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Abstract
The use of grid shell structures in architecture and structural engineering has risen in
the past decade, yet fundamental research on the mechanics of such structures is lacking.
Grid shells are long span structures comprised of a lattice of single layer members forming
a curved surface. Grid shells can be made of a wide range of materials from steel to wood.
They have potential to be used in readapting existing spaces or in new aesthetically
pleasing structures. By studying their mechanics, engineers can be more effective at the
schematic phase of design so that the potential of grid shells can be maximized.

This research conducts a parametric study that varies the topology and topogra-
phy of grid shells. The parametric space is framed around real-world design constraints
including the grid spacing, panel shape, span-to-height ratio and the use of double
curvature.

In this thesis, the buckling capacity is evaluated using finite element analysis for
two typical grid shell geometries: the spherical cap and the corrugated vault. First,
a spherical cap is considered for which an analytical solution exists and therefore the
accuracy of the numerical procedure is validated. Simple closed-form solutions are derived
using the concept of the equivalent continuum and compared to the numerical models.
Then, the parametric study of the spherical cap is performed including variations of the
grid spacing, the span to height ratio and the panel shape (triangles and quadrilaterals).

Having determined the efficiency of the computational tool the study is extended
to the barrel vault. Here the new features of the analysis are the use of double curvature
by introducing corrugation along the edge and the crown. By understanding the
fundamental mechanical behavior of grid shells, design guidelines aimed to maximize
their capacity and efficiency and intended to facilitate the discussion between architect
and engineer are proposed.
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Chapter 1

Introduction

The objective of this work is to evaluate the mechanical performance of grid shells and to

provide design guidelines to facilitate the discussion between the architect and the engineer

during schematic design. A parametric study is conducted by varying the topology and

topography and calculating the change in the load-bearing capacity using both numerical

and analytical methods. The parameters are studied using two key grid shell geometries:

the spherical cap and the barrel vault.

1.1 Motivation

In the year 2000 the Great Court grid shell at the British Museum (Figure 1.1) opened

and quickly became one of the most photographed, and visited public spaces in London.

While it was not the first grid shell, its popularity and success propelled grid shells into

both the public and the professional architectural and engineering conscience. Since then

there has been a rise in the number of grid shells built. Table 1.1 lists grid shells that

have built since the year 1975.

1.1.1 Definition of Grid Shell

The term grid shell is defined more recently as "a structure with the shape and strength

of a double curvature shell, but made of a grid instead of a solid surface. These structures

can cross large spans with very few material. They can be made of any kind of material -

steel, aluminum, wood or even cardboard tubes" (Douthe et al., 2006). The terms "lattice

shell" and "reticulated shell" have also been used to describe grid shells but more by the

14



1.1. Motivation

Figure 1.1 - The Great Court grid shell at the British Museum.

academic community and not practicing engineers. There is a debate if a grid shell is

defined by its structural action, or by its construction process. For example, grid shells

made from wood are formed by laying the lattice flat and then either pushing or dropping

the shell into place as was done in the Mannheim Multihalle (Happold and Liddell, 1975),

and the Weald and Downland Museum (Wells, 2001), respectively. For this thesis, a grid

shell is defined to be a long span structure comprised of a network of members creating

the single layer "grid" that forms the curved surface "shell".

1.1.2 Advantages of Grid Shells

Grid shells are an efficient means of spanning space. They have been used to cover both

existing spaces such as the Cabot Circus (Figure 1.2a) and new spaces like the Savill

Garden Visitor Center (Figure 1.2b). They have been used as stand-alone structures as

seen in the Weald and Downland Museum (Figure 1.2c).

The benefits of using a grid shell compared to either the conventional slab and frame

system or the continuous shell are both aesthetical and structural. Grid shells create

dramatic spaces by pulling the eye to heights higher than the building top, and by articu-

lating the space with its discretized topology. They create beautiful spaces because they

15



Chapter 1. Introduction

Table 1.1 - Some grid shells built in the past 30 years.

Structure Location

Mannheim Multihalle
Museum for Hamburg History
Swimming Arena Neckarsulm
Meeting Hall Flemish Council
Zoo Berlin Hippo House
DZ-Bank
Great Court
Japan Pavilion Hanover Expo
Porticullis House
Weald and Downland Museum
German Historical Museum
Fiera Milano
Berlin Main Train Station
Kogod Courtyard
Savill Gardens
Odeon Courtyard
Golden Terraces
Cabot Circus Roof
Palacio de Comunicaciones
Centre Pompidou-Metz
National Maritime Museum

Mannheim, Germany
Hamburg, Germany
Neckarsulm, Germany
Brussels, Belgium
Berlin, Germany
Berlin, Germany
London, United Kingdom
Hanover, Germany
London, United Kingdom
West Sussex, United Kingdom
Berlin, Germany
Milan, Italy
Berlin, Germany
Washington DC, USA
Egham, UK
Munich, Germany
Warsaw, Poland
Bristol, United Kingdom
Madrid, Spain
Metz, France
Amsterdam, Netherlands
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Year

1975
1989
1989
1994
1996
1998
2000
2000
2001
2002
2002
2005
2006
2007
2007
2007
2007
2008
2009
2011
2011
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(a) Cabot Circus (b) Savill Gardens

(c) Weald and Downland Museum (d) Japan Pavilion

Figure 1.2 - Examples of grid shells.

are light and airy due to their efficient use of material, single layer members, and open-

ings. Their fairly simple construction of members and nodes create shell-like structures

without the arduous process of form work and pouring.

Grid shells also differ from conventional frame systems and continuous shells in that

they can create more sustainable design by lowering embodied energy and by reducing

operating energy. In 2008, the UK adopted the Climate Change Act which calls for an

80% reduction in C02 emission by 2050 (Parliament, 2008). Further, all new public

buildings are to have zero carbon emissions by 2018. However, 60% of existing buildings

in the UK will exist in 2050 and they will represent 45% of the total floor space (Delay

et al., 2009). Thus effort to reduced carbon emissions is by both the refurbishments of

existing buildings and the design of new ones. Further, lighting, heating and ventilation

were found to be the predominant consumers of energy in UK buildings.
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Grid shells facilitate sustainable development in three major ways. (i) They enable

adaptive reuse of historic buildings, allowing open spaces to become enclosed, offering

shelter, commercial, or recreational possibilities. (ii) They save structural material needs

by over 50% compared to conventional framed structures and can be constructed of a

variety of materials with lower embodied energy such as wood or cardboard tubes (Ref,
2007). (iii) They also admit greater natural light, harnessing the natural elements to

create heating and cooling environments that are comfortable (Pople, 2002a).

Grid shells also have an unexplored potential for use as temporary buildings. For ex-

ample they can be used at the Olympics, fulfilling the need for temporary large structures.

Grid shells can also be used for disaster relief situations or for exhibition spaces.

Examples of grid shells that demonstrate their vast range of material, shape and

function are the Great Court in London (Figure 1.1), the Weald and Downland in West

Sussex (Figure 1.2c), and the Japanese Pavilion from the Hanover Exposition (Figure

1.2d). Their range of material include steel, wood and cardboard and Table 1.2 lists the

range of panel shape, footprint, function and cladding seen in grid shells.

Table 1.2 - Examples showing the range of the size and materials of grid shells.

[The Great Court Weald and Downland Japan Pavilion

member material steel wood cardboard
panel shape triangle triangle quadrilateral
panel material glass wood & glazing paper membrane
shell footprint 320ft x 230ft 164ft x 50ft 236ft x 114ft
function roof building temporary structure

1.1.3 Unresolved Questions

Grid shells are highly complex structures as are their mechanics. For example, there is

no clear understanding if a quadrilateral grid is better than a triangular. Figure 1.3 are

magnified views of the National Portrait Gallery and the Great Court grid shells. In

the National Portrait Gallery the members become increasingly larger as they approach

the support. Whereas in the Great Court, the members are slender and not noticeably

varying in size. Are grid shells bending or membrane dominated and what is the trade-off

between using the quadrilateral grid versus the triangular?
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Figure 1.3 - Quadrilateral grid at the National Portrait Gallery (left); triangular grid at the
Great Court (right).

The effect of topology is also dependent on the spacing. The benefit of shell structures

is the additional stiffness due to curvature. Figure 1.4 juxtaposes the aerial view of the

National Portrait Gallery on the left and the Mannheim Multihalle on the right. For the

coarse grid on the left, the surface is more faceted, whereas on the right, the denser grid

is a smoother surface. Thus, how dense must the grid be to exhibit geometric stiffness?

And how does grid spacing affect the capacity?

Because geometric stiffness results from curvature, how does the span-to-height ratio

affect the load bearing capacity? In Figure 1.5 the shallower shell at the Odeon in Munich

is compared to the steeper shell on the right at the Museum of Hamburg History. So which

structure is stronger? How does the span-to-height ratio affect the load bearing capacity

and the weight required?
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Figure 1.4 - Coarse grid at the National Portrait Gallery (left); dense grid at the Mannheim

Multihalle (right).

Figure 1.5 - Shallow shell at the Odeon in Munich (left); steeper shell at the Museum for

Hamburg History (right).

In addition to considering the curvature along the cross section, curvature can also be

introduced along the length. In Figure 1.6, the Japan Pavilion on the left has corrugation

at the crown and the edge, but at the National Portrait Gallery the corrugation is only

at the crown and flattens at the perimeter. Where is the best location for corrugation to

maximize the vault strength and how much corrugation is needed?
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1.2. Problem Statement

Figure 1.6 - The Japan Pavilion (left); the National Portrait Gallery (right).

1.2 Problem Statement

1.2.1 Current Design of Grid Shells

Grid shells have been designed on a case by case basis and have not been studied as a

structural type. In the schematic phase of design, the key players are the architect and the
client where they start the design from the architect's sketch; here the global geometry
is defined purely on the aesthetics. Figure 1.7 illustrates the progression of design from
schematic design (SD) to design development (DD). Currently, the engineers come in
the design development phase to refine the details of the previously selected shape. The
engineer at this stage has no power to make any major changes to a proposed structure.

It is therefore imperative that the questions regarding the main aspects of grid shell
geometry posed in the previous section be addressed during early design stages. In order

to do that there is a need to build an intuition and to develop simple expressions that
can allow engineers to do back of the envelope calculations. Thus, the improved design
process of grid shells will include the engineers as a key player in SD and the use of "back
of the envelope" calculations in SD.

1.2.2 Thesis Goals

There is a need to evaluate the mechanical performance of grid shells during schematic

design and to provide design guidelines to facilitate discussion between architect and

21



Chapter 1. Introduction

FE structural analysis

Figure 1.7 - The current design process of grid shells (two figures reproduced from (Harris

et al., 2008)).

engineer (Figure 1.8). Therefore the goals of this dissertation are:

" to develop a methodology to calculate the change in load-bearing capacity of grid

shells due to their curvature and topology using numerical and analytical methods;

* to provide a set of design guidelines that can contribute to maximize the mechanical

performance of grid shells during early design stages.

The thesis goals can be summarized into the following three questions.

1. How do the curvature and topology affect the load-bearing capacity of grid shells?

2. How to best describe the mechanics of these structures?

3. What are the design rules of thumb to maximize grid shell performance?

1.2.3 Approach

The approach used in this thesis is to conduct a parametric study varying the topology

and topography and to calculate the change in load-bearing capacity using numerical

and analytical methods. Normally intuition is built from theory, experiments and case
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Schematic Design
Design Development:

This dissertation Previous research

Mechanics Design
Guidelines

Figure 1.8 - Proposed contributions of this dissertation to the design process of grid shells.

studies. Because these structures are complex and few have been built, identifying the

structural trends must rely on computational models. A parametric study is conducted on

two structural shapes: the spherical cap and the barrel vault. The parameters perturbed

are identified in the following Chapter as those that often drive the design process and

affect both the engineering and the aesthetics of the grid shell.

1.3 Outline of Chapters

In Chapter 2 published research on grid shells from the communities of structural design

and structural mechanics is presented. The literature review provides the context of this

dissertation and establishes the need for this original research. It also identifies the design

parameters and constraints that have the most impact on the global shape and topology

that will be used in the following chapters.

In Chapter 3, the methodology for achieving the thesis goals is presented. All com-

putational methods and modeling assumptions are also explained and verified using the

commercial finite element package ADINA (Engineering, 2010).

The first of the parametric studies, the spherical cap grid shell, is presented in Chapter

4. Both analytical and numerical methods are used to determine the load-bearing capacity

of the spherical cap grid shell. New equivalent continuum techniques are derived and

compared. The coupling of the numerical and analytical work provides an understanding
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of the mechanics of the structures. Simple analytical methods to estimate the capacity of

a grid shell are also derived and presented.

In Chapter 5 the parametric study is extended to a barrel vault. The role of curvature

on the load-bearing capacity is investigated by corrugating the vault. In both studies a

continuous shell is first modeled so to validate the methods used. Chapter 6 concludes

with the original contributions of this dissertation.
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Chapter 2

Literature Review

2.1 Introduction

The objectives of this chapter are to present the key contributions of previous research

done on grid shells and to provide the context for the contributions herein. There are

two communities that directly and indirectly work on grid shells: the structural design

community and the structural mechanics community. The structural design community

consists of practicing engineers and consultants who provide firsthand experience of the

design process of existing grid shells. The structural mechanics community are academics

who focus more on the nonlinear analysis techniques of shells like imperfection sensitivity.

First the work of the structural design community will be presented, followed by the

mechanics community and conclude with a summary of the remaining open problems

that this dissertation solves.

2.2 Structural Design

The structural design community provides both the overview of the design process and the

detailed analysis of existing grid shells. The publications on the overall design process are

authored by the structural engineers of the grid shells and describe specifically the design

constraints, challenges and solutions. The more detailed papers on the mathematical

progression of the grid geometry are then provided by the consultants who are tasked

with writing the specific codes that map out the grid.
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2.2.1 Design Constraints

Based on the literature on built grid shells, there are three main design constraints that

govern their global shape and topology: the shell height, the grid spacing, and the panel

shape. In both the design of the Great Court and the Dutch Maritime Museum, the

height of the shell was governed by the constraint that the shell was not to be seen from

the ground (Figure 2.1a) (Anderson, 2000; Adriaenssens et al., 2010). The Great Court's

shell height was further constrained because it could not be taller than the dome of the

Reading Room and obstruct the view of the dome in the London skyline (Figure 2.1b).

The second and third constraints are the panel shape and subsequently its size. The

topology of grid shells has differed from quadrilaterals to triangles to irregularly shaped

polygons. In the case of the Great Court, the selection of the triangular grid came from

the constraint that the glazing must produce a smooth flat surface (Williams, 2001).

Whereas for the Kogod Courtyard grid shell at the National Portrait Gallery, the use

of the quadrilateral grid and double curvature created a jagged external surface (Figure

2.2). In one built grid shell, the Neckarsulm Swimming Arena, the cladding was made

of curved quadrilateral glazing so to make the surface smooth (Figure 2.3) (Schlaich and

Schober, 1996).

In some cases the panel size has been determined by the panel shape and in other cases

by the required strength of the grid shell. For the Great Court, the average triangular

panel is seven feet because the glass triangular panels could not be manufactured at a

(a) Entrance (b) Skyline view

Figure 2.1 - The British Museum.
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Figure 2.2 External view of the Kogod Courtyard grid shell at the National Portrait Gallery.

Figure 2.3 - External view of the Neckarsulm Swimming Arena.
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larger size (Anderson, 2000). In the case of the Weald and Downland grid shell, the grid
spacing was first varied from 0.5m to 1m. However, the im spacing could not provide
the required buckling resistance so the design was reverted back to 0.5m spacing (Harris
et al., 2003).

The shell height, panel size and shape are the design constraints identified here that
impact the aesthetics and engineering of the structure. There are other design constraints

that are also described in these papers but are not within the scope of this thesis.

For example, another constraint is that the grid shell cannot impose any loads on

the existing structures they touch (Adriaenssens et al., 2010; Hart, 2001). All the forces

must be transferred to vertically supporting members. In the Dutch Maritime Museum

all the loads are transferred to the courtyard corners (Keuning, 2011) and in the National

Portrait Gallery the grid shell rests on a series of visible columns (Ouroussoff, 2007). The

restriction to not impose loads on the existing building is also described in the design

of the Portcullis House (Thornton, 2000) and the Norwich Union buildings (Stansfield,
2007).

2.2.2 Design Analysis

Grid shells are currently designed on a case by case basis. Computer codes are specifically

written to define the geometry of each grid shell and to perform the structural analysis.

The main method employed for mapping a grid to a surface is dynamic relaxation (Day,
1965). This method modifies the shape by monitoring the kinetic energy as the model is

forced to move.

As mentioned earlier, the starting point from which the engineer is involved is after

the global shape and topology have been established. For example, in the Great Court

(Williams, 2001) the process of generating the final geometry began from the input of a

triangular grid shell with the maximum shell height being reached between the perimeter

and the Reading Room dome. A similar process was done on both the Savill Gardens

and the Weald and Downland Museum (Harris et al., 2008, 2003). After Dr. Williams

performed the initial form-finding analysis on the initial geometry, the edited shape was

imported into a structural analysis program for the buckling analysis.

Because the global shape is established before the engineer is involved with the design,
the structural design community has also looked at other ways to map the grid onto a

surface by using also dynamic explicit finite element simulations (Bouhaya et al., 2010)
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or by applying fractal geometry (Vyzantiadou et al., 2007).

The geometry and structural analysis of grid shells is tedious and complex and not

every design option can be investigated. Over 3000 lines of code were written specifically

for the Great Court's geometry definition and structural analysis, and it took over 5000

cycles for the model to converge (Williams, 2001). There is a need for more simplified

tools that can inform the engineer and architect during the Schematic Design phase.

2.3 Structural Mechanics

In the structural mechanics community it is well established that buckling is the dominant

failure mode for reticulated shells (Gioncu, 1985). Research on grid shells has subsequently

focused mainly on the factors influencing the buckling load like coupled instabilities, the

rigidity of joints (Lpez et al., 2007), and the effect of imperfections (Balut and Gioncu,

2000; Buchert, 1965; Calladine, 1995; Hanaor, 1995; Singer and Abramovich, 1995; Sumec

and Sumec, 1990). A more detailed overview of the state of the art on reticulated shells

has been presented (Gioncu, 1995).

2.3.1 Numerical Methods

For example, one paper studied the effects of imperfection on the stability of barrel vaults

and domes (Bulenda and Knippers, 2001). The first challenge was to define the imperfect

shape. Both the static deflected shape and the first buckling mode were considered with

various magnitudes. The varied parameters were the span-to-height ratio, the boundary

conditions from hinged to fixed and the loading from symmetric to asymmetric.

While the span-to-height ratio was varied, the range only considered steep shells. As

shown earlier in the many roof examples of grid shells, the shells are shallow. They also

did not consider the effect of other design parameters mentioned in Section 2.2.1. In

addition, they studied the effects on basic barrel vaults when in reality grid shells are

built as corrugated vaults. In fact, until this dissertation, there has not been research on

the mechanics of corrugated vault grid shells though that is what is actually built.

The main contributions of the structural mechanics community are most useful in the

Design Development phase of grid shells when the nonlinear structural analysis needs to

be completed. The numerical studies did not investigate the effects of the parameters

(shell height, panel size and shape) most influential in the design process. There has yet
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to be an extensive parametric study that considers those parameters and also chooses

realistic ranges of their values. Lastly, the majority of the research is of a numerical

nature and does not provide an analytical explanation into the behavior of grid shells.

2.3.2 Analytical Methods

In Chapter 3, the analytical derivation will employ the equivalent continuum technique.

