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The rendering of effects such as motion blur and depth-of-field requires
costly 5D integrals. We dramatically accelerate their computation through
adaptive sampling and reconstruction based on the prediction of the
anisotropy and bandwidth of the integrand. For this, we develop a new fre-
quency analysis of the 5D temporal light-field, and show that first-order
motion can be handled through simple changes of coordinates in 5D. We
further introduce a compact representation of the spectrum using the co-
variance matrix and Gaussian approximations. We derive update equations
for the 5 × 5 covariance matrices for each atomic light transport event,
such as transport, occlusion, BRDF, texture, lens, and motion. The focus
on atomic operations makes our work general, and removes the need for
special-case formulas. We present a new rendering algorithm that computes
5D covariance matrices on the image plane by tracing paths through the
scene, focusing on the single-bounce case. This allows us to reduce sam-
pling rates when appropriate and perform reconstruction of images with
complex depth-of-field and motion blur effects.

Categories and Subject Descriptors:

Additional Key Words and Phrases: global illumination, Fourier analysis,
motion blur

1. INTRODUCTION

Photo-realistic effects such as depth of field and motion blur re-
quire heavy computation because they involve intricate integrals
over a 5D domain composed of the image, lens, and time. A large
number of samples is needed to avoid noise due to the variance of
the integrand. However, the variation of the integrand is usually not
arbitrary, and in particular, it can exhibit strong anisotropy in 5D
because radiance often varies slowly along some directions. For
example, an object with a rough BRDF only exhibits small varia-
tions along the angular direction. This can be expressed in terms of
the Fourier spectrum of radiance: the frequency spectrum of the in-
tegrand often does not have energy in all five dimensions and, even
in the directions where it has energy, it is often band-limited. Re-
cent work has leveraged the frequency content of radiance for the
faster rendering of individual effects such as depth of field [Soler
et al. 2009], motion blur [Egan et al. 2009], soft shadows [Egan
et al. 2011] and directional occlusion [Egan et al. 2011]. However,
these solutions are limited in scope because the general derivation
of spectrum prediction equations is hard. We introduce a new ap-
proach that can predict the frequency effect of most aspects of light
transport in dynamic scenes in a unified manner. We present a new
rendering technique that predicts and leverages these properties to
reduce sampling rate and perform appropriate reconstruction for
efficient high-quality rendering.

We predict the band-limited nature of radiance in the 5D domain
of space, angle, and time. Key to our approach is to focus on indi-
vidual local interactions such as occlusion, reflection, and motion.
In particular, we show that any first-order motion can be handled
using a 5D change of coordinates that expresses interactions in the
static frame of the moving object. This allows us to handle moving
light sources, occluders, and receivers in a unified manner. Because
we focus on atomic operations, formulae are easy to derive for the
full 5D spectrum. Arbitrary configurations and light paths can be
handled by chaining operations together.

The storage and computation of a full 5D spectrum is, however,
prohibitive. We argue that meaningful information about a spec-
trum are relative to the distribution of energy in the frequency do-
main. Information such as the principal directions of the spectrum
and the extent of the spectrum along those directions (or band-
width) are critical as they give us clues to the behavior of the func-
tion in the primal domain. Previous methods [Durand et al. 2005;
Soler et al. 2009; Egan et al. 2009] tried to characterize the band-
width of the signal. But some signals might have an infinite band-
width while still having most of its energy concentrated in a finite
portion of the domain. To permit a more compact and flexible char-
acterization of the spectrum, we study its variance. We complete
this characterization by using the correlation of the signal that gives
its orientation in the frequency domain. All this information is gath-
ered in the 5D covariance matrix of the signal in Fourier space. The
key element of this matrix is that we are able to translate light trans-
port operators on the spectrum into simple linear operators over the
covariance matrix. We also show that this characterization inher-
ently results in approximating the spectrum of the signal by a 5D
Gaussian, that is possibly degenerate if the matrix is not full rank.

