte

information lists where they are. By doing so we avoid

redundancy of Informatlor. In our case this *1d' is the

address location of the data entry in core, and we have

therefore a pointer for each element location In the pair.

The two other Items are poIrters that link our pair to the

previous and next pairs In the chair.

Several routines were written to Insert,

retrieve, delete or query elements and relations, as shown

in figure 4.6

and in more detail,

With them we can In

relations(PUTRDB); delete

(DELENT) or relation pairs in

relation pairs in all th

retrieve the values of some r

combined queries as will be h

they are;

sert elements (PUTSPC), or

entries in Information lists

relation lists (DELREL) or

e relation lists (DFLRDB);

elations (VALNAM); or make

own In QUERY LANGUAGE.
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The detalIs of these routines are

programmers manual not included in these Thesis.

The advantages of an RDB(i) are thent

use, as simple tables like the ones in figure

easier to understand, flexibility, precision,

Implementation, data irdependence, clarity and

manipulation languages (mieically present in 4.3).

in the

ease of

4.2 are

ease of

the data

4.2. Spatial Representation?

The spatial representation of furniture layouts

Is organized aroung L.Teague's Ph.D. (2) Thesis on "The

representation of Spatial Relationships In a Comouter

System for building design".

Teague describe spaces in a building as a

network of rectangles within a larger rectangle. Based in

Tutte's network representation of squared rectangles(3),

it extends this description to three dimensions. By using

the following representatlor.

It express in network terms the spatial

organization and makes therefore available the results of

network theory for the analysis and synthesis of spatial
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A f3

A

relationships.

In this network, spaces are described by 'arcs'

or *directed links" wtich 'fIow* correspond to thIe
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vertical (z) or the nori'ontal(xy) dimsnslans of tre

space. The adjacercles between sides of two soaces are

describeo as 'nodes' which receive on ore side the arc'

*flow* of the left space, lets say, ano which are the

origin for the 'arc flow" for the soaces 'n the right

I
side, like

This mode of repres

Instance, to Eastman's (4) or

for two reasonst

1.- Its limitatiors to

Interfere with the orincicles in

ever though we nave complex

composed of rectanIles because

SECTORS restrict the analysis to

directions.

erta t Ion

Yess io's (3),

opoosed for

was selected

rectangle shaoes d3 rot

the methodoloqy. In f3ct,

sfaPes, they are always

in the end, ZONES ard

ortogonal soaces, ard two

2.- Its network description blends Itself ilte
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well with our RDB and the network becomes one more

relation

represent

switched

graph wit

in our data'fo

One change

ing spaces a

soaces as node

h geometric ch

r config

was mad

s arcs

s and si

aracterI

dimersions for each node, a

amount of adjacency between two

There is some 1iritat

representation, when we corstr

as it is done during generation

of Elements), we have to keep t

spaces are rectangles always. S

a convention on how to

representation. In our examp

add our chair-physical-unit

corresponds to the generation o

get an L shaped room. Wha

* free' corner, i.e. SouttEast o

space, and subdivide the room I

urations.

e, however, Instead

and sides as nodes,

des as links. Having th

stics such as shape

nd having at each link

spaces.

ions to Teague*s ele

uct this graph seauenti

of layouts (at Permuta

rac

0,

0

le

(th

f I

t

f c

nto

of

we

en a

ard

the

gart

ally

ticn

k that all the resulting

as he does, we establish

btain this *squarec"

we can see how when we

is layout by the way

ayout 1 In branch 28) we

we do then is extend the

hair, to the end of our

*room' and *room1*.

The same happens with chair-use-space and we get

roomi" *room2* and *room*

When we put the bed-p.u. then we just reduce
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'roomi' and "room2*, which d sappear with the position of

CHAIRJ "IR.UsKO

KD.PUi

c"IAR.F OHAJR.L6 DESK. LU4 D~s

'ED."U

PU

the bed-use-space.

The network In the right side of our figures

should serve to Illustrate that there is always a spanning

tree at each level which allow us to move from one element

to another.

PL Uq!PK
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get the final layout which is a basic furniture

COAIR. CMAIRiG CM . A DEgK.

CMAiR. J CMAI.A SK AO DESI

ED.Pu CLOS U CLOS

EDAIS CM

PU

PU

V

lu

var Iant.

As a layer in our ROB there is a set or outines

that keep track of this NETWORK control. They chec where

corners of spaces fall, what is the containment or

overlapping of other spaces, and ffahe the necessary

adlustments in our representation as shown before

4.3. Query Language:

Through this module, I shoLld say, pretentiously

called, QUERY LANGUAGE, simple aueries can be constructed



47f A0,9
7%Ar

4 Q/Af
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60w~evgy

out of combinations of basic set operations such ast

MEMBERSHIP, INTERSECTION and UNTON, to retrieve or form

new information in the R01. Together with VALNAM in our
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previous routines, they constitute a reduced version of a

relational calculus, which we can use to exDress,

similarly to our previous rules, tbe following queries in

the SARCASM syntax:

('CII ('/ 45=,Q47 AA'AA'C7-46M~C )

where (Is relationname entityl enti y2) look for members

I and 2 of the relation Pair under the relation

"relationname", and OR is the same logical connective

that we have used before. This query would be answered

TRUE after we positioned the fourth element in our layout

1 or branch 28.

(W4P4DAA (6/uAe A4,op|awr.-7o,W awO

e lements

elements

of the

adjacent

A different example, will get the value

to the left of the bed, the value of

by the watl2 and will find the set Inter

two, to produce a list of elements each

to the left of the bed and by the wall2.

Will return the elements that satisfy any

of

all

sec

of

al

tte

tion

them

of the
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~bp' i1 ~ z))

two relations, *adjacency' or 'by", performing a set

uni on.

o~e4ne~'M

The routines ttat do this work are:

4.4. Search:

Search is a recursive, backtracking proceduce

-ae'
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which carries on the enumeration process defined before.

Its parts correspond to each of the 9 operations we

explained in there, coordinated by a general procedure.

This procedure exolores the tree of

possibilities in our solution space by applying the

following principles:

- starting at the root, it looks first for one

valid alternative among the successor nodes, whether In

the binary-counter or the permutatior of elements.

- If It finds one acceptable alternative, It

advances then one level down in the tree, and applies the

respective operator, an assignment of TRUE-FALSE

values, or the positioning of a furniture piece.

- after advancing one level, it checks if we

have a solution or not, If we do, It backtracks to the

previous level and tries to find a next successor. If It

doesn*t find a solutior it starts again, looking for the

successors at the next level down.

-when there are no valid successors to extend a

possible solution, it backtracks to a previous level

and starts to look for other nodes In different branches.

- when we have a solution, and only one is

demanded, it succeeds In its search and ends the process;
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when all are asked it continues lookin for valid

successors, advancing, backtracking and recording all tte

other solutions until there are no more branches left to

explore.

Its general parts are thent

and the operations of enumeration correspond
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implicit in a functional standard. We can start

then with the four parts of our definition
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that It might be true.

We have however

explorations. If we assign

or relations, we can obtain

"desirable* configuration

arrangements. If we assigr c
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Theory of Spatial Configurations and our reasoning In

manipulating themmight not be clear now but certainly

worth to continue explor1rg.

If . .
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