The concept of equivalent thickness has been around since the 60's (Wright, 1965; Forman

and Hutchinson, 1970). Previous shell mechanics research focused on assessing the buck-

ling capacity of grid shells using an equivalent continuum idea and discrete methods. But
the validation and exploration of those methods were limited to the technology of their

time. The researchers also did not compare multiple equivalent continuum definitions.

First the concept of equivalent thickness is illustrated with a simple example. Given
a volume of material V, the volume can be "smeared" into the shape of a spherical cap

as either a thin continuous shell or into a network of bars shown in Figure 2.4.

For example, in a grid shell with a quadrilateral topology the repeating unit is a

cruciform as shown in Figure 2.4. The cross sectional area A =tt 2 is kept constant and

the network of bars is equally spaced in both directions at a value of s. The equivalent

thickness for a continuous shell and a grid shell to have the same volume is derived
in Equation 2.1. The volumes are approximately equal because there are two negligible

sources of error: the partial cruciform units at the perimeter are neglected and the volume
where the members intersect is counted twice.

Volumecontinuou Volumegridshell

teq 82 stlt2
2t 1t2

teq ~ t (2.1)
S

The previous example considers an equivalence defined by volume only. However, other

equivalences have been and can be established. The three previously researched meth-

ods for equivalence include equivalent stiffness, equivalent split rigidity, and orthotropic

equivalence (Gioncu, 1995).

One method of equivalence is defined by an equivalent depth and an equivalent Young's

Modulus (Wright, 1965; Chriss and Wright, 1978). Two cases of a spherical shell, dis-

cretized with equilateral triangles are considered: one where the members have the same
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t
S S

Figure 2.4 - Equivalent continuum example defined by an equivalent volume.

cross-section and another where the cross-sections are different. The methodology in-

cludes developing a relationship between the shell and bar forces, the elastic properties

and the buckling criteria. After establishing an equivalent thickness, the buckling load

is calculated. The proposed method was then compared to the known existing collapse

loads of domes such as the Bucharest dome (Wright, 1965).

Another equivalence definition used two different thicknesses for each of the rigidities

(axial and bending) (Forman and Hutchinson, 1970). The authors tested their method on

a spherical cap with an equilateral triangular grid. The equivalent continuum results were

compared to that of a discrete model and it was found that the accuracy had a 3-6% error

depending on the slenderness of the members. For more slender members the equivalent

continuum became more inaccurate. The authors called for a need of further theoretical

and experimental comparisons.

Lastly, equivalence has been defined using orthotropic equivalence (Kollar and Du-

lacska, 1984). Here the shell buckling equation is derived for an orthotropic continuum

where the orthotropic property mimics the placement of ribs in the x and y direction.

While this method was proposed it was not validated on any case studies.

Table 2.1 summarizes the methods and their respective researchers. In all the works

mentioned only one technique in each case was considered; the researchers did not compare

their methods with each other nor tested their methods with different topologies or as a

function of either the grid spacing or the shell height as is done in this dissertation.

31



Chapter 2. Literature Review

Table 2.1 - Summary of previous research on the equivalent continuum.

Method Approach Authors ] Time Frame

Equivalent uses an equivalent depth (Wright, 1965; Sumec 1970-1990

Stiffness and modulus of elastic- and Sumec, 1990)

ity

Split Rigidity defines two thicknesses (Buchert, 1965; Forman 1970

defined by extensional and Hutchinson, 1970)

and flexural deforma-

tions

Orthotropic derives the differential (Gioncu, 1985; Kollar 1975-1985
equations and rigidities and Dulacska, 1984)

2.4 Summary

This chapter has provided the context of this dissertation by identifying the previous re-

search done on grid shells from two communities: the structural design and the structural

mechanics communities. This chapter reviewed what research been done, the topics of

interest and has highlighted the areas in which contributions need to be made. This litera-

ture review allows the following conclusions to be drawn, and motivates the corresponding

contributions of this dissertation:

" The main design constraints that govern the global shape of the grid shell are the

shell height, the panel size and the panel shape.

" Having established buckling as the main failure mode, research within the struc-

tural mechanics community focuses on nonlinear effects like imperfections. The

implications of these effects is used in the Design Development phase when the final

structural analysis is performed and not in the Schematic Design.

" While academic research on grid shells has considered the effect of some parameters

on the stability of the structure, the parameters are not framed within the real

design constraints nor described in a language useful for practicing architects and

engineers. An extensive parametric study is needed to study the effect of real
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design parameters on the load-bearing capacity of grid shells and to help build the

engineer's intuition on the mechanical behavior of grid shells.

* The analysis of built grid shells is complicated and requires computer codes written

specifically to the geometry of the shell. Simpler analytical methods are needed for

back of the envelope calculations used by practicing structural engineers.
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Chapter 3

Methodology

The methodology used to answer the research questions posed in Chapter 1 and stated

again below will be presented in this chapter.

1. How do the curvature and topology affect the load-bearing capacity of grid shells?

2. How to best describe the mechanics of these structures?

3. What are the design rules of thumb to maximize grid shell performance?

The thesis goals are to conduct a parametric study varying the topology and topography

and to calculate the change in the load-bearing capacity using numerical and analytical

methods.

3.1 Procedure for Parametric Study

In order to achieve the thesis goals, an outline of the steps required are listed below and

explained in the following subsections.

1. Identify the parameters influencing the design as defined by the real design con-

straints.

2. Define two geometries based on typical grid shell footprints.

3. Build a finite element model for each permutation for both the continuous shell and

the grid shell.
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4. Use the commercial finite element software ADINA to run a linearized buckling

analysis and post-process the results.

5. Derive new analytical expressions to calculate the buckling load and compare with

the numerical results.

3.1.1 Parameters and Test Geometries

The first step is to identify the parameters that drive the global shape in the design

process. The parameters are the grid spacing, the panel shape, the span-to-height ratio

and the use of double curvature by corrugation. All the parameters were identified and

explained in Sections 1.1.3 and 2.2.1. In Figure 3.1 the parameters and their ranges are

listed and illustrated.

The grid spacing is varied between 30in, 60in, and 120in. The two shapes considered

are the quadrilateral grid and the triangular grid. The three span-to-height ratios con-

sidered are : =6,11,20 representing fairly shallow shells. The use of double curvature is

implemented at either the edge, the crown, or simultaneously at the crown and edge.

The effect of changing the parameters is tested on two key geometries - the spherical

cap and the barrel vault and the results are presented in Chapters 4 and 5 respectively.

These geometries were selected because they are often used as grid shells (Figure 3.2).

The geometry, member properties, loading and boundary conditions of the spherical cap

and the barrel vault will be defined later in their respective chapters.

3.1.2 Numerical and Analytical Methods

The thesis goals are achieved using both numerical and analytical methods. Engineering

problems cannot always be solved with a closed-form derivation. Thus the mathematical

formulation is often solved using numerical (discrete) methods. A powerful method used

in engineering is the finite element method where engineering bodies are represented

as discrete elements that satisfy equilibrium, compatibility, and constitutive relations. In

this thesis, complex, doubly-curved structures are studied numerically using finite element

modeling (FEM).

A finite element model is built for each permutation of the parameters for both a

continuous shell and a grid shell. A continuous shell was modeled first to validate the

computational modeling techniques and to help build the understanding of the mechanics
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Parameter:

grid spacing

panel shape

span-to-height

Value:

30 in - 120in

quadrilaterals
triangles

= 20, 11, 6

double curvature

Values and illustration of the varied parameters.

Spherical Cap Barrel Vault

Figure 3.2 - Examples of the spherical cap and the corrugated barrel vault as grid shells.
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before complicating them further as grid shells (Figure 3.3).

The finite element models are generated using a program written by the author and

provided in Appendix A. The user inputs the parameter values defined earlier and the

geometry of the structure, and outputs the finite element model input file to be used in

ADINA. The linearized buckling analysis is then run and the buckling load and mode are

calculated. An example of the undeformed finite element model and the post-processed

buckled shape are shown in Figure 3.4. The linearized buckling analysis does not account

for prebuckling rotations. The linear analysis is chosen over the nonlinear analysis because

it is computationally faster and similar to the predicted collapse load as will be verified

in later sections. Lastly, new analytical expressions are derived to calculate the buckling

load and compared with numerical results.

3.2 Computational Model Verification

In order to proceed with more complicated problems, the computational modeling tech-

niques are validated by studying the failure modes of a 2D arch and the bending of a

grillage. In establishing the accuracy of the models, the following technical questions are

answered:

Spherical Cap Barrel Vault

AD

NN
A

Continuous shell

DD
N
A N

Grid shell

Figure 3.3 - Examples of the continuous shell and the grid shell finite element model for the
spherical cap and the barrel vault.
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Spherical Cap Barrel Vault

I D
N I
A N

A

Undeformed

First bucklingA

model 
p

Figure 3.4 - Examples of the inputted undeformed finite element model and the ADINA output
of the first buckling mode (magnified at a maximum factor of 4500).

* What are the failure modes of an arch and the corresponding critical loads?

* What closed form solutions exist and what are their limitations?

* How fine of a mesh is needed to accurately predict the failure load?

* Is there a difference in capacity between a circular and parabolic arch or between a

normally distributed load and a vertically distributed load?

* What are the limitations of the linear eigenvalue solution for determining the critical

buckling load?

* Can the distributed load be represented by an equivalent point load?

* For the grillage model, how should the joints be modeled?

Options for validating research questions include experimental, analytical and numer-

ical techniques. For grid shells, because they are large structures and few have been built,

full scale experimental studies were not a valid option. Where appropriate, analytical

solutions were employed and derived. However, the bulk of this research uses numeri-

cal models. Even though computational methods have advanced, it is still necessary to

validate the modeling assumptions and techniques using benchmark studies.
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3.2.1 2D Arch Study

A 2D arch is a good prototype structure on which various methods and approximations

can be tested. All the complications resulting from the interplay between bending and

membrane action are present in the arch. Therefore attention is focused first on the

analysis of the arch comparing the analytical to the numerical solution.

Consider a shallow, circular arch of radius R, height h, span L and angle a shown

in Figure 3.5. The arch is pinned-pinned supported with a uniformly distributed normal

load q. There are three competing failure modes derived by Timoshenko (Timoshenko,

1961): yielding, snap-through and buckling (Equations 3.1),where E is Young's Modulus

of Elasticity, I is the moment of inertia, A is the cross sectional area, o- is the yield stress.

o-yA
qcryielding = (3.1a)

2)2 + ()2

384EIh 4(1 - 4)3
qcrlIsnap-through 34 I + ( AR 2 

)3(3.l1b)
5L4  1 + 27 41 2  (

AR2

EI {r 2

qcrI uckling = l - 1 (3.1c)

Failure by yielding is self-explanatory and less likely to happen, whereas the other two

failure modes require further explanation and are most likely to happen. In the case of

the shallow arch, the theory assumes that the arch is inextensionl, no axial deformation

is allowed and the buckled shape has an inflection point at the center of the arch. The

failure mode of snap through is for an arch of small curvature (essentially flat). In this

case, axial strain must be considered.

In order to determine the failure mode of the arch, first the variable that governs

the transition from one failure mode to another is established. Though there are four

geometrical parameters of the arch(R,a,h,L) two are sufficient to uniquely define the

arch and in this study the span-to-height ratio A becomes the independent variable. By

plotting the failure load versus the span-to-height ratio (Figure 3.6), the dominant failure

mode in a given range of the independent variable can be found.

As A -± oc the arch becomes flat. It can be seen that the range of L/h for whichh

the dominant failure mode is buckling is L/h<135. The practical range of interest in this

dissertation is L/h<20, thus the arch fails first by buckling. While the above is a simple
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analysis of a 2D arch, the lessons learned can be expanded to the failure modes of a 3D

shell. Previous research described in Chapter 2 has also concluded that global buckling

is the governing failure mode of shells.

Strain Energy Convergence

Having established the analytical solution to the failure of an arch, next the numerical

model is discussed. In verifying the accuracy of the FEM both the strain energy and

mesh convergence are checked. The limits of Timoshenko's small angle assumption is

numerically checked by calculating the difference in the buckling load between a circular

and a parabolic arch and between a normally and vertically distributed load. The current

studies use a steel arch of a span-to-height ratio of j = 8 and a square cross-section ofh

5inx5in.

The sufficiency of the finite element mesh is evaluated by plotting the rate of conver-

gence of the strain energy to mesh refinement measured by - where 1h is the element

length. The strain energy in both the continuum and the discrete model is given in Equa-

tions 3.2 and 3.3, respectively. Typically, the finite element model exhibits monotonic

convergence where the error decreases as the mesh is refined and converges from below to
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of the pinned- Figure 3.6 - The three competing failure
modes (buckling, snap-through, yielding) of
an arch as a function of the span-to-height ra-
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3.2. Computational Model Verification

the exact strain energy.

Eh = 2j rh~hdV (3.2)

Eh = -UTKU (3.3)
2 - -

To illustrate monotonic convergence consider the strain energy plot of a simply sup-

ported beam with a distributed load Figure 3.7). As the mesh is refined (increasing on the

x-axis), the strain energy quickly converges to the reference energy Erej. The reference

energy is either calculated by the exact solution, if available, or by the FEM of a highly

refined mesh. Because the plot shows that both a coarse mesh and a fine mesh converge

to the reference strain energy, then the coarse mesh is sufficient and the computational

expense of a finer mesh can be avoided.

For monotonic convergence the strain energy for coarser meshes cannot be greater

than Eref as a consequence of the FEM being "stiffer" than the continuum. Interestingly,

in performing the convergence study for the arch, a curved structure, the opposite is

witnessed; the strain energy converges from above.

In Figure 3.8 the strain energy convergence is plotted for an arch with a normally

distributed load. The reference mesh density was 1200 elements. For curved structures, a

coarser mesh is the equivalent to having a faceted curve where depending on the density,

the additional stiffness due to curvature is not captured. The coarser mesh will displace

more than the finer and, as a result, have a higher strain energy and converge from

above. The results from the strain energy convergence study reinforce that a continuous

curve can be represented as a faceted curve as is done in real structures. But how many

faceted elements are needed to accurately exhibit the geometric stiffness resulting from

curvature? The more coarse the mesh the less the structure exhibits geometric stiffness.

Figure 3.9 plots the deformed arch for both the coarse and the fine mesh. The less stiff

structure (the coarser mesh) displaces more for the same load. This is further seen in the

force-displacement plot in Figure 3.10 where the displacement at the middle of the arch

is measured as the mesh is refined, further explaining why the strain energy in Figure 3.8

converges from above.

Collapse Analysis

The conventional approach to determine buckling failure is to perform an eigenvalue anal-

ysis. There are two limitations to this approach. One is that buckling of shallow shells
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3.2. Computational Model Verification

is preceded by a nonlinear prebuckling phase; the eigenvalue analysis disregards the non-

linearity of the prebuckling phase. Secondly, the eigenvalue analysis cannot incorporate

structural imperfections. At the same time the equilibrium approach predicts the growth

of the initial imperfection and the magnitude of the ultimate load followed by a postbuck-

ling weakening phase. The differences between the equilibrium and eigenvalue approach

are studied on the 2D arch.

The theoretical buckling solution is compared with the linearized buckling analysis as

a function of the span to height ratio ; (Figure 3.11). Though Timoshenko's derivation is

based on shallow arches (small angle approximation), the buckling loads for steep arches

are calculated as well. For steep arches Timoshenko's theory has an error of less than

10% compared to the numerical solutions.

Because a FEM is stiffer than the continuum, the numerical frequencies are greater

than the theoretical. A continuum has an infinite number of natural frequencies because

every particle can move in infinite directions; whereas a FEM has only N natural frequen-

cies corresponding to the N degrees of freedom in the mesh. While the predicted FEM

frequencies are greater than the theoretical in Figure 3.11, within the range of shallow

arches number < 20, the error is insignificant at a maximum of 3%.h -

The collapse load is next calculating using a Load-Displacement Constraint (LDC)

method to solve for the non-equilibrium path of the collapse and post-collapse responses

(Bathe, 1996). This method requires specifying the amount of geometrical imperfections.

As a common practice, the shape of imperfection used was the first buckling mode. Two

scales of the imperfect shape were considered: # = 0.05 and 1. The comparison between

the analytical, and both the linear eigenvalue and the nonlinear analysis is shown in Figure

3.12. There is a qualitative agreement between all three solutions. In particular, the linear

eigenvalue estimate is as accurate as both the analytical and the rigorous non-linear pre-

buckling analysis. It can be concluded that for practical applications the accuracy of

either the analytical or linear numerical solution is sufficient.

Small Angle Approximation

The small angle approximation of the Timoshenko closed-form solution is checked by com-

paring a circular arch to a parabolic arch and a normally distributed load to a vertically

distributed load. For shallow arches (' >6) there is little geometric difference between a

circle and a parabola as well as little difference in their buckling capacity (Figure 3.13).

This figure also compares the buckling load between the normal and vertical distributed
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load. For both the circular geometry with either a normally distributed or vertical loading

and for the parabolic geometry with either the normally distributed or vertical loading,
there is little difference.

Load Equivalence

In preparation for modeling grid shell structures, it is important to confirm that the

analytical solution that assumes a pressure load can still be used for a grid shell when the

loading becomes point loads at the joints. The calculation of an equivalent pressure is

provided in Equation 3.4 where P is the point load in kips, N is the number of nodes, and

S is the arclength in inches. In Figure 3.14, the theoretical buckling load for a uniformly

distributed load is compared to the numerical prediction where the loading is applied as

point loads at the joint. The distributed load is accurately represented with point loads

at a mesh density of 50 elements for an error of 9%.

qcr equivalent P xN (3.4)
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Figure 3.13 - Comparison of the buckling Figure 3.14 - Comparison of the theoretical
load for the circular (C) and parabolic (P) buckling load for a distributed load and the
arch with a normally (N) and vertically (V) numerical buckling load for point loading.
distributed load.

3.2.2 Grillage Study

In addition to the finite element modeling concerns investigated earlier on the 2D arch, a

grillage is also studied to clarify how to model rigid connections so to transfer moments.

Rigid ends are modeled within ADINA by identifying the location of the connection based

on- the element number, and inputting the rigid connection's length and stiffness. The

physical model and the finite element representation of a rigid joint is illustrated in Figure

3.15. The rigid end option assumes the the rigid ends will never undergo plasticity and

that the element is formulated as one single element. The rigid end lengths used in all the

models of this dissertation are equal to the thickness of the members which is a typical

length used for welded connections.

A simple bending case study is done to verify the modeling of the joints. A 1200inx1200in

steel cantilever plate with a tip load is modeled as an assemblage of beams forming a

quadrilateral grid (Figure 3.16). Two analytical models are used to calculate the de-

flection. The first assumes the grid to deflect as one cantilevered beam by making the

connections rigid (Figure 3.16a). The second assumes the assemblage becomes a wide

plate with a thickness of 0.8in defined by having an equivalent moment of inertia to the

beam model (Figure 3.16b). The beam has a point load of 1kip and a square cross section
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Physical Model Finite Element Representation

I-S node

I end length

Figure 3.15 - Finite element representation of rigid ends.

of 25in 2 . The plate has a distributed line load of 0.025k/in2 with a thickness of 0.8in.

Using the deflection of a cantilevered beam with a tip load (Equation 3.5), the analytical

deflection is calculated and compared to the numerical results for both the beam and

plate models in Table 3.1. There is good agreement which verifies that the plate/shell is

an assemblage of beams with moment connections at the joints.
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(a) Cantilevered grillage

Figure 3.16 - Grillage case study.
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3.3. Summary

Table 3.1 - Comparison of the analytical and numerical tip deflection w, using both the beam
and plate models for the grillage.

Beam Plate

Analytical [in] 381 11,460
Numerical [in] 300 11,035

3.3 Summary

This chapter outlined the methodology for calculating the change in load-bearing capacity

of grid shells due to their curvature and topology using numerical and analytical methods.

