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ABSTRACT 

This undergraduate thesis documents the design considerations and specifications of building a 

personal battery-powered go-kart.  This includes designing and building a custom brushless DC 

motor for use in the drivetrain.  Details of the fabrication and assembly processes are included 

for reference.  The motor was not finished in time to be able to be tested, but the performance of 

the go-kart has been estimated through scientific calculations. 
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1. Introduction 

1.1 Motivation 

My motivation for choosing this topic as my thesis stems from a variety of interests.  Ever since I 

got my driver’s license, learning about automobiles has been a passion of mine.  Along with watching 

shows about cars and frequently visiting online automobile blogs, I occasionally helped my father 

maintain the family cars at the high school auto shop where he works.  After my second year at MIT, I 

joined the Electric Vehicle Team where I helped with the battery-electric conversion of the Ford CD3 

platform.  As I worked with the team over the summer, I was exposed to a plethora of other student 

groups and personal projects from MIT’s Formula SAE racing team to the MIT Electronic Research 

Society.  Since then, I have always wanted to build my own vehicle but never could find the time between 

classes and personal obligations. 

During my senior year, I began to design to formulate ideas for an electric go-kart.  At that point, 

the required thesis for undergraduates pursuing a full mechanical engineering degree was far from my 

motivation.  However, as graduation creeped closer and closer, it became obvious that my goal of 

building my own vehicle would only get done if I committed to it as my thesis project.   I wanted to 

combine my hands-on experience with a modern project that represented my talents and personality.  

Thanks to support from several friends, I was able to accomplish my goal. 

1.2 Goals 

For this project, I wanted to demonstrate my accumulated engineering knowledge.  This would 

combine not only the academic mechanical teachings that I learned in class, but also integrate electrical 

systems that I picked up while working on various projects.  This combination is necessary for many real-

world applications, and working on this area will hopefully prove helpful after I graduate. 

In my design and analysis, I wanted to use computational tools to aid my calculations.  These 

tools allow for realistic simulations of a variety of conditions.  I used these to double-check frame 

deformation, shaft yielding, aerodynamics, and motor torque and magnetic flux for my motor.  I also 

wanted to create a reliable, environmentally conscious vehicle that would be practical beyond the 

racetrack.  Through sound engineering, maintenance would be minimal.  By using an electric motor and 

running everything off batteries, Eli-Kart doesn’t add directly to air pollution.  At the expense of a little 

cornering speed, Eli-Kart will have decent ground clearance and extra space for another passenger or 

extra cargo. 
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2. Eli-Kart 

2.1 Frame 

I wanted the frame to be strong because Eli-Kart would need to carry at least 500 pounds safely to 

account for two passengers.  From previous projects I was familiar with box extrusions, which are strong 

beams that are suitable for structural applications.  I chose steel because it is much tougher and easier to 

weld than materials such as aluminum.  Uprights for steering and mounting other components could be 

welded to the main structure.  

 

Figure 2-1: Picture of the frame 

On top of the frame there needed to be a platform for sitting on.  I decided on ½” thick acrylic for 

several reasons.  It would be clear, allowing for a view of the components underneath, and also be 

structural enough to allow for direct mounting of seats and other parts.  I chose the dimension of the cart 

to fit within current handicap accessible areas, allowing it to go through doors and fit in a bike lane.  I 

also wanted it to be just long enough to fit two people sitting one behind the other.  A 24” by 48” fulfilled 

both of these criteria and had a convenient size and a rectangular 1:2 ratio. 
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2.2 Steering 

 

Figure 2-2: Picture of the steering wheel. 

Steering is another very important mechanical aspect of any vehicle.  I decided to use a steering 

linkage similar to that on a colleague's go-kart, Shane Colton.  It works by attaching each wheel to a 

steering rod, and connecting each rod to a part on the end of the steering wheel.  When the steering wheel 

turns, the part on the end rotates, pushing one steering rod away while pulling the other rod closer. 

 

Figure 2-3: Picture of steering connector. 
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For two wheel steering, an Ackermann steering geometry accounts for the different turning radius 

of each wheel.  The basis of the geometry is shown in Figure 3. 

 

Figure 2-4: Diagram of Ackermann steering geometry. 

  I used my CAD model in Solidworks to simulate the steering.  By adjusting the angle to the 

back wheel and changing the distance between the front wheels, I was able to set up the Ackermann 

geometry precisely and get an approximation of how the steering would work.  I could then use the 

dimensions from the CAD model when fabricating the parts. 