We present a new rendering algorithm that traces covariance ma-
trices in the scene to predict the 5D spectrum at the image plane.
We adapt the local 5D sampling rate locally in the image plane ac-
cording to this prediction, and perform appropriate reconstruction
using sheared 2D filters. Our technique can handle complex phe-
nomena with depth of field and motion blur simultaneously. We fo-
cus on single-bounce paths (i.e. lens-object-light) but the technique
has potential for arbitrary light paths.

Our paper makes the following contributions:

—A first-order 5D frequency analysis of light transport that han-
dles the rotation and translation components of arbitrary motions
using a simple change of coordinates.

—A compact characterization of the variation and anisotropy of
the radiance field by the 5× 5 covariance matrix of its spectrum,
inspired by a Gaussian approximation.
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—A set of equations for updating the 5D covariance matrix through
local light interactions such as transport, occlusion, glossy reflec-
tion, texture mapping, lens integration, and object motion.

—A derivation of the sampling rate and of a 2D filter based on the
5D covariance matrix. The derived filters account for the blur
induced by motion blur and depth-of-field.

—A rendering algorithm that is able to reconstruct effects such as
depth of field and motion blur, by first tracing covariances and
then performing adaptive sampling in 5D on the image plane.

1.1 Related work

Our work is related to sparse and low-rank approximations of light
transport, frequency analysis of light transport, adaptive sampling
methods, and methods that provide depth-of-field and motion blur.

1.1.1 Sparse and low-rank approximations of light transport.
Existing techniques analyze the low-rank nature of the light trans-
port operator in the context of pre-computed light transport. Maha-
jan et al. [2007] presented an experimental study of the dimension-
ality of light transport for cast shadows and other phenomena such
as glossy reflection. Lessig and Fiume [2010] studied the rank of
the transport operator and showed that in many situations the ef-
fective dimension of the operator is lower than that of the space it
operates on. Pre-computed radiance transport has used this property
extensively. The transport operator—rather than the signal itself—
is compressed, making it efficient for computing many images. Di-
mensionality is usually reduced using principal component analy-
sis [Sloan et al. 2003]. This a posteriori analysis contrasts with our
method that is based on an a priori bandwidth prediction.

Matrix row-column sampling is another way of exploiting the low
effective dimensionality of light transport in scenes illuminated by
many light sources. The low-rank property of the transfer matrix is
leveraged by clustering light source positions [Hašan et al. 2007].
This approximation is performed by selecting some of its rows and
columns. Multidimensional Lightcuts [Walter et al. 2006], proceeds
by clustering emitter and receiver points following a perceptual
metric to adapt to the local dimensionality of light transport.

In Adaptive wavelet rendering [Overbeck et al. 2009] exploited the
low-rank of light transport, by rendering directly in wavelet space,
where the transport operator is sparse. This method exhibits low
noise, since the reconstructed signal only contains the computed
frequency bands, but operates in image space. Our work seeks to
predict the smoothness of not only the image, but the full 5D inte-
grand at each pixel. Application of compressive sensing [Sen and
Darabi 2011a] to rendering allows to estimate the wavelet trans-
form of the image during rendering using fewer coefficients.

1.1.2 Frequency analysis of the transport operator. We build on
recent approaches that have studied the frequency aspects of light
transport in static scenes, e.g. [Ramamoorthi and Hanrahan 2001;
Durand et al. 2005; Ramamoorthi et al. 2005]. They presented a
priori frequency analysis to perform adaptive sampling and appro-
priate reconstruction, reduce the number of samples needed for ad-
vanced rendering, and effectively share samples across pixels when
possible. Egan et al. [2011] applied such an analysis and sheared re-
construction to shadow fields and directional occlusion [Egan et al.
2011]. To efficiently ray trace images with depth of field, Soler
et al. [2009] proposed to adaptively sample primary rays by pre-
dicting image bandwidth and per-pixel variance of incoming light.

They used a sampled representation of the spectrum which is both
expensive and prone to noise. Instead, we use a covariance rep-
resentation that is compact and stable. Egan et al. [2009] studied
motion in 3D space-time defined in image coordinates. They focus
on a set of specific cases because they derive end-to-end bandwidth
formulae. In contrast, we address the full 5D case that includes spa-
tial, angular, and temporal aspects in the scene, and focus on atomic
operations to achieve generality.