In preparation for the grid shell parametric studies a mathematical model for which an

analytical exact solution is known, the 2D arch, was first studied and compared using

numerical methods. This builds confidence and validates the methods that will be used

as the models have more complicated features introduced to them. The computational

model verification studies confirmed that:

" the geometric stiffness of an arch is accurately represented by a faceted arch with a

mesh density of the arclength.50

" a linearized buckling analysis is sufficient for predicting the collapse load.

* moment connections can be accurately modeled using rigid ends in ADINA.

In the next chapter, the computational techniques verified here will be employed in the

parametric study of a spherical cap grid shell where the effect of curvature and topology

on the load-bearing capacity will be studied and quantified.
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Chapter 4

Spherical Cap Grid Shell Study

4.1 Introduction

There is a vast body of literature touching upon the failure mode and ultimate carrying

capacity of grid shells. However there is a lack of simplified tools that would assist

in early design of such structures for maximizing their strength and/or minimizing their

weight and in facilitating the design discussion between architects and engineers. Previous

works reviewed in Chapter 2 solve only specific boundary value problems and thus fail to

contribute to the understanding of the underlying physics.

Specifically, the mechanics of lattice structures are controlled by the transition between

pure membrane response in the prebuckling domain to the combined bending/membrane

response at the point of buckling and in the post-buckling range. This chapter identifies

groups of parameters that are responsible for a given lattice structure reaching its critical

load and studies their influence using both analytical and numerical techniques. In this

connection the following global questions from Chapter 1 are revisited for spherical caps:

" How do the curvature and topology affect the load-bearing capacity of grid shells?

" How to best describe the mechanics of these structures?

* What are the design rules of thumb to maximize grid shell performance?

More specifically, here it is asked:

* What is the effect of topology, span-to-height ratio and grid spacing on the load-

bearing capacity?
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4.2. Problem Definition

* Can a closed-form solution be derived that accounts for the varied parameters?

4.2 Problem Definition

In order to understand how grid shells behave and to find a fast and simple analytical

estimation on the buckling capacity, a case study on a spherical cap grid shell is performed.

A spherical cap shape is a natural choice because it is a simple geometry from which more

complicated shapes can grow and because it has been seen in existing grid shells (as shown

earlier) such as the Swimming Arena in Neckarsulm, Germany (Holgate, 1997).

The buckling load is calculated analytically and numerically for a pinned supported

spherical cap under uniform pressure (Figure 4.1a). The members have a solid square

cross-section, are made from steel and have rigid connections at the joints. The load is

applied as vertical point loads at the joints (Figure 4.1b). The parametric case study is

framed around the parameters that influence most the architectural design (aesthetics)

and the engineering design (capacity). The analytical and numerical buckling loads are

then analyzed and compared.

h

R

L

(a) Spherical cap geometry

z

Y

S
(b) Member cross-section

Figure 4.1 - Spherical cap grid shell.
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Chapter 4. Spherical Cap Grid Shell Study

4.2.1 Parameters

The three selected parameters that frame the spherical cap study are the panel shape,
the panel spacing, and the span-to-height ratio. These parameters are selected based on

the main design constraints explained in Chapter 2. The panel shapes considered are the
quadrilateral and the triangle with a spacing of s=30, 60, 120 in. The span-to-height

ratios are =20, 11, 6. The member's square cross-sectional area is A = tixt 2 and is

kept constant in this study at 25in 2. Every permutation of the parameters, schematically

shown by the hierarchal tree of Figure 4.2, is considered, resulting in a total of 30 grid

shell models. Figure 4.3 shows more clearly all the combinations of the panel shapes and

spacing.

4.2.2 Numerical Approach

The finite element models for every permutation is created by a Matlab program written

by the author and provided in Appendix A. The grid shell models for the triangular

topology are partially built using a Matlab mesh generator code (Persson and Strang,
2004). The mesh generator uses a force-based method and Delaunay triangulation to

create an equally spaced grid. All 30 models are imported into ADINA where a linearized

buckling analysis is used to calculate the buckling load and mode.

Each member is modeled as an ADINA beam element (a 2-node Hermitian beam

Figure 4.2 - A hierarchal tree illustrating the number of models for the spherical cap study.
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Figure 4.3 - Illustration of the six combinations of the panel shape and spacing.

with 6 degrees of freedom at each node 3 translations and 3 rotations). Each member

has a mesh density of five. The joints are modeled as rigid connections as explained

in Section 3.2.2. Lastly, the perimeter members are pinned, and the loading is applied

vertically to the joints. One of the 30 models is shown in Figure 4.4, highlighting the

mesh density, boundary conditions and the loading.

In addition to the grid shell finite element models, a continuous shell is also created

in order to validate both analytical and numerical techniques. Two types of continuous

shells are defined: one employs the axisymmetric beam, and the other uses shell elements.

The models and their results will be described further in the Model Verification section.

4.2.3 Analytical Approach

One way to converge fast to an optimized solution is to make better use of existing

analytical solutions for axisymmetric shells that have uniform thickness. Therefore, the

key issue in using the analytical solution, for the purpose of establishing a practical design

tool, is a proper definition of the equivalent thickness describing the transition from

the discrete grid shell to the continuous shell. The difficulty in defining the equivalent

thickness is in understanding the interplay between the in-plane membrane response and

the out-of-plane bending response because the bending and axial stiffness include shell
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Figure 4.4 - Example of the spherical cap grid shell finite element model with L=6.

thickness raised to a different power. The issue is to decide what is more necessary to

have: sufficient cross-sectional area to withstand the membrane forces or enough moment

of inertia to withstand the bending?

Consider the spherical shallow shell with pin supports and a uniformly distributed

pressure shown earlier in Figure 4.la. The closed form solution of the buckling load by

Timoshenko, given in Equation 4.1, is obtained assuming an axisymmetric buckling mode

(Timoshenko, 1961). The radius of the spherical cap is defined by R and V is Poisson's

ratio. In the present application of this equation, teq is a thickness of an equivalent uniform

shell understood in a certain sense to be equivalent to the grid shell.

qc,= 2 (4.1)
V/3(1 -v2) R

In this research multiple definitions of the equivalent continuum are compared which

not only facilitate finding simpler approximate solutions, but also fills the knowledge

gap in understanding how these structures are behaving; specifically, their transition

from bending to membrane action. Developing this understanding helps to better design

structures in terms of weight efficiency.

In addition, the concepts reviewed in Chapter 2 and reviewed in Chapter 2 are ex-

tended here by validating various equivalent thickness methods with discrete models

(Wright, 1965; Forman and Hutchinson, 1970; Kollar and Dulacska, 1984). While one
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paper uses discrete analysis to evaluate their equivalent continuum buckling prediction,

it was limited to the tools available in 1970 (Forman and Hutchinson, 1970). The au-

thors acknowledged that their method was to be further validated by experiments. Today

computational software facilitates completing this much needed parametric study.

Furthermore, the results in this thesis are uniquely presented in a form applicable for

design. This is done by including the parameters that influence the design in the simplest

form so as to be accessible to both architects and engineers. The previous works also did

not validate the equivalent continuum technique in terms of the design parameters like

topology. It can be concluded that there is a lack of well validated methods for a rapid

estimation of the failure of grid shells needed for preliminary design.

There is no unique method to calculate the equivalent thickness based on the topology

of the grid shell, the spacing and the member cross-section. Figure 4.5 highlights the

geometry of the repeating grid shell unit for a quadrilateral and triangular topology.

Equivalent thickness could be determined on the bases of (i) area equivalence, (ii) moment

of inertia equivalence, (iii) volume equivalence or (iv) a combination of area and moment

of inertia. The area, moment of inertia and volume equivalence are self-explanatory. In

the case of the concept of area and moment of inertia, the Timoshenko solution is valid;

however, the derivation of the final expression is more complicated. It requires rederiving

the spherical cap buckling load while keeping the thickness due to the axial rigidity and to

the bending rigidity separate. The derivation is provided in Appendix B. The summary

of the equivalence thicknesses derived in this dissertation using the above four methods

is listed in Table 4.1. Note similar expressions can be derived for different cross-section

geometries.

Figure 4.5 - The quadrilateral and triangular topology and their repeating units (the cruciform
and the hexagon).
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Table 4.1 - The equivalent thickness (teq) relations for the quadrilateral and the triangle using
the four equivalent definitions.

Definition of Equivalence Quadrilateral Topology JTriangular Topology

Area (Acq) St

Moment of Inertia (Ieq) (iq

Area & Moment of Inertia (Aeq + Ieq) t ti t S

Volume (Vq) 2tit2 stit2

4.3 Results

4.3.1 Model Verification

Before proceeding with the grid shell FEM, the computational model and the range of

analytical validity is verified first by modeling a continuous shell. The analytical model is

Timoshenko's buckling equation for a shallow spherical cap (Equation 4.1). Two numerical

models are considered: one using axisymmetric isobeam elements for < 20, and the

other using shell elements for only = 20. The latter model was used primarily to check

the load equivalence method described in Section 3.2.1. Both models have a thickness

t = 3in.

For the range of shallowness established in Chapter 3 ( < 20), the numerical results

have a maximum of 2% error at = 15 (Figure 4.6). In Chapter 3, the sources of

error between the finite element solution and the analytical were already discussed. Here,

another source of error is that the first buckling mode is assumed to be axisymmetric

in the analytical solution; however, the axisymmetric shell element predicts a symmetric

buckling mode. Because the corresponding buckling load is only 0.3% error from the

analytical this error is negligible. In the model that uses shell elements the first buckling

mode is axisymmetric and has with a 0.3% error for the buckling load.

In Section 3.2.1 the load equivalence method is checked where the buckling load is

calculated by applying point loads instead of a distributed. Here, that study is repeated

for the spherical cap. In Figure 4.7, the buckling load for the continuous shell using

distributed loading and point loading is compared. For an inverse element length of 0.025

the point load predicts the theoretical buckling load with a 5% error.
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Figure 4.6 Comparison of the numerical Figure 4.7 - Error in the numerical buck-

and the theoretical buckling load of a contin- ling load to the analytical when the loading is

uous spherical cap using axisymmetric shell applied as a point load and a pressure load.

elements.

4.3.2 Collapse Analysis

As explained in Section 3.2.1 the linearized buckling analysis does not account for prebuck-

ling rotations. In this section the critical load is calculated using the nonlinear collapse

analysis and is compared to the linearized buckling analysis for a spherical cap of L = 20.

The concern is if the linearized buckling load prediction overestimates the collapse or if

the grid shell's collapse load is negligible because the deformed shape gains more stiffness.

In this study the collapse analysis is induced by an imperfection in the z-direction at

the center equal to 0.lin or 6i = j. In Figure 4.8, the pressure versus displacement curve is

plotted. The collapse load is 15% less than the predicted linearized buckling load. Because

the error can vary as seen in Section 3.2.1, a linearized buckling analysis is still used in

this case study because it is computationally faster to both set up and run. Also by doing

a collapse analysis other complications arise, for example like what and where should the

imperfection be and how large? Previous research has looked at imperfection sensitivity

for shell buckling analysis (Singer and Abramovich, 1995; Calladine, 1995; Blachut and

Galletly, 1995; Bernard et al., 1999). After using the trends concluded in this thesis to

guide the schematic design of a grid shell, the research on imperfection studies can be

used in the robust analysis needed for the final design.
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Figure 4.8 - Comparison of the collapse load to the linearized buckling load for a spherical cap
of ;= 20.
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4.3.3 Numerical Results

Recall that the objective is to study the change in buckling capacity as a function of the

shell height, the panel shape and spacing and the shell height. As an example of the FEM

output of the mode shape, the buckling mode for both the quadrilateral and triangular

grid shell are shown in Figure 4.10.

The change in the buckling load for both the quadrilateral and the triangular grids is

plotted as a function of the grid spacing in Figure 4.9. The three span-to-height ratios

heights are distinguished by their markers. For both the quadrilateral and triangular

grids, as the spacing increases the capacity decreases and all the models converge to the

same capacity regardless of their height.

As expected, the steeper the shell the higher the capacity because the buckling load

is proportional to y. The triangular grid is stronger than the quadrilateral especially as

the shell gets steeper. However to properly account for the trade-off between the triangle

and the quadrilateral, the volume of material is accounted for next.

A metric of performance is defined as the structural efficiency 7 to measure how much

a structure can carry of its own weight q,,(force per unit area) (Equation 4.2). In Figure

4.11 the structural efficiency of each structure is plotted. Note that for all models the

structural efficiency is always greater than one; the grid shell spherical cap can always
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Figure 4.9 - The buckling capacity of the spherical cap as a function of the grid spacing for
the quadrilateral grid (left) and the triangular grid (right).

Figure 4.10 - First buckling mode of spherical cap with = 20 and a spacing of s = 30in:h

quadrilateral topology (left), and triangular topology (right) (magnified by a factor of 5000).
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carry more than its weight.

r7- (4.2)
qsw

Figure 4.11 also shows that for shallow caps a quadrilateral grid is as efficient as the
triangle. However, as the shell becomes steeper, the triangle grid is up to two times more

efficient than the quadrilateral. The plot indicates that different design configurations

can have the same structural efficiency. For example, for the structure to carry 50 times

its own weight, there are four different grid shell geometries. Two options include either a

shallow, quadrilateral, dense grid or a steep, triangular, coarse grid. Therefore a designer
can consider more options when trying to achieve an efficient shell structure.

Quadrilateral Topology Triangular Topology
40 400

-+L/h=20
3 350 -e-L/h=11

c: 3 30 1-4-L/h=6
5 300 '- 300

2. 25

u2 w20

10 150

100 100

so 5 100 50 100
grid spacing, s [in] grid spacing, s [in]

Figure 4.11 - Structural efficiency of the spherical cap grid shell (Equation 4.2).

4.3.4 Analytical Results

The analytical solution using Equation 4.1 for a quadrilateral grid of = 20 is plotted

in Figure 4.12. The four lines represent each of the four different equivalent thickness

definitions (area, moment of inertia, area and moment of inertia, volume) in Table 4.1.

The buckling load calculated from the four equivalent continuum methods are compared

as a function of the grid spacing s.

The figure shows that the upper and lower bound of the buckling load correspond to

the equivalent moment of inertia approach and the equivalent area approach, respectively.
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It is expected for the extremes to indicate whether a structure is bending dominated or

membrane dominated. In between the bounds are the volume equivalent and the area and

bending equivalence. As shown more clearly in the figure, the area and bending equivalent

is not the average of the area equivalence and the bending equivalence.

4.3.5 Numerical and Analytical Results

Figure 4.13 plots both the numerical and analytical solutions for all three : ratios and forh

the two topologies. The matrix of plots is organized from left to right by decreasing span-

to-height ratio, and from top to bottom as the quadrilateral and the triangular topology.

As explained earlier, the analytical solution for the area and for the moment of inertia

equivalence will always give, respectively, the lower and upper bound solution. Here all

the numerical results fall within those bounds. Placing the results within the context

of those bounds, the shallow shells are seen to be more membrane dominated while the

steeper shells are more bending dominated. This is clearly seen on the figure where the

numerical solution is closer to either the moment of inertia or area equivalence depending

on the height.

The plots also show that for quadrilaterals the equivalent volume is best and for

Quadrilateral, Lh=20
0.07

eq
0.06 ....... A +1Ieq eq

S0.05

S0.04
o n s
-' 0.03

0.02

0.01

C
0 50 100

grid spacing, s [in]

Figure 4.12 - Comparison of the buckling load (Equation 4.1) for the four equivalent continuum
definitions for a quadrilateral grid with L =20.
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Chapter 4. Spherical Cap Grid Shell Study

triangles the best approach goes from area to area/bending to bending as the shell becomes

more steep. It is expected that the shallower shells trend toward membrane action,
requiring more axial rigidity because the axial force is greater the more shallow the shell.

The denser grid has a stronger buckling capacity which is expected because a more dense

grid converges to a continuous shell. It should also be noted that although the buckling

mode shape of the theoretical solution is axisymmetric and that the buckling mode in

the numerical solution for the triangle is symmetric, the corresponding buckling loads

are quite close to each other. This leads to the conclusion that the simple axisymmetric

Timoshenko equation, modified to account for an equivalent thickness, can be used to

estimate of the buckling load of grid shells. For quadrilaterals, the upper bound is best

defined by using the equivalent volume. For the triangle the volume equivalence is used

up to a spacing of 40in. For spacing less than 40in the combined area and moment of

inertia equivalence provides the best upper bound.

4.4 Discussion

The opportunity for architects and engineers to create weight efficient elegant structures is

in the preliminary stages of design. Here a framework is presented for a fast assessment of

grid shell performance in terms of the main design constraints (grid spacing, shell height

and span). The results of the parametric study performed on those variables are combined

into a set of design guidelines presented in Figure 4.14.

The guidelines are organized into three categories based on the three span-to-height

ratios. For the more shallow shells (the left column), it is more effective to decrease the

grid spacing than to change topology. Whereas for the steeper shells (the right column)

it is best to change the topology. In between those two extremes, the effect of changing

the grid spacing or the topology is similar and one can do either. The design guidelines

provide an immediate answer on how to improve the buckling capacity of the spherical

cap grid shell.

The notion of the equivalent thickness is not uniquely defined. The best equivalent

continuum approach varies between topology and curvature. There are significant differ-

ences in buckling prediction between the four equivalent continuum approaches. While a

simple bending and area equivalence give an upper and lower bound, the spread is very

wide. This further illustrates that grid shells respond both in membrane and bending

action. At the same time the volume equivalence and the combined area/bending equiva-
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Decrease

grid

spacing

Select a

triangular

g rid

Select a

triangular

L grid

Figure 4.14 - Design guidelines for a spherical cap grid shell. Columns from left to right
represent decreasing span-to-height ratio.

lence leads to much closer estimates when compared to the exact numerical solution. The

accuracy of the volume equivalence is better for the quadrilateral grid while the combined

area/bending equivalence gives better results for triangular meshes.

4.5 Summary

This chapter developed a framework for a quick and accurate assessment of grid shell struc-

tural performance by using available closed form solutions of continuous shells. Though

the analysis in this chapter is restricted to the spherical cap, the salient features can be

extended to more general types of grid shells. By expanding the use of the assessment of

simple shell and grid structures to complex ones, an efficient approximation is provided

which can immediately impact the design.

The central point of the method is the concept of an equivalent uniform shell where

the equivalence is based on the bending or axial rigidity, or both, or volume. This chapter

derived and validated multiple equivalent thickness techniques. The area and moment of

inertia equivalence establish the upper and lower bounds of the critical failure load.

The vast amount of data compiled and analyzed not only better explains the mechanics

of grid shells but also lays the groundwork for providing the following rules of thumb at

the start of a grid shell design.

9 The effect of topology lessens as the shell become shallower. The more shallow the

shell, the less the benefit in using a triangular topology over a quadrilateral.
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4.5. Summary

" Steeper shells have a higher capacity than shallow shells.

" Shallower shells require a denser grid to increase the capacity.

" An equivalent continuum defined by area equivalence provides a conservative esti-

mate for the buckling load of a grid shell that can be used in the preliminary stages

of design.

" For the quadrilateral grid the upper bound for the buckling load is defined by the

equivalent volume. For the triangular grid with spacing greater than 40in, the

upper bound is defined by the equivalent volume; for spacing less than 40in the

upper bound is the combined area and moment of inertia equivalence.

" Different design configurations of the span-to-height ratio, the spacing and the topol-

ogy can have the same structural efficiency.
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Chapter 5

Corrugated Vault Study

5.1 Introduction

Most grid shell structures have a rectangular footprint leading to the use of a barrel vault

shape. Some geometries have gone so far as to add corrugation to the surface as seen in

the Japan Pavilion, the Weald and Downland Museum (Figure 5.1). In this chapter, the

role of curvature on a barrel vault is studied by gradually introducing double curvature

into the geometry.