Once assembled, I found that there were several problems with the steering.  At first, the steering 

worked smoothly because it was unloaded.  However, once the go-kart was loaded with my weight, the 

flange bearing holding the steering wheel shaft in place began shifting because it had an adjustable 

housing.  To correct this, I made a large bushing to be mounted to the bottom of the go-kart to help 

support the steering shaft.  I bored out a round of delrin, which is a soft, low friction plastic, to fit over the 

steering shaft and also cut an angle into the profile so that it would press flush against the bottom of the 

main platform.  I then counterbored holes in a mounting plate and bolted the plate to the angled face.  

Once flush, I drilled and tapped holes into the main platform to secure the bushing. 

Another problem was that the ball joints I had for the steering linkage were hitting their 

maximum angle before the wheels could turn enough for a decent turning radius.  Even switching to high 

strength ball joints with a larger allowed angle wasn't enough.  To fit this, I shortened the spacer seen in 

Figure 2-5. This adjusted the angle of the ball joints favorably, allowing them to rotate further. 
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Figure 2-5: Picture of steering block and tie rod connection 

The last problem was that when the wheel was turned too far, one wheel would start retracting.  

This is a problem of my particular steering configuration, which directly connects the steering column to 

the wheels, allowing for only a small maximum rotation of the steering wheel.  To correct this I made a 

new, longer connector that resulted in a higher horizontal displacement for the same rotation.  This 

reduced the turning precision slightly, but allowed for a larger turning radius. 

2.3 Drivetrain 

The drivetrain is a fundamental engineering problem for all vehicles.  The drivetrain consists of 

the motor, transmission, and any drive wheels.  Drivetrain components need to be mounted robustly and 

operate efficiently to be safe and effective.  For Eli-Kart, I designed the frame so that a motor could be 

easily mounted to the steel tubing.  For the brushless hobby aircraft motor I had, it would only take a 

single mounting plate to secure.  After directly bolting a ¼” plate of aluminum to the frame, I drilled 

mounting holes that matched with the motor, and milled slots into the plate to allow for proper tensioning 

of the drive belt. 
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Figure 2-6: Picture of motor mount with a brushless hobby aircraft motor. 

For simplicity and ease of operation, there would only be one gear.  I decided to use a 15-5 HTD 

belt to transmit power from the motor shaft to the drive wheel.  I chose belts because they are slightly 

more efficient and quieter than their main competitor in small electric vehicles, chains.  I wanted a 

maximum speed of around 20mph (or 9 m/s), so I calculated the gear ratio I needed to hit this speed while 

maximizing torque using the equation below. 

               
        

  
           (1) 

I calculated that I needed a gear ratio of almost 12 for a 10,000 rpm motor.  Given that the wheels I 

used already had a 72-tooth pulley built into the hub, this would mean using only a 6 tooth pulley.  

However, the smallest pulley that I could find had 12-teeth, which doubled my top speed at the cost of 

cutting torque at the wheel in half. 
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3. Custom Motor 

3.1 Design constraints and calculations 

Several equations govern the properties of an electric motor.  The most important variable in 

these equations is the motor constant, k.  The motor constant is made up of a combination of stator size, 

windings, and magnetic field.  I had to keep these in mind when choosing the components for my motor 

to make sure it would perform well.  Torque (τ) and rotational velocity (ω) of a motor are both related to 

k. 

            (2) 

             (3) 

             (4) 

N is the number of turns of wire on each tooth of the stator, B is the remnant flux from the magnets, L is 

the length or thickness of the stator, and D is the diameter of the stator.  k is also related to speed by (3) 

and torque by (4), where V is the voltage and i is the current through the windings.  As much as I could, I 

wanted to maximize these values. 

When choosing components for my motor, the first priority was cost.  The most expensive part of 

a custom motor can easily be the stator.  A stator is made up of numerous laminations of steel.  These 

laminations have the same cross-sectional shape and are stacked to create the desired thickness.  To 

reduce cost, I searched on the Internet to get a low price.  Luckily, I found four matching stators that were 

intended to be used for the alternator in a motorcycle.  By combining these stators into one, it would give 

me a relatively large motor for powering a small vehicle. 

Magnets are also an important (and often expensive) part of each motor.  The stronger the 

magnets are, the more powerful the motor generally is.  Magnet strength is related to the motor constant, 

with strong magnets resulting in a high Br for Eq. (1).  Because of the size of my motor, I was limited in 

my selection without opting for custom sized magnets.  Since my stators had 18 teeth, I needed an even 

number of magnets that couldn’t be 18 because the magnetic field would then prevent the motor from 

rotating.  After some calculations, I found that I could fit 16 magnets that were ¾” wide and ¼” thick 

around my stator with minimal space between them. 