1.1.3 Adaptive sampling. Our goal to use fewer samples where
the integrand is smoother follows a long line of adaptive sampling
methods, e.g. [Whitted 1980; Mitchell 1987; 1991; Kirk and Arvo
1991]. Multidimensional adaptive sampling [Hachisuka et al. 2008]
adapts sampling in the full 5D domain, according to variance esti-
mated from the samples themselves. They perform anisotropic re-
construction by analyzing a local structure tensor of the light field.
Although we aim at optimally sampling as well, we inherently dif-
fer from this work in both the way we estimate the variance and in
the way we estimate the reconstruction filter, both of which we do
based on the predicted local frequency content of the illumination
rather than a posteriori computation.

The first-order analysis of lighting, shading, and shadows [Ra-
mamoorthi et al. 2007] permit gradient-based adaptive sampling.
Derivatives convey less information than the raw shape of the spec-
trum. In particular, the first order analysis of the light field only
provides a conservative measure of non-smoothness and does not
capture anisotropy, which means that these techniques might be
oversampling in some cases.

1.1.4 Filtering and reconstruction. Recently, Lehtinen et al.
[2011] proposed a reconstruction method for motion blur and depth
of field from sparse sampling of the 5D light field that uses speed
and depth information to reproject samples into each pixel in or-
der to obtain an approximate dense sampling. This method neglects
the variation a sample might have along its reprojection line which
might lead to artifacts when reconstructing glossy surfaces.

Sen and Darabi [2011b] proposed to filter the noise of Monte Carlo
rendering by looking at the correlation between the variation of
the samples value and the noise used to generate them. But this
method cannot perform adaptive sampling since it studies only the
correlation between noise and sample values.

2. OVERVIEW

Our algorithm adapts the number of 5D incident radiance samples,
used in numerical integration, across the image pixels for the sim-
ulation of depth of field and motion blur. It then uses appropri-
ate reconstruction filters to effectively share the radiance samples
across pixels and provides high-quality images with reduced sam-
ple counts. Both the sampling rate and the reconstruction filters
follow a new prediction of the local 5D frequency content. Central
to our approach is an anisotropic Gaussian approximation of the
5D spectrum based on the covariance matrix for compactness and
efficiency.

In a first pass (Fig. 1(a)), we trace a number of light paths and
propagate the covariance matrix of the 5D spectrum in the neigh-
borhood of each ray. At each interaction (e.g., reflection by a
BRDF, transport, occlusion), we update this matrix according to
new simple atomic operators. In particular, we handle dynamic
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(a) Propagation of 5D covariance
matrices

(b) Per pixel 5D covariance ma-
trices

(c) 5D Samples are distributed
on the image plane using the den-
sity derived from the 5D covari-
ance matrix.

(d) 2D reconstruction

Fig. 1: Overview of our proposed algorithm. (a) In a first step, we trace one-bounce light paths and propagate 5 × 5 covariance matrices
from the light source to the camera. (b) The matrices are stored in image space and determine the sampling rate per pixel. (c) We compute the
number of samples needed at each pixel and store the estimated incident radiance at each of them in a 2D buffer. (d) Finally, we render the
image using 2D reconstruction kernels (red ellipses), designed using the covariances, to gather contributions of relevant radiance estimates.

scenes with simple local changes of coordinates in 5D. This pro-
vides us with bandwidth and anisotropy information about the 5D
spectrum reaching the lens for each pixel (Fig. 1(b)). Based on
this spectrum approximation, we compute the required per-pixel
5D sampling rate following a variant of the Nyquist-Shannon theo-
rem adapted to Monte Carlo integration.

In the second pass, we use the above sampling rates and compute
the appropriate number of radiance samples for each pixel, sam-
pling across the pixel area, the lens aperture and the shutter interval.
This results in a number of 5D samples across the image (Fig. 1(c)).