In Chapter 4, the spherical cap grid shell study provided us with a rapid estimation

of grid shell capacity by using the equivalent continuum. In that chapter, the objective

was to understand the mechanics while quantifying how the most influencing real design

(a) Weald and Downland (b) Japan Pavilion

Figure 5.1 - Examples of grid shells with corrugation at the edge and the crown.
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5.2. Problem Definition

constraints affect the capacity and efficiency of the structure. In this chapter, the focus

is on the role of double curvature for efficiency and capacity. Here the following key

questions are asked:

" Is corrugation an effective and efficient means to increase the load-bearing capacity

of a barrel vault?

* Can a closed-form solution be derived that accounts for the varied parameters?

To answer these questions, the change in buckling capacity of three corrugated barrel

vaults is studied. The varied parameters include the location of corrugation (edge, crown

or both), the aspect ratio of corrugation, the span-to-height, and the grid spacing (Figure

5.2).

5.2 Problem Definition

5.2.1 Geometry

The dimensions of the straight edge barrel vault are a span Li of 100ft, and a longitudinal

length of 2L 2 of 162ft (Figure 5.3a). The barrel vault has a a parabolic cross section defined

Figure 5.2 - The four groups of parameters: corrugation location, aspect ratio, span-to-height
ratio, and grid spacing (left to right).
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Chapter 5. Corrugated Vault Study

by Equation 5.1. The span Li and the length 2L 2 are kept constant in all models at 100ft

and 162ft respectively. These length values were chosen based on typical values of existing

grid shells (Cadji, 2001; Stungo, 2001; Pople, 2002b,a, 2001). The vault is loaded with a

uniform pressure and its boundary conditions include no lateral and normal translation

along the length of the edges and no longitudinal displacement and rotation about the x

axis (Figure 5.3b).

Z = h1-(5.1a)

xo = (5.1b)
xO72

5.2.2 Parameters

The four groups of parameters defining the parametric space are:

" the corrugation location: at either the edge, the crown or both the edge and the

crown (in-phase)

" the aspect ratio of the corrugation: 8 values total

" the span-to-height ratio: L=6, 11, 20

" the grid spacing: 10x1O, 20x20, 30x30

As in the case of the spherical cap study, every permutation of the parameters was con-

sidered, overall there were a total of 390 models. This is illustrated by the hierarchal tree

in Figure 5.4.

z u=0 X

x Y =0 zLYLIX __ __ _

Y

U =0 U =0
u =0 u =0

07 ft u =0
16 2 ft 6,1r/I0Y=0

(a) Dimensions (b) Boundary conditions

Figure 5.3 - Straight edge barrel vault geometry and boundary conditions
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5.2. Problem Definition

Figure 5.4 - The hierarchal tree illustrating the number of corrugated grid shell models.

The undulations at the edge and crown are defined by a cosine function and the
surface is described by Equation 5.2. The two variables defining the undulations are
the number of waves n along the length L2 and the wave amplitudes ai and a2 . The
corrugation amplitude at the edge (ai) is defined as a percentage #1~ of the span; the vault
is corrugated at the edge and tapers to a fiat crown. The corrugation amplitude at the
crown (a2 ) is defined as a percentage #32 of the height; the corrugation is maximum at
the crown and tapers to a straight edge at the boundary (Figure 5.5 and Equations 5.3
and 5.4). In the third case where the edge and the crown are corrugated ai f a2; thus,
the corrugation varies along the arclength. The amplitudes are in-phase and this case of
corrugation at both the edge and the crown will be referred to as the in-phase case.

2nyry
x=zo+aicos

z =(h + a2 acosj 1 (0-((5.2)

ai = ( )(5.3)100 2
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Chapter 5. Corrugated Vault Study

a2 = h (5.4)
100

The two values of #1 and #2 are 5% and 10% and the number of waves n per half

length are 0.5,1,1.5,2. The total number of combinations of n and fi is eight and Figure

5.6 illustrates all the combinations. To simplify and minimize the number of parameters,

#j, and n are consumed into A which is defined as the aspect ratio of the corrugationa1

where A = As y -+ oo there is no corrugation and the geometry is flat. Multiple

combinations of n, and #3 can yield the same -L. In Figure 5.7 the change in corrugation

in terms of ) for the corrugated edge is illustrated.

5.2.3 Methodology

To tackle this complicated problem, the study is split into two sections. The first is to

study the role of curvature on the continuous shell and to validate the modeling techniques

used. The second part is to repeat the analysis for grid shells. The procedural steps for

both the continuous and grid shell are outlined below, beginning with the definition of the

geometry and parameters and concluding with the analysis of the numerical models. In all

of these studies the numerical results help identify the structural trends while contributing

to the understanding of the mechanics behind grid shells.

Procedural Steps

Continuous Shell:

1. Present the theoretical buckling load of a barrel vault with straight edges.

82

h

2L2 5L

Figure 5.5 - Corrugated barrel vault geometry.
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5.2. Problem Definition

n=0.5

Figure 5.6 - IIlustration of the eight combinations of n and 3j for the corrugated edge.

I A/a

Figure 5.7 Geometric representation of the corrugated edge as a function of L.a,
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Chapter 5. Corrugated Vault Study

2. Identify parameters describing the double curvature.

3. Construct the continuous shell finite element model of the basic barrel vault.

4. Run the buckling analysis and compare to the analytical solution.

5. Run the collapse analysis and compare to the linearized buckling load.

6. Construct the 100 finite element models in the parametric study.

7. Run the buckling analysis.

8. Plot and analyze results.

Grid Shell:

1. Establish the parameters and ranges that define the grid shell curvature and topol-

ogy.

2. Define the dimensions based on an equivalent volume between the continuous and

the grid shell.

3. Validate the straight edge grid shell with the analytical solution.

4. Proceed with the parametric study constructing 300 grid shell models.

5. Plot and analyze the results.

5.2.4 Analytical Models

In preparation for processing the numerical results, the mathematical representation of

the variables affecting the capacity are discussed. No closed form solutions have been

derived for the corrugated barrel vault. Here an attempt is made to build an analytical

model starting from the plane strain analysis of the straight edge barrel vault.

A plane strain analysis is typically used for structures long in one direction such as

a dam. The structure can be simplified to a slice of unit thickness because the strain

components Eyy, 7zy, and Tyz are zero with the axes defined in Figure 5.8. In the case

of the barrel vault, the unit slice is a parabolic arch, as the one studied extensively in

Chapter 3.
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5.2. Problem Definition

Because the barrel vault span-to-height ratios are relatively shallow, the unit slice is

expected to fail by buckling. Thus the arch buckling equation presented in Chapter 3 is

modified to a force per unit area in Equation 5.5. The lateral strain is accounted for using

Poisson' s ratio. /2

qcrlbarreivault =R3 (,2 i b( (5.5)

While Equation 5.5 is accurate for a basic barrel vault, the corrugated vault requires

more modification. By corrugating the vault the cross-section becomes curved (Figure

5.9) and the moment of inertia is different from the flat section. Thus Equation 5.5 is

modified to Equation 5.6 where the moment of inertia for the corrugated section Ieff is

derived in Equation 5.7. As the amplitude decreases to zero (ai -4 0), the geometry of the

cross-section becomes rectangular and Ieff = Irectangle. Although the actual corrugation

is a cosine function, here the moment of inertia is approximated by using a parabolic

function. The ratio of the buckling load of the corrugated vault with Ieff to the basic

cault can be simplified to Equation 5.8.

qcrkbarreivait - (b(1 v2 (5.6)

Z X

X Y

dx

1 unit

4N

Figure 5.8 - Plane strain condition. Figure 5.9 - Corrugated shell cross-section.
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A

'eff JY2dA
0

(h (1 - tdx

0

2 2t 2( t 3

5 z 3 2
lim Ieff Irectangle (5.7)
aj -40

qcrlstraight A

( = (5.8)

As mentioned earlier the moment of inertia varies along the arclength. Timoshenko

derived the expression in Equation 5.9 that accounts for a larger moment of inertia at the

crown than the edge. The variables I and I1 are the moment of inertias at the crown and

the edge respectively, and m is a numerical factor depending on a, the angle of openness

and the ratio I. The numerical factor m is plotted in Figure 5.10. As the moment of

inertia goes to zero at the edge, the capacity decreases. In other words, if the arch became

thinner at the supports the arch is weakened and the capacity decreases.

I 0I 1'- 1I- )0

qcr = m2R (5.9)

5.2.5 Numerical Models

The mechanics of the corrugated vaults are first studied using continuous shell models of

1 inch thickness. This validates the analytical approach explained earlier as well as the

computational modeling techniques.
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10

8

a=0

....... a=30

Z 2 - - =600a 2
. .- a=90 0

0
0 0.2 0.4 0.6 0.8 1

/1//0

Figure 5.10 - The effect of a varied moment of inertia on the numerical factor m for the

buckling load.

Continuous Shell

The FEM of the continuous shell is built using a program by the author (Appendix A)

that requires the input of the geometric parameters and outputs a point cloud defining the

surface. The surface grid is then imported into ADINA where the surface is created by

connecting the control points with a quadrilateral polygonal mesh (Engineering, 2010).

A less dense point cloud will produce a less smooth surface, and the surface becomes

approximately equal to that of Equation 5.2.

Within the ADINA interface, the surface is meshed using shell elements. As shown

earlier in Figure 5.3b, the boundary conditions include no lateral and normal translation

along the length of the edges and no longitudinal displacement and rotation about the x

axis. Because shell elements are prone to boundary layers due to incompatible boundary

conditions, the selection of proper boundary conditions was carefully considered (Chapelle

and Bathe, 2011). Finally, a surface pressure is applied, and a linearized buckling analysis

is used to calculate the buckling load as was done in Chapters 3 and 4.
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Chapter 5. Corrugated Vault Study

Grid Shell

In the grid shell studies three grid densities are considered: 10x10, 20x20, and 30x30
(Figure 5.11). The grid shells are defined to be equivalent in volume to its continuous
shell geometric counterpart. The width and longitudinal spacing between the units are
denoted as sx and sy respectively. The member dimensions are shown in Figure 5.12.
To have an equivalent volume to the continuous and because the grid shell members

are solid squares, the cross-section dimensions are calculated using Equation 5.10 for the
quadrilateral topology. The calculated member thicknesses for an equivalent volume are
also provided in Figure 5.11; when the grid becomes finer the member thickness decreases.
As in the case of the spherical cap, sources of error in calculating the equivalent thickness
include: counting for the volume at the member intersection twice, disregarding the half
units at the boundaries, and using a planar projection for calculating the spacing.

tllIquad t2lIquad c
sx + sy

1Ox10 grid 20x20 grid

(5.10)

30x30 grid

Figure 5.11 - The three grid shell densities used in the corrugated vault study (10x1O, 20x20,
30x30).
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Figure 5.12 - Dimensions of the grid spacing and the overlay of the repeating unit of the grid
shell cruciform and the square continuous shell.

The finite element models of the grid shells are created using a Matlab program written

by the author and provided in Appendix A. The program defines the FEM by redefining

the nodes and element connectivity of the continuous shell to that of the joints and

members of the grid shell. The model is then imported into ADINA, and a linearized

buckling analysis is used to calculate the buckling load.

5.3 Results

The results are presented in the following subsections:

* Model Validation: the straight edge numerical models of

the grid shell are compared to the plane strain analysis.

both the continuous and

" Continuous Shell: the gain in capacity by using corrugation is measured and the

results are compared to the analytical model.

" Grid Shell: the role of curvature, spacing and topology is analyzed using the nu-

merical results.
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Chapter 5. Corrugated Vault Study

5.3.1 Model Validation

First the continuous shell of the basic barrel vault is validated. The buckling load predicted

by the numerical models is plotted against the analytical plane strain solution (Figure

5.13). The numerical results coincide with the analytical. Also, the first buckling mode

(magnified by a factor of 400 in Figure 5.14) is axisymmetric as is the assumed shape in

the analytical derivation.

The grid shell model is also first validated by plotting the analytical plane strain to

the numerical for all three grid densities as a function of the shell heights (Figure 5.'15).

The buckling modes for each grid density are plotted in Figure 5.16 with a magnification

factor of 1000. As in the case for the analytical and the continuous shell, the first mode

is axisymmetric.

5.3.2 Continuous Shell

The continuous shell results are presented separately by the corrugation locations. To

quantify the gains in adding curvature the buckling load of the corrugated barrel vaults

is normalized to the buckling load of the basic barrel vault. After the presentation of

the numerical results of each corrugation location, the analytical models are discussed.

Lastly, all three cases are compared in terms of the cost in volume. In all three cases

C

0

x 10.4
A
D

N
A

0 20 40 60 80 100 120 140 160 180 200 220

Shell height, h [in]

Figure 5.13 - Plane strain validation for the

continuous shell.

MODE 1 MODE MAG 400

XiY

Figure 5.14 - The buckling mode for the con-
tinuous shells magnified by a factor of 400.
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Figure 5.15 - Plane strain validation for the Figure 5.16 - The first buckling mode of the
grid shell. straight vault for each of the three grid shell

densities (magnified by a factor of 1000).

there are significant gains by introducing double curvature.

Corrugated Edge: The gain in capacity of the corrugated edge is plotted as a function of

the aspect ratio -- in Figure 5.17. First consider the two extremes of the x-axis. As gLal ai

approaches infinity the corrugation is non-existent and it becomes a straight edge vault.

Thus, the gain in capacity (normalized by the straight edge capacity) converges to unity.

At the other extreme when - approaches zero, the corrugation is "tight" and the gain in

capacity ranges from 13 to 35 times the capacity of the straight edge as the span-to-height

ratio varies.

In between the two extremes, there is a clear inverse power trend in the data. To

understand this trend, in Figure 5.19 the buckling modes(magnified by a factor of 500)

are plotted. From top to bottom the aspect ratio of corrugation decreases. All the vaults

exhibit the axisymmetric mode as seen in the basic barrel vault. However, it is evident

that as the amount of corrugation increases the vault develops a shorter effective length.

In essence, the vault maintains the same radius of curvature but the angle of openness a,
becomes smaller and smaller as the vault decreases its aspect ratio.

The relationship between the effective angle aeff can be calculated from Equation 5.11

using the numerical data and was plotted as a function of the aspect ratio y. A curveal
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Figure 5.17 Gain in capacity from the Figure 5.18 - Gain in capacity from the

straight barrel vault by corrugating the edge straight barrel vault by corrugating the crown

of the continuous shell. for the continuous shell.

was fit to the data for each of the span-to-height ratios and the fitted equations are given

in Table 5.1. These equations can be used for calculated the buckling load of a corrugated

edge shell. If the span-to-height ratio is known as well as the desired aspect ratio, the

effective angle can be calculated and plugged back into Equation 5.12 to calculate the

buckling load.

aeff (5.11)

(12R3(12) +rqcr Et3 0

qcrle=ge= E (_e2 - (b1 (5.12)
eg R3 ka2 7 .b(1 V2)/

Corrugated Crown: For the corrugated crown, the gain in capacity is plotted as a function

of y, the aspect ratio of the corrugation at the crown (Figure 5.18). As approaches in-

finity, the geometry approaches a straight barrel vault and the gain in capacity approaches

unity. As '\ approaches zero, the gain in capacity ranges from 20 to 50 times the capacity
a2

of the straight vault as the span-to-height ratio varies from 20 to 6 respectively.

In-Phase: The final case considers the vault corrugated at both the crown and the edge.
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MODE MAG 500.0

n=0.5, P =5%

n=0.5, 10%

n=1, 1=5%

n=1, 1=10%

n=1.5, 1p=5%

n=1.5, 1=10%

n=2 1=5%

n=2 1=10%

Figure 5.19 - First buckling mode for the corrugated edge case with increasing corrugation
from top to bottom (magnified by a factor of 500).
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Figure 5.20 - Illustration of the effective arclength aeff.
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Table 5.1 - Equations for calculating aegg given a span-to-height ratio and an aspect ratio of

corrugation.

The gain in capacity is plotted in Figure 5.21 and is measured as a function of the ratio

of corrugation amplitudes at the edge and the crown ('). As -' - 00, the corrugated

edge is approached and the gain in capacity decreases.

In the matrix plot of Figure 5.21, the rows represent the wave amplitude Oi where row

one is # = 10% and the second is O3 = 5%. The columns represent the numer of waves

with column 1 at n = 2 to column 4 with n = 0.5. The plots geometrically match up with

Figure 5.6. The presentation of the plots in a matrix shows that having a higher number

of waves n is more beneficial than a higher wave amplitude #4. In other words, it is more

beneficial to have a shorter wavelength than to increase the amplitude.

Unlike the corrugated edge case, the buckling modes for the corrugated crown and

in-phase all differ. However the mechanics of the structure can still be understood. The

weakest point of the straight vault is the flat crown where the point of inflection occurs.

If the cross-section at the crown is changed, the difference in capacity can be explained

by the increase in the moment of inertia because qc, oc I.

In Figure 5.22 the gain in capacity is calculated analytically using Equation 5.8. Math-

ematically the behavior is changed by 'eff. The plot shows good agreement especially

for the in-phase condition. This is because the analytical derivation assumes that the

cross-section geometry is the same at the crown and the edge when in fact they vary.

To reduce the error, the moment of inertia should be re-derived to take into account its

variation along the arclength.

Case Comparison: Having validated that adding double curvature greatly strengthens

the barrel vault, the best location to add curvature is measured as a function of the per-

cent increase in volume from the basic barrel vault. In Figure 5.23 all three cases are
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Chapter 5. Corrugated Vault Study

plotted as a function of the percent increase in volume for all three span-to-height ratios.

For the corrugated edge, for a 1% increase in volume, the capacity is increased by a factor

of 40. For the corrugated crown, a 1% increase in volume yields a gain in capacity of

a factor of 50. However, the best option is the in-phase corrugation. For the same 1%

increase in volume, the in-phase case yields a gain in capacity by a factor of 80.

Collapse Analysis

Before proceeding to the grid shell studies, the linearized buckling analysis is compared

to the collapse analysis. The collapse analysis accounts for the prebuckling rotations and

nonlinear behavior.

The collapse analysis was performed for an in-phase geometry. Both a normally dis-

tributed load and a vertically distributed load was considered and the results are plotted

in Figure 5.24. First, both the normal load and vertical load are comparable to each

other. Second, the collapse load is approximately three times higher than the buckling

load; thus, the buckling load is a conservative estimate and appropriate to use for this

parametric study.

5.3.3 Grid Shell

Having gained insight into the behavior of the corrugated continuous shell, the grid shell

results are presented next. The same plots used in the continuous shell study are repeated.

Corrugated Edge: First consider only the 30x30 grid shell. For the corrugated edge,

the buckling load is normalized by the buckling load of the basic (cylindrical) 30x30 grid

shell barrel vault as a function of the aspect ratio yA (Figure 5.25a). The three linesal

represent the three different span-to-height ratios. Corrugating the edge can increase the

capacity up to 5 times that of the straight edge barrel vault. The amount of increase in

capacity is proportional to (y2 as was seen in the continuous shell.