After cost, I initially wanted to design the motor around my motor controller.  The Kelly 

Controller KBS line, which is suitable for small electric vehicles, only allows for up to 70,000 ERPM 
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with the high speed option.  ERPM is the mechanical RPM of the motor multiplied by the number of 

magnet pole pairs.  Given that my stator had 18 teeth, the motor would probably have 8 or 10 magnet 

pairs, limiting the maximum RPM to well below 10,000 even at high voltages.  By using equations (2) 

and (3) and finding the torque through finite element analysis, I could reverse engineer the motor’s speed, 

making sure that it would be below the controller limit. 

Once the stator, magnets, and can were finalized I could measure the parts and sketch a 2D 

profile in CAD. 

 

Figure 3-1: CAD sketch showing the outer edge of the motor’s profile. 

Once I had the profile, I could see how turns of wire I could fit between each tooth.  I knew that I 

would need a lot of wire for such a big motor, so I decided to base my calculations of 18AWG magnet 

wire, which is just over 1mm in diameter, making it relatively thick.  By close-packing the wire, I found 

that I could fit about 68 turns around each tooth.  
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Figure 3-2: CAD sketch showing ideal close packing of wire around a stator tooth. 

However, while unwinding the motor there were only 42 turns of 18AWG wire, which allowed for no 

bunching toward the tip.  After performing a test wind, I found that I could fit __ turns of 18AWG wire 

easily.  I also wanted to able to run my motor continuously at high current.  18AWG wire can sustain 

about 16 amps, so to make sure it would be safe to operate at the 120A maximum of my motor controller 

I decided to use 10 wires in parallel to achieve an ampactity of 160A.  This would allow for around 5 

turns of 10 wires in parallel without cramping the windings too much. 

Finite Element Method Magnetics is an FEA program that allow you simulate the performance of 

an electric motor.  By importing a file of the motor cross section into the program and assigning each 

block material and magnetic properties, the program can provide a variety of information about the 

operating conditions.  Figure (2) shows a graphic representation of the magnetic flux. 

 

Figure 3-3: Graphic showing flux density in the motor cross-section. 
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FEMM calculated a torque of 21.96    at 100A, yielding a motor constant k of .11 
   

 
.  By equation 

(5), I found that RPM/volt of the motor would be 43.5, yielding 1740 maximum RPM at 40V.  With 16 

magnet pole pairs, this would be well below the 8750RPM limit of the controller. 

3.2 Mechanics and Fabrication 

Once the electrical side of the motor was figured out, I had to design the mechanical side.  I 

decided to work on the stators first and progress outward. The stators I chose for the motor came pre-

wound with magnet wire, ready to be used in a motorcycle.  Because I wanted to have my own wire 

configuration and also combine the stators, I had to unwind each of them.  The epoxy used to hold the 

windings together was tough, so it took a pair of pliers and a good deal of time to unwind them.  A heat 

gun was used to soften the bonds when the wires got stuck and began to break. 

To combine the stators into one unit, I designed a part for the stators to slide over.  I then bored a 

hole in this stator assembly with a lathe so that I could press fit bearings into it for rotating around the 

central shaft.  I then designed an end plate to attach the stators to the central hub, holding everything 

together.  This would hold everything together. 

 

Figure 3-4: Picture of stator assembly. 

To hold the stator assembly in place, I used the pre-drilled holes in the laminations to attach them 

to the outside mounting face.  The holes for the bolts that would go all the way through the stators would 

be counterbored, while mounting holes would be drilled and tapped.  Because this would be a very 

structural component, I used a thick round of aluminum alloy.  In the center of the face would be a shaft 

bearing to help support the torque from the pulley on the end.  A large bearing was pressed over the 

outside edge of the aluminum face to isolate it from the spinning can. 
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I made the can out of 1/8” thick steel to contain the magnetic field from the magnets.  . I sized the 

inner diameter of the can to create about a 1mm gap between the stator and the magnets.  After a lot of 

turning on a lathe, I used a jig that was 3D printed to position the magnets properly.  Once tacked in place 

with superglue, I mixed a viscous epoxy to fill the gaps between the magnets. 

 

Figure 3-5: Picture of all the magnets in position with epoxy filling the gaps. 

I decided to use a thick piece of clear polycarbonate to fill the gap between the large bearing and 

the steel can, tapping radial holes in the polycarbonate to attach it to the can.  For the other endcap, I also 

wanted to use polycarbonate to allow for a clear view of the stator assembly.  To attach the drive shaft to 

the can of the outrunner, I welded a plate of steel to one end of the shaft.  I then drilled holes through the 

plate so that it could be mounted to the polycarbonate.  I also cut out an area in the polycarbonate to 

recess the mounting plate.  After turning down the weld bead, I put the pieces together and drilled and 

tapped the polycarbonate, ensuring that they could transmit the necessary torque. 

