
MIT OpenCourseWare
http://ocw.mit.edu

SP.718 Special Topics at Edgerton Center: D-Lab Health: Medical Technologies for the Developing World
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

Notes on Matlab processing of
vital signs data

D-lab Health
Feb 2009

Brian Tracey

Data Acquisition

Plug an audio cable from the output jack on the heart sounds
monitor to the laptop ‘mic in’
Use the software tool of your choice to make a recording

Audacity is a good choice: other options are Mac ‘SimpleSound’
or Windows Sound Recorder

Save the recording as a .wav file
Repeat this process but transmit the heart sounds over the baby
monitor (to add noise)
Some things to try or think about:

Experiment with holding your breath while recording, so lung
sounds will not be present. Does this make a big difference?
Does background noise in the room make a big difference?
If you do deep breathing (1 breath / 10 sec) while recording, can
you still hear the heart sounds?

Loading / saving wav files in Matlab

The ‘wavread’ command will load a .wav file
for example, for file ‘hbeat.wav’:

[hbData,fSamp]=wavread(‘hbeat’);
this command returns the heart sounds data in a vector ‘hbData’,
and the sampling rate used by the recording in ‘fSamp’

If your software gave 2 channels (stereo recording), throw one
away as the stethoscope is mono
You can save and load your Matlab workspace using ‘save’ and
‘load’ commands
After processing the data, you may want to save the output
waveform into another .wav file

For example, to save the vector ‘hbFilt’ into a file
‘filteredHeartbeat.wav’:

wavwrite(hbFilt, fSamp, ‘filteredHeartbeat’);

Plotting and playing back sound in Matlab

Based on your sampling rate, set up a vector
‘t’ of times that correspond to each sample
Then, you can plot the data: plot(t,hbData)

plot(hbData) will plot the data without a time axis
You can play the sounds using the ‘sound’ or
‘soundsc’ commands:

sound(hbData, fSamp); % plays whole recording
sound(hbData(1:fSamp*5), fSamp); % plays first 5 sec

Filtering the data
Heart sounds are low frequency, while noise may be
higher-frequency – which suggests we try filtering
Butterworth filters are a common choice for
biomedical applications

Parameters are filter cutoff frequencies and filter order
(higher order -> more suppression); see next page

For convenience, functions ‘LPfilterWrapper.m’ and
‘BPfilterWrapper.m’ are included at end of this PPT

Example call for a 500 Hz lowpass filter is:
filteredHB = LPfilterWrapper(hbData,fSamp,500);

Example of Butterworth filter parameters

0 500 1000 1500 2000
-25

-20

-15

-10

-5

0

5

Frequency, Hz

A
tte

nu
at

io
n,

 d
B

2nd order Butterworth
4th order Butterworth

Cutoff frequency:
Signals suppressed by 3 dB (half)

Passband: < 3 dB suppression
(0 dB = no amplitude change)

Higher-order
filter has more
suppression of
high frequencies

Main lab involves using filtering to clean up
signals
For some additional ideas, see following
slides -

Additional challenge #1: Downsampling
the data

During sampling, the analog signals are sampled at
a frequency = 2x the highest frequency of interest
(http://www.dspguide.com/ch3/2.htm for why)
The sound recorder on your laptop samples at a
rate which is appropriate for music, but heart sounds
are lower in frequency
Question: how much can you downsample the
acquired data to reduce the file size, without losing
information? How could this help in a telemedicine
application?

http://www.dspguide.com/ch3/2.htm

Additional challenge 1, con’t
You need to filter out any high-frequency noise before
reducing the sampling rate, or it will distort your signal

Option 1: you can use the filtered data from before, then just
discard alternate samples

hbNew = hbFilt(1:2:end); % discards every 2nd sample
fsNew = fSamp/2;

Option 2: use the Matlab command ‘resample’, which internally
applies filtering

hbNew = resample(hbData,1,3); % reduces rate by 1/3
fsNew = fSamp/3

Check your work by plotting and replaying the new signals*.
Do you hear/see significant differences in the signal?
You can save the output as a .wav file to see the file size
reduction*

* Remember to use the new sampling rate in any function calls

Some more ideas

Heart-rate: can you devise an algorithm for
estimating heart-rate from the signals you’ve
acquired?
Background noise: did conversations or other noises
in the room cause problems for your recording?

Do you think that may be a problem in a health clinic?
If so, do any of your filter approaches help with the
problem? Are there other solutions (mechanical, DSP) that
you can imagine?

Useful matlab codes

Low-pass filter wrapper code

function y = LPfilterWrapper(data, fSamp, fCutoff, nOrder)
% function y = LPfilterWrapper(data, fSamp, fCutoff, nOrder)
% does LOW-PASS filtering of an input signal 'data' using a Butterworth
% filter
% Inputs:
% data - vector of input data
% fSamp - sampling rate of input data, Hz
% fCutoff - desired lowpass cutoff frequency, Hz
% nOrder (optional) - filter order. If not specified, defaults to '2'

% set default filter order if needed
if nargin ==3,

nOrder = 2;
end

% normalize cutoff frequency by sample rate
Wn = fCutoff/(fSamp/2);

% get filter coefficients
[b,a]=butter(nOrder,Wn,'low');

% filter the input data
y = filter(b,a,data);

return

Band-pass filter wrapper code

function y = BPfilterWrapper(data, fSamp, fCutoffLow, fCutoffHi, nOrder)
% function y = BPfilterWrapper(data, fSamp, fCutoffLow, fCutoffHi,, nOrder)
% does BAND-PASS filtering of an input signal 'data' using a Butterworth
% filter; pass band is from
% Inputs:
% data - vector of input data
% fSamp - sampling rate of input data, Hz
% fCutoffLow - desired lowpass cutoff frequency, Hz
% fCutoffHi - desired hipass cutoff frequency, Hz
% nOrder (optional) - filter order. If not specified, defaults to '2'

% set default filter order if needed
if nargin ==3,

nOrder = 2;
end

% normalize cutoff frequenciesby sample rate
W1 = fCutoffLow/(fSamp/2);
W2 = fCutoffHi/(fSamp/2);

% get filter coefficients
[b,a]=butter(nOrder,[W1 W2]); % two cutoff frequencies means bandpass

% filter the input data
y = filter(b,a,data);

return

	Notes on Matlab processing of vital signs data�
	Data Acquisition
	Loading / saving wav files in Matlab
	Plotting and playing back sound in Matlab
	Filtering the data
	Example of Butterworth filter parameters
	Additional challenge #1: Downsampling the data
	Additional challenge 1, con’t
	Some more ideas
	Useful matlab codes
	Low-pass filter wrapper code
	Band-pass filter wrapper code