In Figure 5.25b the buckling load is plotted as a function of the shell height. The

multiple lines represent the different values of the aspect ratio from 2 to 16. The rela-

tionship between the buckling load and the height is linear for a given edge aspect ratio
A and steeper shells are stronger. While increasing the corrugation in the grid shell doesal

benefit the gain in capacity, the amount of gain is not of the same magnitude as seen in

the continuous shell.
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Chapter 5. Corrugated Vault Study

8

7

6

5

4

3

2

0
12 14 16 18

Figure 5.24 - Comparison of the collapse load and the buckling load for a normally distributed
load (N) and a vertically distributed load (V) for the in-phase continuous shell.
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5.3. Results

Next consider the effect of three grid densities (1Ox1O, 20x20, 30x30) on the capacity

for the corrugated edge grid shell. In Figure 5.26 the gain in capacity is plotted for all

three grid densities as a function of the aspect ratio. Depending on the grid density, the

gain in capacity can reach a maximum of 5 for the densest grid and tallest shell. Table

5.2 lists the maximum allowable corrugation 1- to increase the capacity by at least 50%.

The denser the grid, the less corrugation is needed to increase the capacity by at least

50%. The effect of grid density is more prominent the steeper shell. Also, the steeper the

shell the less corrugation is needed to increase the capacity from a straight vault. Because

corrugating the 1Ox1O grid does not improve the capacity significantly from its straight

edge counter part and because for the same amount of volume the 20x20 and 30x30 grid

have the same increase in capacity, only a 30x30 grid will be considered in the remaining

results.

Corrugated Crown: The same trends seen in the corrugated crown for the continuous

shell are exhibited in the grid shell (Figure 5.27). The effect of crown corrugation is only

significant if the crown's aspect ratio is 1- < 15. Unlike the corrugated edge, the gain

in capacity is less pronounced as the shell height changes; the data points are not easily

separated by their height. In total the gain in capacity can quadruple by corrugating the

crown.

In-Phase: In Figure 5.28, the grid shell results for the in-phase case are subplotted in

a matrix. The rows represent from top to bottom Oi=10% and .i-= 5%. The columns

from left to right represent the number of waves n=2, and 1 respectively. As in the case

of the continuous shell, it is more beneficial to increase the number of waves n than to

increase the amplitude #3 to increase the gain in capacity; a shorter wavelength is more

desirable.

Table 5.2 - Maximum value of - to increase the capacity of thte corrugated edge by at least

50%.

Grid Density -=20 -=11 -=6
10x10 not possible 2.7 4
20x20 2.7 4 5
30x30 4 4.5 8
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5.3. Results
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Figure 5.27 - Gain in capacity by corrugating the crown of the 30x30 grid shell.

Case Comparison: Table 5.3 lists the amount of corrugation needed at either the edge

or the crown to increase the capacity by 50% for each height. For the corrugated crown,

the same increase in capacity can be achieved for a looser corrugation than that at the

edge. In Figure 5.29, the three corrugation cases are plotted against each other in terms of

the percent increase in volume. For the corrugated edge and the in-phase, the maximum

percent increase in volume is 3% but yield a gain in capacity up to five and eight times,

respectively. For a less than 1% increase in volume by corrugating the crown, the capacity

is quadrupled. As evident in the plots, there is a quicker return on using a corrugated

crown.

Table 5.3 - Maximum values of g and y to increase the capacity by 50% for the 30x30 grid
shell.

Corrugation Case 1:=20 !=11 L=6

Edge _-< 4 4.5 8

Crown 1- < 21 24 19
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Chapter 5. Corrugated Vault Study

5.4 Discussion

Corrugated grid shells have many advantages over their continuous counterpart. The

discretization and topology provides an articulated, dramatic space. Their openings allow

for more design options to be used in terms of lighting, and ventilation. The corrugation

provides not only an interesting aesthetic but has a dramatic effect on the capacity,

increasing it by a maximum factor of 8 for an increase in volume less than 5%.

The corrugated vault's behavior can be built from considering a plane strain analysis.

Physically, corrugation at different locations create different mechanical behavior. For

the corrugated edge, the increase corrugation creates an effective length and shortens the

arclength that is more susceptible to buckling. For the corrugated crown, the behav-

ior is that of adding a stiffened longitudinal beam to a vault. And lastly the in-phase

case changes the cross-section geometry and hence the moment of inertia, increasing the

bending stiffness.

In all cases decreasing the span-to-height ratio (becoming steeper) improves the ca-

pacity of the vault. However, the amount of improvement in the corrugated crown case is

independent of the shell height. The aspect ratio between the edge and the crown differ

greatly. To increase the capacity by at least 50%, the corrugated crown can have a looser

corrugation by a factor of six than the edge.

Finally, the grid spacing needs to be dense enough to pick up the extra stiffness of

curvature, but there is a limiting return. Making the grid denser eventually approaches a

continuous shell and the case for designing a grid shell over a continuous lessens. However,

as shown in the following design guidelines, increasing the grid density has a small impact

when compared to the other factors.

The conclusions made in this study are summarized in a set of design guidelines shown

in Figure 5.30 to be used in the early stage of design. The guidelines are organized by the

three corrugation locations: the edge, the crown, and at both edge and crown (in-phase).

In order to increase the buckling capacity, if the designer is considering edge corrugation,

the most effective change would be to increase the height of the shell, and in turn creating

a shorter effective arclength.
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5.5. Summary

Edge Corrugation

Increase

height

In-phase

Increase number
of waves

Decrease edge
aspect ratio

Figure 5.30 - Set of design guidelines to be used in the early stages of design of a corrugated
grid shell vault.

5.5 Summary

In this chapter the benefits of corrugating a vault, and varying the grid spacing and

span to height ratio are investigated and quantified. Corrugating a vault is an efficient

and effective way to increase the load-bearing capacity of a barrel vault. Adding double

curvature to the barrel vault has significant gains in capacity up to 8 times for less than

a 3% increase in volume. Closed-form solutions for calculating the buckling load were

also derived to account for the varied grid shell parameters. A plane strain analysis of a

barrel vault was modified to account for an effective arclength when corrugating the edge,
and an effective moment of inertia when corrugating the crown. Lastly a set of design

guidelines were developed for use in the early stage of design of corrugated grid shells.
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Chapter 6

Conclusions

6.1 Summary of Contributions

The goals of this body of work were:

" to calculate the change in load-bearing capacity of grid shells due to their curvature

and topology using numerical and analytical methods,

" to provide a set of design guidelines that can contribute to maximize the mechanical

performance of grid shells during early design stages.

The goals were achieved by conducting a parametric study varying the topology and

topography of grid shells and calculating the change in load-bearing capacity using both

numerical and analytical methods. The main contributions are as follows:

* Parametric Study: The roles of curvature, and topology on the load-bearing capacity

of grid shells were assessed using a parametric study. The parametric study was

framed within the context of real design constraints and contained over 400 finite

element models. The generation of the spherical cap and corrugated vault finite

element models were programmed and inputted into ADINA. The buckling capacity

of the finite element models for both the grid shells and the continuous shells was

calculated. It was found that:

- Corrugation is an effective and efficient means to strengthen the barrel vault.

- Corrugation on a grid shell increases capacity up to 8 times for less than a 3%

increase in volume. Corrugation on a continuous shell increases the capacity

up to 80 times for a 1.5% volume increase.
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6.2. Future Work

- Triangular grid are better for steeper shells (spherical cap).

- Shallower shells require a denser grid to increase the capacity.

- Different design configurations of the span-to-height ratio, the spacing and the

topology can have the same structural efficiency.

" Mechanics of Grid Shells: To describe the mechanics of grid shells, closed form

solutions were derived for calculating the buckling load of grid shells. Multiple

equivalent continuum approaches were defined and validated and helped distinguish

grid shell behavior from being membrane dominated to bending dominated. An

equivalent continuum defined by area equivalence is a conservative estimate for the

buckling load and can be used the preliminary stages of design.

The first study on the role of double curvature on barrel vaults for both continuous

shells and grid shells was completed and the mechanical behavior of the corrugated

barrel vault was validated using a plane strain analysis. It was found that corrugat-

ing the edge produces an effective arclength, while corrugating the crown increases

the moment of inertia.

" Design Guidelines: This dissertation developed rules of thumb to be used in the

initial design for assessing the behavior of grid shells as a function of their shape,

topology, curvature and grid spacing. The parameters of interest were pulled from

the literature on the design process of existing grid shells. Simple analytical meth-

ods for calculating the buckling load of both spherical cap and corrugated vault

grid shells were derived. The guidelines are classified in terms of the main design

constraints driving the design process.

6.2 Future Work

The exploration of the mechanics of grid shells have herein contributed towards a better

understanding of these complicated structures, but also motivates numerous areas of

continued research:

* Analytical Modeling: With a better understanding of the collapse analysis and the

analytical models developed herein, new analytical models for other surfaces can be

developed.
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Chapter 6. Conclusions

" Software Tools: Having established the significant relationships between the design

parameters, the results are to be implemented into a software tool to allow designers

and engineers to play with varying the parameters while simultaneously observing

their effects on the capacity and volume of material.

" Joint Design: Often the cost of grid shells has been affected by the difficulties of

the joint design. Future work will account for the trade offs between having more

members at the nodes (increasing grid density and capacity) with the complications

that arise from designing a joint shared by more members.
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Appendix A

MATLAB Code

A.1 Spherical Cap - Quadrilateral Grid

1 %The following code creates the finite element ADINA input file a .

spherical cap grid shell with a QUADRILATERAL grid

2 clear all

3 delete linecheckl5.in

4

[headline,geometryData]=hdrload(

Rvector=geometryData(:,5);

hvector=geometryData(:,3);

centervector=geometryData(:,2);

[dl d2]=size(Rvector);

for (k=l:dl)

%Mesh Density

uvector=[10;20;30;40;50;60];

[ul u2]=size(uvector);

for (1=1 :ul)

u=uvector (l,1);

v=uvector (l,1);

'geometryData.txt');

%% INPUTS

%Global Geometry

L=1200;

h=hvector(k,l); %arc height

R=Rvector(k,l); %radius of sphere

%center of sphere

Xo=O;

Yo=O;

Zo=centervector(k,1);
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Appendix A. MATLAB Code

31

32 %Cross section
33 tl=5; %width of rectangular cross section
34 t2=5; %height of rectangular cross section
35

36 dx=(L)/u; %same as spacing

37 dy=(L)/v;
38

39 ndiv=floor((dx/(2*tl)));%the mesh density per line
40 %% CALCULATING Pcr THEORETICAL
41 %p-crTheoretical
42 %% CREATING THE MESH GRID
43 [X,Y] = meshgrid(-L/2:dx:L/2, -L/2:dy:L/2);

%to remove point outside of circle

%radius that describes the boundary circle

(R-h+- Zo)

CBR=X.^2+Y.^2;

index=find(CBR>(L/2)^2);

X(index) = [;
Y(index) =

X=X';

Y=Y';
%plot(X,Y)

%to add points that are with the xi, or yi

on the circle

YcirclePos=((L/2)^2-X.^2).^.5;

XcirclePos=((L/2)^2-Y.^2).^.5;

YcircleNeg=-((L/2)^2-X.^2).^.5;

XcircleNeg=-((L/2)^2-Y.^2).^.5;

on the plane ...

coordinate but sit ..

%check plot

%plot(XcirclePos,Y, 'bo',XcircleNeg,Y, 'm*')

%plot(X,YcirclePos,'ks', X,YcircleNeg,'g*')

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

98

%add the cirlce boundary points to the mesh grid so we can ...
find the z

%values at those point

Xnew=vertcat(X,XcirclePos, XcircleNeg,X,X);

Ynew=vertcat(Y,Y,Y,YcirclePos, YcircleNeg);

%plot(Xnew,Ynew,'k.');

points=[Xnew Ynew];

%points=[X Y);%un comment the line above when i add back the

circle points
%plot(points(:,l),points(:,2),'go');

pointsFinal=unique (sortrows (points),'rows');

%plot(pointsFinal(:,1),pointsFinal(:,2),'go');

%% CALCULATING THE Z VALUE



A.1. Spherical Cap - Quadrilateral Grid

78 X=pointsFinal (:, 1);
79 Y=pointsFinal(:,2);
80

81 %need to change the - zo to + if zo is negative
82 if(Zo<0)
83 Z=(R^2-(X-Xo).^2-(Y-Yo).^2).^0.5+Zo;
84 else
85 Z=(R^2-(X-Xo).^2-(Y-Yo).^2).^0.5-Zo;
86 end
87

88 %plot3(X,Y,Z,'ko')
89 pointID=[1:size(X,1)]';
90 PointBLOCK=[pointID X Y Z zeros(size(X))];
91 % if(Zo<0)
92 % axis([-600 600 -600 600 R-h+Zo R+Zo]);
93 % else
94 % axis([-600 600 -600 600 R-h-Zo R-Zo]);
95 % end
96 PointBLOCKOriginal=PointBLOCK;
97

98

99 % ADD THE AUXILIARY NODES %
100 % %

101 auxPoints=[PointBLOCK(:,1)+5000,PointBLOCK(:,2:3),...
102 PointBLOCK(:,4)-1,PointBLOCK(:,5)];
103 %append the auxiliary point coordiates to the point block
104 PointBLOCK=[PointBLOCK; auxPoints];
105

106 %% GET THE LINE CONNECTIVITY
107 Xvector=[-L/2:dx:L/2] ';
108 Yvector=[-L/2:dy:L/2] ';
109 LineBlockFinal=[];
110 for(i=l:size(Xvector,l))

11 indicesl=find(X==Xvector(i, 1));
112 if (size ( (indicesl) , 1)>1)
113 LineBlock=[indicesl indicesl+l];
114 LineBlock (end, : )=[] ;
115 LineBlockFinal=vertcat(LineBlockFinal,LineBlock);
116 else
117 end
118 end
119 for(j=l:size(Yvector,l))
120 indices2=find(Y==Yvector(j, 1));
121 if(size((indices2),l)>1)
122 indicesA=indices2;
123 indicesA (end, ) = ];
124

125 indicesB=indices2;
126 indicesB (1,:)=[];
127

128 LineBlock=[indicesA indicesB];
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Appendix A. MATLAB Code

129 LineBlockFinal=vertcat(LineBlockFinal,LineBlock);
130 else
131 end
132 end
133 %% ISOLATE THE BOUNDARY NODES
134 CBR=X. ̂ 2+Y. ̂ 2;
135 tolerance=le-7;
136 %index3=find(CBR==(L/2)^2);
137 index4=find((l-tolerance)*(L/2)^2 CBR);% (l+tolerance)*(L/2)^2);
138 boundaryPoints=[index4];
139 %SORT BOUNDARY POINTS BASED ON THETA
140 boundaryPointsCoords=[index4 zeros (size(index4))];
141 %more complicated calculation of theta
142 for(i=1:size(index4,1))
143 if (X (index4 (i, 1) )>0)
144 boundaryPointsCoords (i, 2)= ...
145 atan(Y(index4(i,1))/X(index4(i,l)));
146 end
147

148 if((X(index4(i,1))<0)&& Y(index4(i,l))>0 )
149 boundaryPointsCoords (i, 2)= ..
150 atan (Y (index4 (i, 1)) /X (index4 (i, 1))) +pi;
151 end
152

153 if((X(index4(i,1))<0)&& Y(index4(i,1))<0)
154 boundaryPointsCoords (i, 2)= ..
155 atan (Y (index4 (i, 1)) /X (index4 (i, 1)) )-pi;
156 end
157

158 if((X(index4(i,1))==0)&& Y(index4(i,l))>0)
159 boundaryPointsCoords (i, 2)=pi/2;
160 end
161

162 if((X(index4(i,1))==0)&& Y(index4(i,1))<0)
163 boundaryPointsCoords (i, 2)=-pi/2;
164 end
165

166 if((X(index4(i,1))==0)&& Y(index4(i,1))==0)
167 boundaryPointsCoords (i, 2)=0;
168 end
169

170 end
171

172 sortedboundaryPoints=sortrows (boundaryPointsCoords,2);
173 %get P1 and P2 for boundary lines
174 Pl=sortedboundaryPoints (:, 1);
175 P2=Pl;
176 P2= P2([2:end 1]);
177 boundaryLines=[Pl P2];
178

179 %add boundary lines to line block
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A.1. Spherical Cap - Quadrilateral Grid

180 LineBlockFinal=vertcat(LineBlockFinal,boundaryLines);

181 %

182 %% WRITE THE POINT BLOCK

183 fid=fopen('linecheckl5.in','at');

184 fprintf(fid, '*\nMASTER ANALYSIS=STATIC MODEX=EXECUTE ...
TSTART=0.00000000000000 IDOF=O,\nOVALIZAT=NONE ...
FLUIDPOT=AUTOMATIC CYCLICPA=1 IPOSIT=STOP,\nREACTION=YES ...

INITIALS=NO FSINTERA=NO IRINT=DEFAULT ...
CMASS=YES,\nSHELLNDO=AUTOMATIC AUTOMATI=OFF ...
SOLVER=SPARSE,\nCONTACT-=CONSTRAINT-FUNCTION ...
TRELEASE=0.00000000000000,\nRESTART-=NO FRACTURE=NO ...
LOAD-CAS=NO LOAD-PEN=NO ...
SINGULAR=YES,\nSTIFFNES=0.000100000000000000 ...
MAP-OUTP=NONE MAP-FORM=NO,\nNODAL-DE='''' POROUS-C=NO

ADAPTIVE=O ZOOM-LAB=1 AXIS-CYC=O,\nPERIODIC=NO ...
VECTOR-S=GEOMETRY EPSI-FIR=NO ...
STABILIZ=NO,\nSTABFACT=1.OOOOOOOOOOOOOOE-10 ...
RESULTS=PORTHOLE FEFCORR=NO,\nBOLTSTEP=1 EXTEND-S=YES ...

CONVERT-=NO DEGEN=YES TMC-MODE=NO,\nENSIGHT-=NO');

185 fprintf(fid, '\n*\nCOORDINATES POINT SYSTEM=O\n@CLEAR');

186 fprintf(fid, '\n%d %d %d %d %d',PointBLOCK');

187 %% WRITE THE LINE BLOCK

188 LineID=[1:size(LineBlockFinal,1) ]';
189 LineBiockFinal2=[LineID LineBlockFinal];

190

191 fprintf(fid,'\n*\nLINE STRAIGHT NAME=%d P1=%d ...

P2=%d',LineBlockFinal2');

192 fclose(fid);

193

194 %% DEFINE BOUNDARY CONDITIONS

195 %GET POINT IDS OF POINTS THAT NEED TO BE PINNED

196 %Define pinned condition

197 fid=fopen('linecheckl5.in','at');

198 fprintf(fid,'\n*\n FIXITY ...
NAME=PINNED\n@CLEAR\n''X-TRANSLATION'...

199 '\n''Y-TRANSLATION''\n''Z-TRANSLATION''\n''OVALIZATION''');

200

201 % APPLY BOUNDARY CONDITIONS TO POINTS

202 fprintf(fid,'\n@\n*\n FIXBOUNDARY POINTS FIXITY=PINNED\n@CLEAR');

203 fprintf(fid,'\n%d ''PINNED''', boundaryPoints);

204 fprintf(fid, '\n@');

205

206 %APPLY BOUNDARY CONDITIONS TO LINES

207 fprintf(fid,'\n@\n*\n FIXBOUNDARY LINES FIXITY=PINNED\n@CLEAR');

208 fprintf(fid,'\n%d ''PINNED''', ...
LineBlockFinal2((end+1-size (boundaryLines)):end,1));

209 fprintf (fid, '\n@');

210 fclose(fid);

211

212 %% CALCULATE LINE LENGTH
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Appendix A. MATLAB Code

213 %this is used to calculate if the rigid end length is greater
than the

214 %line length. here we separate the lines that will have a ...
rigid end

215 %length and those that will not.

216

217 indexPl=LineBlockFinal2 (:,2);

218 indexP2=LineBlockFinal2 (:,3);
219

220 length=sqrt((PointBLOCKOriginal(indexPl,2)-...

221 PointBLOCKOriginal(indexP2,2)).^2+...

222 (PointBLOCKOriginal(indexPl,3)-...