We then determine, for each pixel, the correct 2D reconstruction
filter (Fig. 1(d), in red), as a function of the stored 5D covari-
ance matrices. Pixels that have a smaller spectrum (e.g. the upper
left one) use a lower sampling rate and a correspondingly larger
reconstruction filter, thereby sharing samples with neighbors. Pix-
els with higher frequency content (e.g. the lower-right one) use a
higher sampling rate and a smaller reconstruction kernel. An im-
portant contribution of this paper is that we show that reconstruc-
tion can be performed in 2D alone, that is, the weights depend only
on the x, y coordinates across the image plane, independent of the
lens and time coordinates. This allows us to store and access the
radiance samples in a 2D data structure rather than a 5D one.

This algorithm is made possible by a novel frequency analysis of
time-varying light transport and a new Gaussian approximation of
the 5D spectrum based on the covariance matrix. In particular, we
show that maintaining the covariance matrix is simple for a variety
of light interactions. Covariance is a powerful source of informa-
tion to represent the distribution of energy in different directions
in 5D and predict where the signal is strongly anisotropic and low
bandwidth.

3. 5D FREQUENCY ANALYSIS OF LIGHT TRANSPORT

We extend the 4D local lightfield parametrization used by Durand
et al [2005] to include time in the fifth dimension, for handling

moving objects. We denote the local light field and its spectrum
using ℓ(x,Θ, t) and ℓ̂(ωx, ωΘ, ωt) respectively where x denotes
(x, y) — that span the plane orthogonal to the direction of propa-
gation — and Θ denotes (θ, ϕ) — angles measured from x and y
respectively.

We analyze the 5D spectrum of the local temporal light field
ℓ(x, y, θ, ϕ, t) in the neighborhood of a ray as it propagates through
the scene. We build on the 4D analysis by Durand et al. [2005] for
static interactions and add the time dimension to handle motion. We
first show that interactions such as occlusion, transport, and BRDF
are similar to their static counterparts, except for the fifth dimen-
sion, and that the incoming light field potentially contains temporal
energy. We then derive the case with motion and show that a sim-
ple change of coordinates suffices, which corresponds to shears in
space-time and angle-time.

3.1 Static 4D interaction

At the temporal scale we are interested in, light interacts instan-
taneously. Effects such as occlusion, transport, and reflection by a
BRDF only concern light rays that share the same temporal coor-
dinate t. They can be treated independently for different 4D time
slices of the temporal light field. This means that we can apply the
formulae derived by Durand et al. [2005] for the 4D static compo-
nents of our local temporal light fields.

The 4D static operators on the spectrum involve shear, convolution,
and multiplication. Table I summarizes the transformations on local
light field spectra in static scenes, due to transport processes.

4D convolutions in the primal, such as those required for shading,
become 5D convolutions with a kernel that has the same 4D compo-
nent as before and is infinitely thin along time, since shading only
happens with rays at the same instant. In the Fourier domain, this
means that the 5D spectrum of the BRDF is constant along the time
frequency dimension, assuming that the BRDF is not time-varying.
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Multiplications in the primal are necessary for textures and oc-
clusion. If the texture is constant across time, this means that its
Fourier transform is a Dirac along that direction. Time-varying tex-
tures can be handled by computing their 3D FFT. Occlusion by
blockers that are locally static also corresponds to a convolution
by a spectrum that is the 4D spectrum of blockers times a Dirac
in time. Moving occluders are handled using the change of coordi-
nates described in Section 3.2.

Lens shears. As we want to perform lens integration to obtain
depth-of-field, we need to characterize a lens operator for the fre-
quency analysis theory. Previously, Soler et al. [2009] proposed
such an operator but they looked at integration of the light field by
the entire lens. Instead, we would like to obtain the non-integrated
light field on the sensor to achieve the depth-of-field effect after-
wards.

We add another operation for static light fields to handle the ef-
fect of a small thin lens. We build on results from paraxial op-
tics [Gerrard and Burch 1975] to derive this operation. We assume
that the lens is small enough so that ray coming to the camera can
be parametrized with respect to the center of the lens and that the
angle between the central ray direction and the sensor-lens axis is
small enough. This hypothesis restricts our analysis to lenses with-
out fish-eye effects. Our theory would handle such lenses at the
expense of additional projections onto the lens’ surface and sensor.