 

Figure 3-6: Picture of shaft connector end. 
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 I decided to use a dLRK winding style.  This is the most effective winding style for the type of 

stator I had, providing slightly higher efficiency than the LRK style.  The terminology used for dLRK 

winding follows the style of “AabBCca…”  The letters A, B, and C indicate the motor phase while the 

upper case letters indicate the turning direction (either clockwise or counter-clockwise).  For my stator, 

which has 18 teeth, I used AabBCcaABbcCAabBCc. 

 After winding each phase with one strand of 18AWG magnet wire, I ran out of time and had to 

stop working on the motor.  I had also had either machined the inner diameter of the can slightly too small 

or misaligned the stator slightly because the stator was rubbing against the can.  This made it very 

difficult to spin by hand, and might damage the motor if I tested it electronically.  I will likely try to fix 

this issue by reseating the stator inside the can bearing and/or sanding down the stator until it spins 

smoothly. 

However, to finish the motor, I would have had to insert hall-effect sensors so that I could control 

the motor with a sensored controller.  Sensored control uses the hall-effect sensors to determine the 

position of the rotor through the magnetic field, and applies current based on the feedback.  The other 

method of control is called “sensorless” which used the back EMF of the motor to control its speed.  

However, this makes it difficult for the motor to start up from a stand-still, causing potentially harmful 

current spikes. 

 To insert the sensors in the correct sensing position, I would need to insert the sensors 120 

electrical degrees apart to match the settings for my Kelly controller.  To calculate this, you first need to 

figure out how many electrical degrees are between each tooth.   The formula for this is 

  
     ⁄       

            

              
     (5) 

For my motor, each tooth came out to be 160 electrical degrees apart.  Since you can’t actually place a 

sensor a fraction of a tooth away, you need to position the sensors such there is separation 120° ± 360° for 

each sensor.  For me motor, this meant placing them in the slots between the teeth with 3 slots between 

each sensor. 
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4. Predictions and Conclusions 

4.1 Efficiency 

 Since the motor wasn’t able to be finished in time, I wasn’t able to perform all of the tests I 

wanted on Eli-Kart.  However, I could still predict the efficiency, or energy consumption.  Efficiency is 

important for saving energy and extending the run-time of the go-kart.  For my purposes, I wanted to find 

out how long the battery should last.  Many different factors influence efficiency, from the drivetrain to 

the controller to the wiring.  While no amount of calculations is as good as a real world test, I decided to 

predict how much energy would be used while driving at 20mph. 

 First I calculated the rolling resistance, or how force is resisting the direction of travel due to the 

wheels rubbing against the ground.  The equation for this force is as follows. 

             (6) 

Crr is the coefficient of rolling friction and N is the normal force based on the loaded weight of the 

vehicle.  A Crr of 0.005 is a conservative estimate for bicycle tires, so I thought that would be a good 

starting place for my 8” pneumatic tires.  Given that the kart weighs about 93 pounds, with a loaded 

weight of 250lbs with a driver, the normal force N would be 1111 Newtons.  The resulting force 

according to (6) came out to be 5.55N. 

 Aerodynamic drag is another big area where energy is lost.  I created a test dummy in 

Solidiworks and ran a simulation to find how much force was applied by the 20mph wind.  The 

simulation calculated that the horizontal force from the airflow averaged 11.3N 

 

Figure 4-1: Cross sectional cut of the airflow around the go-kart. 
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 To go with the rolling resistance and drag forces, the motor and controller and drivetrain have 

their respective losses.  Brushless motors are very efficient, and with proper alignment of sensors, the 

controller should be very efficient too.  Since the transmission only involved one belt, there would also be 

minor losses there.  There are also resistive losses and any other extraneous inefficiencies, which may or 

may not be negligible, but my conservative estimates should provide a close approximation. 

 To come up with a value in watts needed to be output by the motor, I needed to convert the 

resistive forces into a unit of power.  All that was required to do this was multiply the total force by the 

velocity of the go kart.  The total equation for energy loss I used is below. 

      
(     )  

        
         (7) 

To recap (7),    is the force from the rolling resistance,    is the force from the aerodynamic drag, and   

is the velocity of the go-kart in m/s.     is the efficiency of the motor while    is the efficiency of the 

controller, both of which I assumed to be 90%.     is the efficiency of the drivetrain, which I assumed to 

be 95%.  The energy required to operate at 20mph was calculated to be 175 watts, which is reasonable for 

a smooth, flat surface. 

4.2 Conclusions 

 Through this project, I’ve found that personal electric vehicles are very comprehensive projects.  

When completed, they can be very fun and even practical if used for transportation.  However, building a 

motor took much more time and effort than I initially expected.  For use in an open space under a go-kart 

such as Eli-kart, a commercial motor would be much easier and potentially cheaper.  Only for truly 

specific purposes can a custom motor be well justified.  Still, designing and building Eli-Kart was a great 

learning experience that will remain a memorable part of my time at MIT. 
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