223 PointBLOCKOriginal(indexP2,3)).^2+...

224 (PointBLOCKOriginal(indexPl,4)-...

225 PointBLOCKOriginal(indexP2,4)).^2);

226 length((end+l-size (boundaryLines)):end,l)=O;

227 %set boundary line lengths to zero so that it won't come up ...
in rigid end

228 %search
229 indexLength=find((length/ndiv)>tl);

230

231 indexNOLength=LineID;

232 indexNOLength(indexLength)=[];

233

234 %% WRITE REST OF INPUT FILE

235 %%% WRITE MATERIAL BLOCK%
236 fid=fopen('linecheckl5.in','at');

237 %below is for elastic material

238 %fprintf(fid, '\n*\nMATERIAL ELASTIC NAME=1 E=29000 NU=0.3, ...
DESNITY=2.83e-4 ALPHA=O MDESCRIP=''STEEL\' '');

239

240 %below is for bilinear material (so that we can enter a ...
sigma-y yield

241 %stress)
242 fprintf(fid,'\n*\nMATERIAL PLASTIC-BILINEAR NAME=l ...

HARDENIN=ISOTROPIC,\nE=29000.0000000000 ...
NU=0.300000000000000 ...
YIELD=50.0000000000000,\nET=50.00000000000000 ...
EPA=0.00000000000000 ...
STRAINRA=O,\nDENSITY=0.000283000000000000 ...
ALPHA=0.00000000000000,\nTREF=0.00000000000000 ...
DEPENDEN=NO ...
TRANSITI=0.000100000000000000,\nEP-STRAI=0.00000000000000 .

BCURVE=O ...
BVALUE=0.00000000000000,\nXM-INF=0.00000000000000 ...
XMO=0.00000000000000,\nETA=0.00000000000000 ...
MDESCRIP=''STEEL''');

243 fclose(fid);
244 %% WRITE CROSS SECTION BLOCK

245 fid=fopen('linecheckl5.in','at');
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246 fprintf(fid,'\n@\n*\nCROSS-SECTIO RECTANGULAR NAME=1 ...
WIDTH=%d,\n HEIGHT=%d SC=O TC=0,\n TORFAC=1 ...
SSHEARF=0.8333,\n TSHEARF=0 ISHEAR=NO SQUARE=NO',tl,t2);

247 %% DEFINE ELEMENT TYPE

248 fprintf(fid,'\n*\nEGROUP BEAM NAME=1 SUBTYPE=THREE-D ...
DISPLACE=DEFAULT MATERIAL=1 RINT=5,\n SINT=DEFAULT ...

TINT=DEFAULT RESULTS=STRESSES INITIALS=NONE,\n ...
CMASS=DEFAULT RIGIDEND=INFINITE MOMENT-C=NO RIGIDITY=1,\n ...
MULTIPLY=1000000.00000000 RUPTURE=ADINA OPTION=NONE,\n ...
BOLT-TOL=0.00000000000000 DESCRIPT=''NONE'' SECTION=1,\n ...

PRINT=DEFAULT SAVE=DEFAULT TBIRTH=0.00000000000000,\n ...
TDEATH=0.00000000000000 SPOINT=4 ...
BOLTFORC=0.00000000000000,\n BOLTNCUR=0 TMC-MATE=1 ...

BOLT-NUM=0 BOLT-LOA=0.00000000000000,\n WARP=NO');

249 fclose(fid);
250 %% APPLY LOADS
251 % Apply Point loads to Points on Edge and in middle of ...

interesecting

252 LoadedPoints=PointBLOCKOriginal(:,1);

253 LoadedPoints([boundaryPoints])=[];
254 [dl d2]=size(LoadedPoints);

255 forceLabel=(1:1:dl)';
256 fid=fopen('linecheckl5.in','at');

257 fprintf(fid,'\n*\n LOAD FORCE NAME=1 MAGNITUD= 1 ...
FX=0.00000000000000,\nFY=0.00000000000000 ...
FZ=-1.00000000000000');

258 fprintf(fid,'\n*\n APPLY-LOAD BODY=O\n@CLEAR');

259 fprintf(fid, '\n%d ''FORCE'' 1 ''POINT'' %d 0 1 0 0 -1 0 0 0 ...

''NO'',\n 0 1 0 ''MID''',[forceLabel(:,1) ...
LoadedPoints(:,1)]');

260 fclose(fid);
261 noLoadedPoints=dl;
262 %% MESH DENSITY
263 %insert here Line Labels
264 fid=fopen('linecheckl5.in','at');

265 fprintf(fid,'\n*\nSUBDIVIDE LINE NAME=1 MODE=DIVISIONS ...
NDIV=%d RATIO=1.00000000000000,\n PROGRESS=GEOMETRIC ...
CBIAS=NO\n@CLEAR',ndiv);

266 fprintf(fid,'\n%d ', LineBlockFinal2(:,1));

267 fprintf(fid,'\n@');
268 fclose(fid);

269 %% CREATE MESH
270 fid=fopen('linecheckl5.in','at');

271 auxPointonLine=[LineBlockFinal2(:,2)+5000 LineBlockFinal2(:,1)];

272 %print to file the auxiliary point

273 %fprintf('\nauxpoint %d line %d',auxPointonLine')

274 %insert here line labels

275 fprintf(fid, '\n*\nGLINE NODES=2 AUXPOINT=%d NCOINCID=ENDS ...
NCENDS=12,\n NCTOLERA=1.OOOOOOOOOOOOOOE-05 SUBSTRUC=0 ...
GROUP=1 MIDNODES=CURVED\n @CLEAR \n%d\n@',auxPointonLine');
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276 %fprintf('\nauxpoint %d line %d', [auxPointonLine(:,2) ...
lineLabel]')

277 fclose(fid);
278 fid=fopen('linecheckl5.in','at');
279 fprintf(fid,'\n*\n');
280 fclose(fid);
281 %% ELEMENT DATA
282 tlVector(1:size(LineBlockFinal2),1)=tl;
283 %to include rigid end lengths
284 fid=fopen('linecheckl5.in','at');
285 fprintf(fid,'EDATA SUBSTRUC=0 GROUP=1 ...

UNDEFINE=IGNORE\n@CLEAR\n@\n');
286 fprintf(fid,'EDATA SUBSTRUC=0 GROUP=1 ...

UNDEFINE=IGNORE\n@STARTMODIFY\n@CHAROW 1
101 101');

287 %fprintf(fid, '\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' ...
0.00000000000000 0.00000000000000 0,\nO.00000000000000 %d ...
%d\n', [LineBlockFinal2(:,1) t1Vector t1Vector]');

288 %put rigid ends on elements that are long enough
289 firstElement=(ndiv) .*LineBlockFinal2 (indexLength, 1)-(ndiv-1);
290 lastElement=(ndiv).*LineBlockFinal2(indexLength,1);
291

292 noOfElement=(1:ndiv*size (LineBlockFinal2,1))';
293 noOfElement([firstElement,lastElement])=[];
294

295 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' ...
0.00000000000000 0.00000000000000 0,\nO.00000000000000 %d ...
0', [firstElement tlVector(indexLength,1)]');

296 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' ...
0.00000000000000 0.00000000000000 0,\nO.00000000000000 0 ...
%d', [lastElement tlVector(indexLength,1)]');

297 %make NO rigid ends on elements whose length are not long enough
298 fprintf(fid, '\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' ...

0.00000000000000 0.00000000000000 0,\nO.00000000000000 0 ...
0',noOfElement);

299

300 fprintf(fid,'\n@ENDMODIFY\n*\nEDATA SUBSTRUC=0 GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@ENDMODIFY');

301 fclose(fid);
302 %% COPY INPUT FILE TO FILE WITH THE HEIGHT AND MESH DENSITY ...

IDENTIFIED
303 copyfile('linecheckl5.in', ['inputFiles/Height.' num2str(h) ...

'- num2str(u) 'x' num2str(u) '.in'])
304 delete linecheckl5.in
305 end
306 end
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A.2 Spherical Cap - Triangular Grid

1 %The following code creates the finite element input file for a spherical

2 %cap grid shell with a TRIANGULAR grid

3 clear all
4 %% INPUTS
s %Global Geometry

6 L=1200;
7 h=200;%hvector(k,l); %arc height

8 R=1000%Rvector(k,l); %radius of sphere

9 %center of sphere

10 Xo=0;

11 Yo=0;

12 Zo=-200;%centervector(k,1);

13 %Cross section
14 tl=5; %width of rectangular cross section

15 t2=5; %height of rectangular cross section

16 %mesh density
17 u=50;

18 v=50;

19 dx=(L)/u;

20 dy=(L)/v;

21

22 ndiv=floor((dx/(2*tl)));%the mesh density per line

23 %% MESH GENERATOR

24 figure
25 fd=inline('sqrt(sum(p.^2,2))-600','p');

26 [p,t]=distmesh2d(fd,@huniform,dx, [-600,-600;600,600], []);

27 % p contains the nodal points, need to insert the nodal label, and ...

put in a

28 % z coordinate of 0, and a coordinate system of 0;

29 %% edit info from mesh generator

30 % t contains teh element connectivity, but need to insert the element ...
label

31 % [dl d2)= size(t)

32 % elemid=[1:1:dl]';

33 % elemconn=[elemid, t(:,l), t(:,2), t(:,3)];

34

35 % Get POINT coordinates

36 [dl d2]=size(p);

37 pointid=[l:1:dl]';

38 X=p(:,1);

39 =p(:,2);

40 Z=zeros(dl,1);
41 coordsys=zeros(dl,1);

42 pointBlockl=[pointid X Y Z coordsys];

43 %% CALCULATING THE Z VALUE

44 %need to change the - zo to + if zo is negative
45 if(Zo<0)
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46 Z=(R^2-(X-Xo).^2-(Y-Yo).^2).^0.5+Zo;
47 else

48 Z=(R^2-(X-Xo).^2-(Y-Yo).^2).^O.5-Zo;
49 end
50

si pointBlockl(:,4)=Z;
52 pointBlock=pointBlockl;
53 PointBLOCKOriginal=pointBlock;
54 %% GET THE ELEMENT CONNECTIVITY
55 elemConnectivity=t;

56 [dl d2]=size(elemConnectivity);

57 for(i=l:dl)

58 j=3*i-2;
59 lineBlock(j,1:2)=[elemConnectivity(i,l) elemConnectivity(i,2)];
60 lineBlock(j+1,1:2)=[elemConnectivity(i,2) elemConnectivity(i,3)];
61 lineBlock(j+2,1:2)=[elemConnectivity(i,3) elemConnectivity(i,l)];
62 end
63 %clean up the line block to get rid of repeating lines
64 lineBlock(:,:);

65 lineblockorig=lineBlock;

66 [dl d2]=size(lineBlock);

67 for(i=2:dl)
68 for(j=i+l:dl)
69 pairl=[lineBlock(i,l) lineBlock(i,2)];
70 pair2=[lineBlock(j,2) lineBlock(j,l)];
71

72 if(pair2==pairl)

73 lineBlock(j,:)=[];
74

75 [dl d2]=size(lineBlock);

76 break
77 else
78 end
79 end
80 end
81 lineLabel=(1:1:dl)';

82 lineBLOCKFINAL=[lineLabel, lineBlock];

83

84 %%
85 % START TO WRITE INPUT BLOCKS FOR ADINA FILE
86 %

87 %% INSERTING COMMON INFO INTO THE ADINA INPUT FILE
88 % WRITE THE POINT BLOCK

89 auxPoints=[pointBlock(:,1)+5000,pointBlock(:,2:3),pointBlock(:,4)-1,

90 pointBlock(:,5)]

91 pointBlockFINAL=[pointBlock; auxPoints]
92 %

93 %% WRITE THE POINT BLOCK

94 fid=fopen('linecheckl5.in','at');

95 fprintf (fid, '*\nMASTER ANALYSIS=STATIC MODEX=EXECUTE ...
TSTART=0.00000000000000 IDOF=O,\nOVALIZAT=NONE FLUIDPOT=AUTOMATIC
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CYCLICPA=1 IPOSIT=STOP,\nREACTION=YES INITIALS=NO FSINTERA=NO ...
IRINT=DEFAULT CMASS=YES,\nSHELLNDO=AUTOMATIC AUTOMATI=OFF ...
SOLVER=SPARSE,\nCONTACT-=CONSTRAINT-FUNCTION ...
TRELEASE=0.00000000000000,\nRESTART-=NO FRACTURE=NO LOAD-CAS=NO ...
LOAD-PEN=NO SINGULAR=YES,\nSTIFFNES=0.000100000000000000 ...
MAP-OUTP=NONE MAP-FORM=NO,\nNODAL-DE='''' POROUS-C=NO ADAPTIVE=O ...

ZOOM-LAB=1 AXIS-CYC=O,\nPERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO ...
STABILIZ=NO,\nSTABFACT=1.OOOOOOOOOOOOOOE-10 RESULTS=PORTHOLE ...
FEFCORR=NO,\nBOLTSTEP=l EXTEND-S=YES CONVERT-=NO DEGEN=YES ...
TMC-MODE=NO,\nENSIGHT-=NO');

96 fprintf(fid, '\n*\nCOORDINATES POINT SYSTEM=0\n@CLEAR');

97 fprintf(fid, '\n%d %d %d %d %d',pointBlockFINAL');

98 fclose(fid);

99 %% WRITE THE LINE BLOCK

1o fid=fopen('linecheckl5.in','at');

101 fprintf(fid, '\n*\nLINE STRAIGHT NAME=%d Pl=%d P2=%d',lineBLOCKFINAL');

102 fclose(fid);
103 %define the auxiliary point for each line, this will be used later
104 auxPointonLine=[lineBLOCKFINAL(:,1),lineBLOCKFINAL(:,2)+50001

105 %% Find boundary lines and points

106 indexl=find((599<Z) & (Z 601));
107 boundarypoints=pointBlockFINAL(index1,1);

108 %% WRITE BOUNDARY BLOCK

109 %GET POINT IDS OF POINTS THAT NEED TO BE PINNED

11o %Define pinned condition

inl fid=fopen('linecheckl5.in','at');

112 fprintf(fid,'\n*\n FIXITY NAME=PINNED\n@CLEAR\n''X-TRANSLATION'...

113 '\n''Y-TRANSLATION''\n''Z-TRANSLATION''\n''OVALIZATION''');

114 %APPLY BOUNDARY CONDITIONS TO POINTS

115 fprintf(fid,'\n@\n*\n FIXBOUNDARY POINTS FIXITY=PINNED\n@CLEAR');
116 fprintf(fid,'\n%d ''PINNED''', boundarypoints);

117 fprintf(fid, '\n@');
118 fclose(fid);

119 %% WRITE REST OF ADINA FILE

120 %

121 %%% WRITE MATERIAL BLOCK%

122 fid=fopen('linecheckl5.in','at');

123 %below is for elastic material

124 fprintf(fid,'\n*\nMATERIAL ELASTIC NAME=1 E=29000 NU=0.3, ...
DESNITY=2.83e-4 ALPHA=0 MDESCRIP=''STEEL\''');

125 %below is for bilinear material (so that we can enter a sigma-y yield
126 %stress)

127 %fprintf(fid, '\n*\nMATERIAL PLASTIC-BILINEAR NAME=1 ...
HARDENIN=ISOTROPIC,\nE=29000.0000000000 NU=0.300000000000000 ...
YIELD=50.0000000000000,\nET=50.00000000000000 ...
EPA=0.00000000000000 STRAINRA=O,\nDENSITY=0.000283000000000000 ...
ALPHA=0.00000000000000,\nTREF=0.00000000000000 DEPENDEN=NO ...
TRANSITI=0.000100000000000000,\nEP-STRAI=0.00000000000000 ...
BCURVE=O BVALUE=0.00000000000000,\nXM-INF=0.00000000000000 ...
XMO=o.oooooo00000000,\nETA=0.00000000000000 MDESCRIP=''STEEL''');

128 fclose(fid);
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129 %% WRITE CROSS SECTION BLOCK

130 fid=fopen('linecheckl5.in','at');
131 fprintf(fid,'\n@\n*\nCROSS-SECTIO RECTANGULAR NAME=1 WIDTH=%d,\n ...

HEIGHT=%d SC=0 TC=0,\n TORFAC=1 SSHEARF=0.8333,\n TSHEARF=0 ...
ISHEAR=NO SQUARE=NO',tl,t2);

132 %% DEFINE ELEMENT TYPE

133 fprintf(fid, '\n*\nEGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT ...
MATERIAL=1 RINT=5,\n SINT=DEFAULT TINT=DEFAULT RESULTS=STRESSES ...

INITIALS=NONE,\n CMASS=DEFAULT RIGIDEND=INFINITE MOMENT-C=NO ...
RIGIDITY=1,\n MULTIPLY=1000000.00000000 RUPTURE=ADINA ...
OPTION=NONE,\n BOLT-TOL=0.00000000000000 DESCRIPT=''NONE''

SECTION=1,\n PRINT=DEFAULT SAVE=DEFAULT ...
TBIRTH=0.00000000000000,\n TDEATH=0.00000000000000 SPOINT=4 ...
BOLTFORC=0.00000000000000,\n BOLTNCUR=0 TMC-MATE=1 BOLT-NUM=0 ...
BOLT-LOA=0.00000000000000,\n WARP=NO');

134 fclose(fid);
135 %% APPLY LOADS
136 % Apply Point loads to Points on Edge and in middle of interesecting

137 LoadedPoints=pointBlock(:,1);

138 LoadedPoints([boundarypoints])=[];

139 [dl d2]=size(LoadedPoints);

140 forceLabel=(1:1:dl)';
141 fid=fopen('linecheckl5.in','at');

142 fprintf(fid,'\n*\n LOAD FORCE NAME=1 MAGNITUD= 1 ...
FX=0.00000000000000,\nFY=0.00000000000000 FZ=-1.00000000000000');

143 fprintf(fid,'\n*\n APPLY-LOAD BODY=O\n@CLEAR');

144 fprintf(fid, '\n%d ''FORCE'' 1 ''POINT'' %d 0 1 0 0 -1 0 0 0 ...
''NO'',\n 0 0 1 0 ''MID''', [forceLabel(:,1) LoadedPoints(:,l)]');

145 fclose(fid);
146 noLoadedPoints=dl;
147 %% MESH DENSITY
148 %insert here Line Labels
149 fid=fopen('linecheckl5.in','at');

iso fprintf(fid,'\n*\nSUBDIVIDE LINE NAME=1 MODE=DIVISIONS NDIV=%d ...
RATIO=1.00000000000000,\n PROGRESS=GEOMETRIC CBIAS=NO\n@CLEAR',ndiv);

151 fprintf(fid,'\n%d ', lineBLOCKFINAL(:,1));

152 fprintf(fid, '\n@');
153 fclose(fid);
154 %% CREATE MESH
155 fid=fopen('linecheckl5.in','at');
156 auxPointonLine=[lineBLOCKFINAL(:,2)+5000 lineBLOCKFINAL(:,l)];

157 %print to file the auxiliary point

158 %fprintf('\nauxpoint %d line %d',auxPointonLine')

159 %insert here line labels
160 fprintf(fid,'\n*\nGLINE NODES=2 AUXPOINT=%d NCOINCID=ENDS ...

NCENDS=12,\n NCTOLERA=1.00000000000000E-05 SUBSTRUC=0 GROUP=1 ...