Fig. 2: At the lens, the incoming rays undergo a shift as well as a shear
due to lens refraction. Finally, there is transport through free space to the
sensor.

Given an incoming local light-field at the lens l(x,Θ, t) we want
to characterize the local light-field at the sensor position oriented
along the central direction of the sensor and lens l′(x,Θ, t). First,
when the light field passes throught the lens, its direction is changed
due to refraction, by the two interfaces it crosses. Since the lens is
assumed to be thin, travel can be neglected between the two inter-
faces and the curvature shear caused by the interfaces produces a
cumulated curvature shear of parameter κ = 1/f , where f is the
focal length of the lens. Please refer to Gerrard and Burch [1975],
Chapter II.4.1, for more details. Then, the light leaves the lens and
travels to the sensor, making the light field in or out of focus de-
pending on the spatial position:

ℓ′(x,Θ, t) = ℓ
(
x− d1(Θ +

1

f
x),Θ +

1

f
x, t

)
(1)

where f is the focal length of the lens, and d1 is the distance from
the outgoing central position on the lens to the sensor position and
d2 is the distance of the plane in focus from the lens. Figure 2
presents notations for the different quantities involved.

Example. Given a point in focus (with coordinate [x,Θ] in the
local light-field), the local coordinates at the lens will be:[

xl
Θl

]
=

[
x− d2Θ

Θ

]
(2)

Using Equation 1 and Equation 2, we can write the spatial compo-
nent at the sensor as:

xs = x− d2Θ− d1

(
Θ +

1

f
(x− d2Θ)

)
= x(1 +

1

f
) (3)

The influence of the angle Θ on the final spatial component of the
local light-field at the sensor cancels out, indicating that the point
is indeed in focus.

Transport process Transformation to spectrum
Travel (free space) Angular shear proportional to distance d

Occlusion Spatial convolution with blocker spectrum β
Reflection Angular bandlimiting by reflectance spectrum ρ
Curvature Space-angle shear

Texture Convolution with texture spectrum
Lens Space-angle shear, angle-space shear and phase shift

Table I. : Summary of transformations to spectra in static scenes. These are
the natural extension of the 4D operators of Durand et al. [2005] and our
new lens operator with a constant in the time dimension.

3.2 Change of coordinates for motion

Motion in the scene can result in complex interactions. Imagine a
deforming reflector receiving light from a rotating light source, par-
tially blocked by a translating occluder. Previous approaches such
as Egan et al. [2009] have sought to derive end-to-end equations
and have necessitated special cases for different configurations.
Another option would be to extend local operators such as BRDF
shading, taking into account the motion of the receiver and other
elements, and how it affects normals and other aspects. This would
unfortunately lead to complex formulae, not unlike full end-to-end
approaches.

Instead, we simplify the handling of motion by reducing the prob-
lem to simple local transformations in the coordinate system of
each moving object. The incoming temporal light field potentially
has complex temporal components, but this is not a problem be-
cause the transformation itself is simple.

In order to treat each interaction locally as static, we change the
parametrization of the light field to the coordinate system of the
local moving object. This follows the traditional Galilean princi-
ple that all motion is relative. For illustration, consider the reflec-
tion of a fixed light source by a rotating, glossy plane. We show
the corresponding spectrum operations in Figure 3. The incoming
light field spectrum has no temporal component because the light is
static (Figure 3(a)). We reparametrize the incoming temporal light
field in the static frame of the moving reflector (Figure 3(b)). In
this new coordinate system, the light field spectrum has tempo-
ral energy, corresponding to the opposite motion of the reflector
(angle-time shear). We then handle the reflection using static oper-
ators [Durand et al. 2005], including incidence angle, cosine term,
curvature handling, and BRDF bandlimiting (Figure 3(c-e)). This
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after bandlimiting 

in angle

due to BRDF

BRDF spectrum

angle

time

space

Incoming 

light field

(static here)

(a) (b) (c) (d) (e) (f)

after reparameterization

in moving object coordinate

(shear in angle-angle)

after reflection 

in angle

after reparameterization

in static world coordinate

(shear in space-angle)

Fig. 3: Frequency analysis of BRDF shading for a rotating glossy plane. We model shading as a static operation (c-e) in the coordinate
system of the moving receiver. The changes of coordinates occur in (b) and (f). The spectrum of the static incoming light (a) has a temporal
component (b) in the coordinate system of the moving receiver.

provides us with the outgoing temporal light field in the frame of
the moving object. We finally perform another change of coordi-
nate (angle-time shear with the opposite direction for motion) to
express it in the static world frame (Figure 3(f)).