MIDNODES=CURVED\n @CLEAR \n%d\n@',auxPointonLine');

161 %fprintf('\nauxpoint %d line %d', [auxPointonLine(:,2) lineLabel]')

162 fclose(fid);
163 fid=fopen('linecheckl5.in','at');

164 fprintf(fid,'\n*\n');
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fclose(fid);

%% isolate boundary, copied this from quad grid

%ISOLATE THE BOUNDARY NODES

CBR=X.^2+Y.^2;

tolerance=le-7;

%index3=find(CBR==(L/2)^2);

index4=find((1-tolerance)*(L/2)^2<CBR);% (1+tolerance)*(L/2)^2);

boundaryPoints=[index4];

%SORT BOUNDARY POINTS BASED ON THETA

boundaryPointsCoords=[index4 zeros(size(index4))];

%more complicated calculation of theta

for(i=l:size(index4,1))

if (X (index4 (i, 1) )>0)
boundaryPointsCoords(i,2)=atan(Y(index4(i,1))/X(index4(i,1)));

end

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

(i, 1)) /X (index4 (i, 1))) +pi;

(i, 1)) /X(index4 (i, 1)) )-pi;

sortedboundaryPoints=sortrows(boundaryPointsCoords,2);

%get P1 and P2 for boundary lines

Pl=sortedboundaryPoints(:,l);

P2=Pl;

P2= P2([2:end 1]);

boundaryLines=[Pl P2];

LineBlockFinal=vertcat(LineBlockFinal,boundaryLines);

%% CALCULATE LINE LENGTH

%this is used to calculate if the rigid end length is greater than the

%line length. here we separate the lines that will have a rigid end

%length and those that will not.

109

if((X(index4(i,l))<0)&& Y(index4(i,l))>0)

boundaryPointsCoords(i,2)=atan(Y(index4

end

if((X(index4(i,1))<0)&& Y(index4(i,1))<0)

boundaryPointsCoords(i,2)=atan(Y(index4

end

if((X(index4(i,l))==0)&& Y(index4(i,l))>0)

boundaryPointsCoords(i,2)=pi/2;

end

if((X(index4(i,l))==0)&& Y(index4(i,l))<0)

boundaryPointsCoords(i,2)=-pi/2;

end

if((X(index4(i,l))==0)&& Y(index4(i,l))==O)

boundaryPointsCoords(i,2)=0;

end

201 end
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216 indexPl=lineBLOCKFINAL(:,2);

217 indexP2=lineBLOCKFINAL(:,3);

218

219 length=sqrt((PointBLOCKOriginal(indexP1,2)-...

220 PointBLOCKOriginal(indexP2,2)).^2+...

221 (PointBLOCKOriginal(indexP1,3)-...

222 PointBLOCKOriginal(indexP2,3)).^2+...

223 (PointBLOCKOriginal(indexP1,4)-PointBLOCKOriginal(indexP2,4)).^2);

224 length((end+1-size(boundaryLines)):end,l)=0;

225 %set boundary line lengths to zero so that it won't come up in rigid end
226 %search
227 indexLength=find((length/ndiv)>tl);

228

229 LineID=lineLabel; %this was edited for the triangle case
230 indexNOLength=LineID;

231 indexNOLength(indexLength)=[];

232 %% ELEMENT DATA
233 tlVector(1:size(lineBLOCKFINAL),l)=tl;

234 %to include rigid end lengths

235 fid=fopen('linecheckl5.in','at');

236 fprintf(fid,'EDATA SUBSTRUC=0 GROUP=1 UNDEFINE=IGNORE\n@CLEAR\n@\n');

237 fprintf(fid,'EDATA SUBSTRUC=O GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@CHAROW 1 101 ...
101');

238 %fprintf(fid, '\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 .

0.00000000000000 0,\nO.00000000000000 %d %d\n', .

[LineBlockFinal2(:,l) tlVector t1Vector]');

239 %put rigid ends on elements that are long enough

240 firstElement=(ndiv).*lineBLOCKFINAL(indexLength,1)-(ndiv-1);

241 lastElement=(ndiv).*lineBLOCKFINAL(indexLength,1);

242

243 noOfElement=(1:ndiv*size(lineBLOCKFINAL,1))';
244 noOfElement([firstElement,lastElement])=[];

245

246 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 %d 0', [firstElement ...
t1Vector(indexLength,1)]');

247 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 %d', [lastElement ...
t1Vector(indexLength,1)]');

248 %make NO rigid ends on elements whose length are not long enough

249 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 O',noOfElement);

250 %

251 fprintf(fid,'\n@ENDMODIFY\n*\nEDATA SUBSTRUC=0 GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@ENDMODIFY');

252 fclose(fid);
253 %

254 %% COPY INPUT FILE TO FILE WITH THE HEIGHT AND MESH DENSITY IDENTIFIED

255 % copyfile('linecheckl5.in', ['inputFiles/Height.I num2str(h) '-' ...
num2str(u) 'x' num2str(u) '.in'])
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256 % delete linecheckl5.in
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A.3 Corrugated Vault - Continuous Shell

1 %the following file is used to create the input ADINA data (points, ...

surface

2 %grids etc) that is then used to create the CONTINUOUS Barrel Vault ...

shell.
3 %user inputs the geometrical parameters that define the corrugated vault

4 clear all

5 hold on
6

7 % INPUTS - INCHES, KIPS

8 L1=1200; %L1 is the full width

9 L2=972; %L2 is HALF the length

10 h=109; %h is the height of the arch

11

12 %INSERT as a percent of the length and width used in the amplitude, I ...
dividt

13 %by 100 later.

14 %to be OUT OF PHASE put one of the beta's as negative

15 betal=0 %PERCENT

16 beta2=10%PERCENT
17

18 %al is the amplitude of the edge curve (so at z==0)

19 al=(betal/100)*(Ll/2);

20 %a2 is the amplitude of the top undulation (so at z==h)

21 a2=(beta2/100)*(h);

22

23 %n is the number of waves on half the length, so in total there are 2*n

24 %waves
25 n=1.5
26 %steps refers to the remaking of the mesh grid, and how many steps we ...

take

27 %in the x direction

28 %THIS needs to be MORE FINE to get the curvature

29 steps=40;

30 %THIS MAKES THE NUMBER OF ROWS DIFFERENT (Sl)

31

32 %redefining the parameters

33 xo=Ll/2;%half the width

34 if n==0;

35 A=0;

36 else
37 A=al;
38 end
39

40 l=L2;

41 %dx=Ll/50;
42 dx=(xo+A)/50;

43 if(n<3)
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44 dy=L2/20; %dy doesn't need to be as fine as dx, %NOT TRUE FOR ...
WHEN n=5;

45 else
46 dy=L2/50

end

[Xl,Yl]=meshgrid(O

XX=Xl(:);

YY=Yl(:);

plot (XX,YY,'y.');

:dx:xo+A,-l:dy:1);

%maybe need to add boundary points

xb=(xo+A*cos(2*n*pi*YY/l));

plot(xb,YY,'k.');

XX=vertcat(XX,xb);

YY=vertcat(YY,YY);

plot(XX,YY,'gs');

points2=[XX YY];

points3=unique(points2,'rows');

XX=points3(:,1);

YY=points3(:,2);

plot(XX,YY, 'b.');

dd=(xo+A*cos(2*n*pi*YY/l))-XX;

XXX=XX;

YYY=YY;

indices=find(dd<O);

XXX(indices)=[];

YYY (indices) = [I ;
plot(XXX,YYY,'cd');

XFINAL=vertcat(XXX,-l*XXX);

YFINAL=vertcat(YYY,YYY);

plot(XFINAL,YFINAL,'k+');

%clear X Y xlin ylin Input inputy inputsub

Yvalues=unique(YFINAL);

[yl y2]=size(Yvalues)

X=[];

Y=[];
Input=[];

for(i=l:yl)

indices=find(YFINAL==Yvalues(i,1));

xlinl=linspace(O,max(XFINAL(ind.ices)), (steps))';

xlin2=sortrows(vertcat(-l*xlinl,xlinl));
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94 ind=find(xlin2==0);

95 xlin2(ind(1,1))=[]
96 xlin=xlin2;
97

98 X=vertcat(X,xlin);

99 [sl s2]=size(xlin)

100
101 ylin(1:sl)=Yvalues(i,1);

102 Y=vertcat(Y,ylin');

103

104 inputy(1:sl)=i;
105 inputsub=[1:1:sl; inputy]';

106 Input=vertcat(Input,inputsub);

107 end
108 Z=(h+a2.*cos(2*n*pi.*Y./l)).*[l-((X.^2)./(xo+A.*cos(2*n*pi.*Y./l)).^2)];

109

11o POINTS=[X Y Z];

ill %reorder

112 POINTS2=sortrows(POINTS,2);

113 plot3(POINTS2(:,l), POINTS2(:,2), POINTS2(:,3),'m*');

114 X=POINTS2(:,1);
115 Y=POINTS2(:,2);
116 Z=POINTS2(:,3);
117

118 [zl z2]=size(Z);

119 label=[1:1:zl]';%

120 %points=[label p zeros(dl,1)]

121 points=[label X Y Z zeros(zl,l)];

122 points2=[X Y Z];
123 InputFinal= [Input(:,2) Input(:,l) label];

124

125 %steps
126 noRows = size(Yvalues) %becomes 3 of rows

127 noCols=sl %becomes # of cols

128

129 polylinePointl=(noCols+l)/2;

130 polylinePoint2=polylinePointl+(noCols)*(noRows-1)

131 A=noCols
132 al

133 a2

134 dlmwrite('PointsToimport.txt', points,'delimiter', '\t');
135 dlmwrite('SurfaceGridToimport.txt', InputFinal,'delimiter', '\t');
136

137 %% using MyCrust to plot the delauney triangulation

138 % Author:Giaccari Luigi

139 % Last Update: 28/01/2009

140 % Created: 15/4/2008

141 % MYCRUST - makes a surface out of nonuniform grid data

142 % Input:
143 % p is a Nx3 array containing the 3D set of points

144 % Output:
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145 % t are points id contained in triangles nx3 array
146 addpath('D:\Smalek\Desktop\RESEARCH SPRING ...

2011\MATLAB\MyCrustOpenO7O9O9');

147 figure
148 [t]=MyCrustOpen(points2);

149 trisurf(t,points2(:,l),points2(:,2),points2(:,3),'facecolor', 'c',...
150 'edgecolor','b');%plot della superficie;
151 shading interp;

152 colormap(gray);
153 figure
154 trimesh(t,points2(:,1),points2(:,2),points2(:,3),'facecolor', 'c',...
155 'edgecolor','b');%plot della superficie;
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A.4 Corrugated Vault - Quadrilateral Grid

1 clear all

2 % the following code takes the element connectivity of QUAD SHELL ...

ELEMENTS

3 % and gives them a line id # and the points/nodes that connect them

4 %rewrite data into line #, point 1, point 2 of ADINA Block portion

5

6 % INPUT FILES

7 %read in data

8 %file name "archQUADelements.txt" - is the exported data from adina ...
that contains

9 %the element connectivity

10 %file name "archQUADnodes.txt" - is teh exported data from adina that

11 %contains the nodal 'points and their coordinates

12

13 % OUTPUT FILES
14 %this program writes all the adina commands into one file called

is %"adinaINPUTQUAD. in"

16

17 % INPUT PARAMETERS TO EDIT

18 % NDIV = which is the number of elements to mesh each beam member into

19 ndiv=3;
20 %ALSO - delete the adinaINPUTQUAD.in file when rerunning this.

otherwise it

21 %will append the new info to the old input file.

22

23 %Cross section
24 t1=4.98; %width of rectangular cross section

25 t2=4.98; %height of rectangular cross section

26 %% INSERTING COMMON INFO INTO THE ADINA INPUT FILE

27 %specifically CMASS=Yes, allows the option to print the mass and ...

volume of

28 %the model
29 fid=fopen('adinaINPUTQUAD.in','at');

30 fprintf(fid, '*\nMASTER ANALYSIS=STATIC MODEX=EXECUTE ...

TSTART=0.00000000000000 IDOF=O,\nOVALIZAT=NONE FLUIDPOT=AUTOMATIC ...

CYCLICPA=l IPOSIT=STOP,\nREACTION=YES INITIALS=NO FSINTERA=NO ...

IRINT=DEFAULT CMASS=YES, \nSHELLNDO=AUTOMATIC AUTOMATI=OFF ...

SOLVER=SPARSE, \nCONTACT-=CONSTRAINT-FUNCTION ...

TRELEASE=0.00000000000000,\nRESTART-=NO FRACTURE=NO LOAD-CAS=NO ...

LOAD-PEN=NO SINGULAR=YES,\nSTIFFNES=0.000100000000000000 ...

MAP-OUTP=NONE MAP-FORM=NO, \nNODAL-DE='''' POROUS-C=NO ADAPTIVE=O ...

ZOOM-LAB=l AXIS-CYC=O,\nPERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO ...

STABILIZ=NO,\nSTABFACT=1.OOOOOOOOOOOOOOE-10 RESULTS=PORTHOLE ...

FEFCORR=NO,\nBOLTSTEP=l EXTEND-S=YES CONVERT-=NO DEGEN=YES ...

TMC-MODE=NO, \nENSIGHT-=NO');

31 %% POINT BLOCK
32 pointBlockl=dlmread('archQUADnodes.txt');
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33 %define the auxiliary points
34 auxPoints=[pointBlockl(:,l)+1000,pointBlockl(:,2:3),pointBlockl(:,4)-1,..
35 pointBlockl(:,5)];
36 pointBlock=[pointBlockl; auxPoints];
37 fprintf(fid, '\n*\nCOORDINATES POINT SYSTEM=O\n@CLEAR');
38 fprintf(fid, '\n%d %d %d %d %d',pointBlock');
39 fclose(fid);
40 %% LINE BLOCK%
41 elemConnectivity=dlmread('archQUADelements.txt');
42 [dl, d2]=size(elemConnectivity);
43 elemConnectivity=elemConnectivity(l:dl,2:5);
44

45 for(i=l:dl)
46 j=4*i-3;
47 lineBlock(j,1:2)=[elemConnectivity(i,l) elemConnectivity(i,2)];
48 lineBlock(j+1,1:2)=[elemConnectivity(i,2) elemConnectivity(i,3)];
49 lineBlock(j+2,1:2)=[elemConnectivity(i,3) elemConnectivity(i,4)];
50 lineBlock(j+3,1:2)=[elemConnectivity(i,4) elemConnectivity(i,l)];
si end

52

53 %clean up the line block to get rid of repeating lines
54 lineBlock(:,:);
55 [dl d2]=size(lineBlock);
56 for(i=l:dl)
57 for(j=i:dl)
58 pairl=[lineBlock(i,l) lineBlock(i,2)];
59 pair2=[lineBlock(j,2) lineBlock(j,l)];
60 if(pair2==pairl);
61 lineBlock(j,:)=[];
62 [dl d2]=size(lineBlock);
63 break
64 end
65 end
66 end
67 lineLabel=(1:1:dl)';
68 lineBLOCKFINAL=[lineLabel, lineBlock];
69 fid=fopen('adinaINPUTQUAD.in','at');
70 fprintf(fid, '\n*\nLINE STRAIGHT NAME=%d Pl=%d P2=%d',lineBLOCKFINAL');
71 fclose(fid);
72 %define the auxiliary point for each line
73 auxPointonLine=[lineBLOCKFINAL(:,l),lineBLOCKFINAL(:,2)+1000];
74 %% WRITE MATERIAL BLOCK%
75 fid=fopen('adinaINPUTQUAD.in','at');
76 %below is for elastic material
77 fprintf(fid,'\n*\nMATERIAL ELASTIC NAME=1 E=29000 NU=0.3, ...

DESNITY=2.83e-4 ALPHA=O MDESCRIP=''STEEL\''');
78

79 %below is for bilinear material (so that we can enter a sigma-y yield
80 %stress)
81 %fprintf(fid,'\n*\nMATERIAL PLASTIC-BILINEAR NAME=l ...

HARDENIN=ISOTROPIC,\nE=29000.0000000000 NU=0.300000000000000 ...
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YIELD=50.0000000000000,\nET=0.00000000000000 EPA=0.00000000000000 ...
STRAINRA=O,\nDENSITY=0.000283000000000000 ...
ALPHA=0.00000000000000,\nTREF=0.00000000000000 DEPENDEN=NO ...
TRANSITI=0.000100000000000000,\nEP-STRAI=0.00000000000000 ...
BCURVE=O BVALUE=0.00000000000000,\nXM-INF=0.00000000000000 ...
XMO=0.00000000000000,\nETA=0.00000000000000 MDESCRIP=''STEEL''');

82

83 %% WRITE CROSS SECTION BLOCK

84 fprintf(fid, '\n@\n*\nCROSS-SECTIO RECTANGULAR NAME=1 WIDTH=%d,\n ...
HEIGHT=%d SC=O TC=O,\n TORFAC=l SSHEARF=O,\n TSHEARF=O ISHEAR=NO ...
SQUARE=YES',tl,t2);

85 %DEFINE ELEMENT TYPE

86 % HERE INSERT IF THE JOINTS ARE RIGID OR NOT "RIGIDEND=INFINITE" OR ...
"RIGIDEND=NONE"

87 fprintf(fid, '\n*\nEGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT
MATERIAL=1 RINT=5,\n SINT=DEFAULT TINT=DEFAULT RESULTS=STRESSES ...
INITIALS=NONE,\n CMASS=DEFAULT RIGIDEND=INFINITE MOMENT-C=NO ...
RIGIDITY=1,\n MULTIPLY=1000000.00000000 RUPTURE=ADINA ...
OPTION=NONE,\n BOLT-TOL=0.00000000000000 DESCRIPT=''NONE''

SECTION=1,\n PRINT=DEFAULT SAVE=DEFAULT ...
TBIRTH=0.00000000000000,\n TDEATH=0.00000000000000 SPOINT=4 ...
BOLTFORC=0.00000000000000,\n BOLTNCUR=O TMC-MATE=1 BOLT-NUM=O ...
BOLT-LOA=0.00000000000000,\n WARP=NO');

88 %% MESH DENSITY

89 %insert here Line Labels

90 %fprintf(fid, '\n*\nSUBDIVIDE LINE NAME=103 MODE=DIVISIONS NDIV=1 ...
RATIO=1.00000000000000,\n PROGRESS=GEOMETRIC CBIAS=NO\n@CLEAR\n');

91 fprintf(fid,'\n*\nSUBDIVIDE LINE NAME=103 MODE=DIVISIONS NDIV=%d ...
RATIO=1.00000000000000,\n PROGRESS=GEOMETRIC ...
CBIAS=NO\n@CLEAR\n',ndiv);

92 fprintf(fid,'\n %d ', lineLabel);

93 fprintf(fid, '\n@');

94

95 %% CREATE MESH

96 %insert here line labels

97 fprintf(fid,'\n*\nGLINE NODES=2 AUXPOINT=%d NCOINCID=ENDS ...
NCENDS=12,\n NCTOLERA=1.OOOOOOOOOOOOOOE-05 SUBSTRUC=O GROUP=1 ...
MIDNODES=CURVED\n @CLEAR \n%d \n@ ', [auxPointonLine(:,2) ...
lineLabel]');

98 %fprintf('\nauxpoint %d line %d', [auxPointonLine(:,2) lineLabel]')

99 fclose(fid);

100

1o %% CALCULATE LINE LENGTH

102 %this is used to calculate if the rigid end length is greater than the

103 %line length. here we separate the lines that will have a rigid end

104 %length and those that will not.

105

106 indexPl=lineBLOCKFINAL(:,2);

107 indexP2=lineBLOCKFINAL(:,3);

108

109 length=sqrt((pointBlockl(indexPl,2)-pointBlockl(indexP2,2)).^2+...
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110 (pointBlockl(indexPl,3)-pointBlockl(indexP2,3)).^2+...

il (pointBlockl(indexPl,4)-pointBlockl(indexP2,4)).^2);

112 %length((end+l-size(boundaryLines)):end,l)=0;

113 %set boundary line lengths to zero so that it won't come up in rigid end

114 %search
115 indexLength=find( (length/ndiv) >tl);

116

117 indexNOLength=lineLabel;
118 indexNOLength(indexLength)=[];

119 %% ELEMENT DATA

120 tlVector(1:size(lineBLOCKFINAL),1)=tl;

121 %to include rigid end lengths

122 fid=fopen('adinaINPUTQUAD.in','at');

123 fprintf(fid,'EDATA SUBSTRUC=0 GROUP=1 UNDEFINE=IGNORE\n@CLEAR\n@\n');

124 fprintf(fid,'EDATA SUBSTRUC=0 GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@CHAROW 1 101 ...
101');

125 %fprintf(fid, '\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 %d %d\n', .

[LineBlockFinal2(:,1) tlVector t1Vector]');

126 %put rigid ends on elements that are long enough

127 %place holder
128 firstElement=(ndiv).*lineBLOCKFINAL(indexLength,1)-(ndiv-1);

129 lastElement=(ndiv).*lineBLOCKFINAL(indexLength,1);

130

131 noOfElement=(l:ndiv*size(lineBLOCKFINAL,1))';

132 noOfElement([firstElement,lastElement])=[];

133

134 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 %d 0', [firstElement ...
tlVector(indexLength,1)');

l35 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 %d', [lastElement ...
tlVector (indexLength, 1) ]1');

136 %make NO rigid ends on elements whose length are not long enough

137 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 0',noOfElement);

138 %

139 fprintf(fid,'\n@ENDMODIFY\n*\nEDATA SUBSTRUC=0 GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@ENDMODIFY');

140 fclose(fid);
141 %% LOADS
142 %Apply Point loads to Points on Edge and in middle of interesecting

143 [dl d2]=size(pointBlockl);

144 forceLabel=(1:1:dl)';
145 fid=fopen('adinaINPUTQUAD.in','at');

146 fprintf(fid,'\n*\n LOAD FORCE NAME=1 MAGNITUD= 1 ...
FX=0.00000000000000,\nFY=0.00000000000000 FZ=-1.00000000000000');

147 fprintf(fid,'\n*\n APPLY-LOAD BODY=O\n@CLEAR');

148 fprintf(fid, '\n%d ''FORCE'' 1 ''POINT'' %d 0 1 0 0 -1 0 0 0 ...
''NO'',\n 0 0 1 0 ''MID''',[forceLabel(:,1) pointBlockl(:,1)]');
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149 fclose(fid);

150 %% collect boundary points

151 boundaryPointsOPENINGS=[find(pointBlockl(:,3)>971.9); ...
find(pointBlockl(:,3) -971.9)];

152 boundaryPointsBOUNDARIES=[find(pointBlockl(:,4)==O)];

153 %% DEFINE BOUNDARY CONDITIONS

154 %GET POINT IDS OF POINTS THAT NEED TO BE PINNED

155 %Define pinned condition

156 fid=fopen('adinaINPUTQUAD.in','at');

157 fprintf(fid,'\n*\n FIXITY NAME=OPENINGS\n@CLEAR\n''X-ROTATION''\n'...

158 'Y-TRANSLATION''\n''OVALIZATION''');

159 fprintf(fid,'\n*\n FIXITY NAME=BOUNDARIES\n@CLEAR\n''X-TRANSLATION'...

160 '\n''Z-TRANSLATION''\n''OVALIZATION''');

161

162 %Degree(s) of freedom to be fixed. {X-TRANSLATION/Y-TRANSLATION/

163 % Z-TRANSLATION/X-ROTATION/Y-ROTATION/Z-ROTATION/OVALIZATION/

164 % FLUID-POTENTIAL/PORE-FLUID-PRESSURE/BEAM-WARP}
165 % APPLY BOUNDARY CONDITIONS TO POINTS

166 fprintf(fid,'\n@\n*\n FIXBOUNDARY POINTS FIXITY=ALL\n@CLEAR');

167 fprintf(fid,'\n%d ''OPENINGS''', boundaryPointsOPENINGS);

168 fprintf(fid,'\n%d ''BOUNDARIES''', boundaryPointsBOUNDARIES);

169 fprintf(fid, '\n@')

170

171 % %APPLY BOUNDARY CONDITIONS TO LINES

172 % fprintf(fid, '\n@\n*\n FIXBOUNDARY LINES ...
FIXITY=PINNED\n@CLEAR');

173 % fprintf(fid, '\n%d ''PINNED''',

LineBlockFinal2 ( (end+1-size(boundaryLines)) :end, 1));

174 % fprintf(fid, '\n@');

175 fclose(fid);
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A.5 Corrugated Vault - Triangular Grid

1 clear all

2 % the following code takes the element connectivity of Triangular 2D ...
ELEMENTS

3 % and gives them a line id # and the points/nodes that connect them

4 %rewrite data into line #, point 1, point 2 of ADINA Block portion

5

6 % INPUT FILES
7 %read in data
8 %file name "arch4elements.txt" - is the exported data from adina that ...

contains
9 %the element connectivity

10 %file name "arch4nodes.txt" - is teh exported data from adina that

11 %contains the nodal points and their coordinates

12

13 % OUTPUT FILES
14 %this program writes all the adina commands into one file called

15 %"adinaINPUTQUAD.in"
16

17 % INPUT PARAMETERS TO EDIT
18 % NDIV = which is the number of elements to mesh each beam member into

19 ndiv=4;

20 %ALSO - delete the adinaINPUTQUAD.in file when rerunning this. ...

otherwise it
21 %will append the new info to the old input file.
22

23 %Cross section
24 tl=4.1; %width of rectangular cross section

25 t2=4.1; %height of rectangular cross section
26 %read in data
27 %rewrite data into line #, point 1, point 2 of ADINA Block portion

28 %% INSERTING COMMON INFO INTO THE ADINA INPUT FILE

29 %specifically CMASS=Yes, allows the option to print the mass and ...
volume of

30 %the model
31 fid=fopen('adinaINPUT.in','at');
32 fprintf(fid, '*\nMASTER ANALYSIS=STATIC MODEX=EXECUTE ...

TSTART=0.00000000000000 IDOF=O,\nOVALIZAT=NONE FLUIDPOT=AUTOMATIC ...
CYCLICPA=1 IPOSIT=STOP,\nREACTION=YES INITIALS=NO FSINTERA=NO ...
IRINT=DEFAULT CMASS=YES,\nSHELLNDO=AUTOMATIC AUTOMATI=OFF ...
SOLVER=SPARSE,\nCONTACT-=CONSTRAINT-FUNCTION ...
TRELEASE=0.00000000000000,\nRESTART-=NO FRACTURE=NO LOAD-CAS=NO ...
LOAD-PEN=NO SINGULAR=YES,\nSTIFFNES=0.000100000000000000 ...
MAP-OUTP=NONE MAP-FORM=N0,\nNODAL-DE='''' POROUS-C=NO ADAPTIVE=0 ...
ZOOM-LAB=1 AXIS-CYC=0,\nPERIODIC=NO VECTOR-S=GEOMETRY EPSI-FIR=NO ...
STABILIZ=NO,\nSTABFACT=1.OOOOOOOOOOOOOOE-10 RESULTS=PORTHOLE ...
FEFCORR=NO,\nBOLTSTEP=l EXTEND-S=YES CONVERT-=NO DEGEN=YES ...
TMC-MODE=NO,\nENSIGHT-=NO');
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33 %% POINT BLOCK

34 pointBlockl=dlmread('arch4nodes.txt');

35 [api ap2]=size(pointBlockl);

36 %if lines get messed up, revisit the next line where i add 10,000 to the
37 %point id for creating the auxillary nodes. if the geometry has more than
38 %10,000 points then the numbering gets messed up. the 10,000 is the line
39 %below must also match the line further down ...

%auxPointonLine=[lineBLOCKFINAL(:,1),lineBLOCKFINAL(:,2)+10000];

40

41 auxPoints=[pointBlockl(:,1)+apl,pointBlockl(:,2:3) ,pointBlockl (:,4)-1,...
42 pointBlockl(:,5)];

43 pointBlock=[pointBlockl; auxPoints];

44 fprintf(fid, '\n*\nCOORDINATES POINT SYSTEM=0\n@CLEAR');

45 fprintf(fid, '\n%d %d %d %d %d',pointBlock');

46 fclose(fid);

47 %% LINE BLOCK%

48 elemConnectivity=dlmread('arch4elements.txt')

49 [dl, d2]=size(elemConnectivity)

5o elemConnectivity=elemConnectivity(l:dl,2:4)

51

52 for(i=l:dl)
53 j=3*i-2;
54 lineBlock(j,1:2)=[elemConnectivity(i,l) elemConnectivity(i,2)];
55 lineBlock(j+1,1:2)=[elemConnectivity(i,2) elemConnectivity(i,3)];
56 lineBlock(j+2,1:2)=[elemConnectivity(i,3) elemConnectivity(i,l)];

57 end
58

59 %clean up the line block to get rid of repeating lines

60 lineBlock(:,:);

61 [dl d2]=size(lineBlock);

62 for(i=l:dl)
63 for(j=i:dl)
64 pairl=[lineBlock(i,l) lineBlock(i,2)];

65 pair2=[lineBlock(j,2) lineBlock(j,l)];

66 if(pair2==pairl);

67 lineBlock(j,:)=[];

68 [dl d2]=size(lineBlock);

69 break
70 end
71 end
72 end
73 lineLabel=(1:1:dl)'

74 lineBLOCKFINAL=[lineLabel, lineBlock]

75 fid=fopen('adinaINPUT.in','at');

76 fprintf(fid, '\n*\nLINE STRAIGHT NAME=%d Pl=%d P2=%d',lineBLOCKFINAL');
77 fclose(fid);

78 %define the auxiliary point for each line

79 auxPointonLine=[lineBLOCKFINAL(:,1),lineBLOCKFINAL(:,2)+apl]

80

81 %% WRITE MATERIAL BLOCK%

82 fid=fopen('adinaINPUT.in','at');
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83 %below is for elastic material

84 fprintf(fid,'\n*\nMATERIAL ELASTIC NAME=1 E=29000 NU=0.3,

DESNITY=2.83e-4 ALPHA=O MDESCRIP=''STEEL\''');

85

86 %below is for bilinear material (so that we can enter a sigma-y yield
87 %stress)

88 %fprintf(fid,'\n*\nMATERIAL PLASTIC-BILINEAR NAME=l ...
HARDENIN=ISOTROPIC,\nE=29000.0000000000 NU=0.300000000000000 ...
YIELD=50.0000000000000,\nET=0.00000000000000 EPA=0.00000000000000 ...
STRAINRA=O,\nDENSITY=0.000283000000000000 ...
ALPHA=0.00000000000000,\nTREF=0.00000000000000 DEPENDEN=NO ...
TRANSITI=0.000100000000000000,\nEP-STRAI=0.00000000000000 ...
BCURVE=O BVALUE=0.00000000000000,\nXM-INF=0.00000000000000 ...
XMO=0.00000000000000,\nETA=0.00000000000000 MDESCRIP=''STEEL''');

89 %% WRITE CROSS SECTION BLOCK

90 fprintf(fid,'\n@\n*\nCROSS-SECTIO RECTANGULAR NAME=1 WIDTH=%d,\n ...
HEIGHT=%d SC=O TC=O,\n TORFAC=l SSHEARF=O,\n TSHEARF=O ISHEAR=NO ...
SQUARE=YES',tl,t2);

91 %DEFINE ELEMENT TYPE

92 % HERE INSERT IF THE JOINTS ARE RIGID OR NOT "RIGIDEND=INFINITE" OR ...
"RIGIDEND=NONE"

93 fprintf(fid,'\n*\nEGROUP BEAM NAME=1 SUBTYPE=THREE-D DISPLACE=DEFAULT ...
MATERIAL=l RINT=5,\n SINT=DEFAULT TINT=DEFAULT RESULTS=STRESSES ...
INITIALS=NONE,\n CMASS=DEFAULT RIGIDEND=INFINITE MOMENT-C=NO ...
RIGIDITY=1,\n MULTIPLY=1000000.00000000 RUPTURE=ADINA ...
OPTION=NONE,\n BOLT-TOL=0.00000000000000 DESCRIPT=''NONE'' ...
SECTION=1,\n PRINT=DEFAULT SAVE=DEFAULT ...
TBIRTH=0.00000000000000,\n TDEATH=0.00000000000000 SPOINT=4 ...
BOLTFORC=0.00000000000000,\n BOLTNCUR=O TMC-MATE=1 BOLT-NUM=O ...
BOLT-LOA=0.00000000000000,\n WARP=NO');

94 %% MESH DENSITY

95 %insert here Line Labels

96 fprintf(fid,'\n*\nSUBDIVIDE LINE NAME=103 MODE=DIVISIONS NDIV=%d ...
RATIO=1.00000000000000,\n PROGRESS=GEOMETRIC ...
CBIAS=NO\n@CLEAR\n',ndiv);

97 fprintf(fid,'\n %d ', lineLabel);

98 fprintf(fid,'\n@');

99 %% CREATE MESH

100 %insert here line labels

101 fprintf(fid,'\n*\nGLINE NODES=2 AUXPOINT=%d NCOINCID=ENDS ...
NCENDS=12,\n NCTOLERA=1.OOOOOOOOOOOOOE-05 SUBSTRUC=O GROUP=1 ...
MIDNODES=CURVED\n @CLEAR \n%d \n@ ', [auxPointonLine(:,2) ...
lineLabel]');

102 %fprintf('\nauxpoint %d line %d', [auxPointonLine(:,2) lineLabel]')
103 fclose(fid);

104 %% CALCULATE LINE LENGTH

105 %this is used to calculate if the rigid end length is greater than the
106 %line length. here we separate the lines that will have a rigid end
107 %length and those that will not.

108

109 indexPl=lineBLOCKFINAL(:,2);
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110 indexP2=lineBLOCKFINAL(:,3);

111

112 length=sqrt((pointBlockl(indexPl,2)-pointBlockl(indexP2,2)).^2+...

113 (pointBlockl(indexP1,3)-pointBlockl(indexP2,3)).^2+...

114 (pointBlockl(indexP1,4)-pointBlockl(indexP2,4)).^2);

115 %length((end+l-size (boundaryLines)):end,l)=0;

116 %set boundary line lengths to zero so that it won't come up in rigid end

117 %search
118 indexLength=find((length/ndiv) >tl);

119

120 indexNOLength=lineLabel;

121 indexNOLength(indexLength)=[];

122 %% ELEMENT DATA
123 tlVector(l:size(lineBLOCKFINAL),l)=tl;

124 %to include rigid end lengths

125 fid=fopen('adinaINPUT.in','at');

126 fprintf(fid,'EDATA SUBSTRUC=O GROUP=1 UNDEFINE=IGNORE\n@CLEAR\n@\n');

127 fprintf(fid,'EDATA SUBSTRUC=O GROUP=1 ...
UNDEFINE=IGNORE\n@STARTMODIFY\n@CHAROW 1 101 ...
101');

128 %fprintf(fid, '\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\n0.00000000000000 %d %d\n', .

[LineBlockFinal2(:,l) tlVector tlVector]');

129 %put rigid ends on elements that are long enough

130 %place holder
131 firstElement=(ndiv).*lineBLOCKFINAL(indexLength,l)-(ndiv-1);

132 lastElement=(ndiv).*lineBLOCKFINAL(indexLength,1);

133

134 noOfElement=(l:ndiv*size(lineBLOCKFINAL,1))';

135 noOfElement([firstElement,lastElement])=[];

136

137 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 %d O', [firstElement ...
t1Vector(indexLength,1)]');

138 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 %d', [lastElement ...
tlVector(indexLength,1)]');

139 %make NO rigid ends on elements whose length are not long enough

140 fprintf(fid,'\n%d 1 1 0 ''DEFAULT'' ''DEFAULT'' 0.00000000000000 ...
0.00000000000000 0,\nO.00000000000000 0 0',noOfElement);

141 %
142 fprintf(fid,'\n@ENDMODIFY\n*\nEDATA SUBSTRUC=0 GROUP=l ...

UNDEFINE=IGNORE\n@STARTMODIFY\n@ENDMODIFY');

143 fclose(fid);
144 %% Apply Point loads to Points on Edge and in middle of interesecting

145 [dl d2]=size(pointBlock);

146 forceLabel=(1:1:dl)'
147 fid=fopen('adinaINPUT.in','at');

148 fprintf(fid,'\n*\n LOAD FORCE NAME=l MAGNITUD= 1 ...

FX=0.00000000000000,\nFY=0.00000000000000 FZ=-1.00000000000000');
149 fprintf(fid,'\n*\n APPLY-LOAD BODY=O\n@CLEAR')
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15o fprintf(fid, '\n%d ''FORCE'' 1 ''POINT'' %d 0 1 0 0 -1 0 0 0 ...
''NO'',\n 0 0 1 0 ''MID''',[forceLabel(:,1) pointBlock(:,1)]');

151 fclose(fid);

152 %%

153 %GET POINT IDS OF POINTS THAT NEED TO BE PINNED

154 boundaryPointsOPENINGS=[find(pointBlockl(:,3)>971.9); ...
find (pointBlockl (:,3):<-971.9)];

155 boundaryPointsBOUNDARIES=[find(pointBlockl(:,4)==0)];

156 %% DEFINE BOUNDARY CONDITIONS

157 %GET POINT IDS OF POINTS THAT NEED TO BE PINNED

158 %Define pinned condition

159 fid=fopen('adinaINPUT.in','at');

160 fprintf(fid,'\n*\n FIXITY NAME=OPENINGS\n@CLEAR\n''X-ROTATION''\n'...

161 'Y-TRANSLATION''\n''OVALIZATION''');

162 fprintf(fid,'\n*\n FIXITY NAME=BOUNDARIES\n@CLEAR\n''X-TRANSLATION'...

163 '\n''Z-TRANSLATION''\n''OVALIZATION''');

164

165 %Degree(s) of freedom to be fixed. {X-TRANSLATION/Y-TRANSLATION/

166 % Z-TRANSLATION/X-ROTATION/Y-ROTATION/Z-ROTATION/OVALIZATION/

167 % FLUID-POTENTIAL/PORE-FLUID-PRESSURE/BEAM-WARP}

168 % APPLY BOUNDARY CONDITIONS TO POINTS

169 fprintf(fid,'\n@\n*\n FIXBOUNDARY POINTS FIXITY=ALL\n@CLEAR');

170 fprintf(fid,'\n%d ''OPENINGS''', boundaryPointsOPENINGS);

171 fprintf(fid,'\n%d ''BOUNDARIES''', boundaryPointsBOUNDARIES);

172 fprintf(fid,'\n@');

173 fclose(fid);
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Appendix B

Equivalent Continuum

1. Reduce the equation of equilibrium and compatibility into a couple set of two ho-
mogeneous equations in w and f.

DVw + 1V4f + -peRV2W = 0

V4f = EhaV 2W
R

where f must satisfy the compatibility condition and ha is the
axial rigidity.

(B.la)

(B.1b)

thickness from to

2. Use the solutions of w and f derived by (Hutchinson, 1967) and solve for B 1

w = cos (i

f = B1 cos

cos

cos (K R)

where B 1 is a constant and n, and iY are wavelength parameters.

3. Substitute Equations B.2a into Equations B.la.

B1  EhaR
K2 + K

4. Substitute B 1 and the bending rigidity D into Equation B.1a and solve for pe.

Eh3
12(1 -V2)
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(B.4a)



2E
pe

eR

hb (1 +v) +
12R2(i _ V2)

ha

K2 + K2

where hb is the thickness from to the bending rigidity.

5. Fin the minimum of 2 + K 2 to solve for the buckling load.

e+ = 0

22 2R 2 hap
xi + Y h 3

2E Vh3ha

3(1 - v2) R 2
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