We have discussed a static incoming light field for illustration pur-
poses only, and an incoming light field with a complex temporal
spectrum is treated the same way through a change of coordinates.
Other types of motion and interactions are handled similarly, ex-
pressing the local temporal light field in the frame of a moving
light source or blocker.

Equations for the coordinate changes. We consider a first-
order approximation of motion at the location of the central ray.
Let the object have translational velocity v = (vx, vy, vz) and an-
gular velocity r = (rθ, rϕ, rψ). Velocities are expressed in the local
frame of the incident temporal light field with rotations correspond-
ing to the x and y axis of the plane parameterizing our local light
field, as well as the rotation by rψ around the central ray.

The linearization of motion leads the to simple formula:

ℓ′(xst,Θst, t) = ℓ(x− (vx, vy)t,Θ− (rθ, rϕ)t, t) (4)

where xst and Θst denote the spatial and anglular coordinates in
the moving object’s local frame respectively. A derivation of this
property can be found in Appendix A . The equation reveals that the
local light field undergoes a shear in space-time due to translation
and in angle-time due to local rotation. We define the corresponding
transformation in the Fourier domain using an operator, G.

G(ℓ̂) ≡ ℓ̂(ωx, ωΘ, ωt + vωx + rωΘ) (5)

G is a forward motion operator that expresses the light field spec-
trum in the local frame of the moving object.

The z component of the velocity and the in-plane rotation rψ do
not affect our first-order analysis. This is because they only create
second- order effects that multiply different variables such as angle
and time for the in-plane rotation. Our method can, however, han-
dle objects that globally rotate. Consider the case of a textured disk
that rotates around its center (Figure 4(a)). The local blur is tan-
gential and proportional to the distance to the center. This means
that there is no blur at the exact center of the disk. If we move
away from the center, the local motion considered by our technique
is re-centered to the point of interest, and includes both a (vx, vy)
translation component and an in-plane rotational component rψ .
The local blur is mostly caused by the translational component, as

Rotation

Image

(a) Rotation around the central ray

Translation

(b) Translation along the central ray

Fig. 4: (a) We only need to account for tangential rotation since the radial
component can be considered as translatory motion in a first order analysis.
(b) Similarly, motion along the ray direction is approximated by a transla-
tion in the tangent plane.

predicted by our first-order model. A similar situation occurs when
an object is moving towards a viewer. In the center, there is no
blur, but away from it, blur can be analyzed as caused by a (vx, vy)
translation since the ray going from the viewpoint to the plane is
not orthogonal anymore (see Figure 4(b)).

The static operators are applied on G(ℓ̂) and the result is then trans-
formed back into the global static frame using a reverse time opera-
tor, to obtain the transformed temporal local light field. The reverse
time operator is essentially the same transform as G, but with nega-
tive translational and rotational velocities, and is therefore equal to
its inverse G−1.

In the Fourier domain, the shears are time-space and time-angle for
translation and rotation respectively. Previous work on motion blur
[Levin et al. 2008; Egan et al. 2009] also used shears, but in the 3D
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time space defined by image coordinates, and based on 2D transla-
tional velocity. In contrast, our transformation is in the 5D space of
temporal light fields and exhibits both translation and rotation.

3.3 Time-varying signals

Some of the signals involved might have built-in temporal content,
for example, a movie projector or a TV. The frequency content
of such source signals can be directly incorporated by considering
their discrete Fourier Transform.

4. COVARIANCE MATRICES AND GAUSSIAN
APPROXIMATION

In this section, we describe a compact formulation to track the ex-
tent of local variation and anisotropy of temporal light-fields in 5D
space: the covariance matrix.

We compute the 5D covariance matrix of the local light field’s
Fourier amplitude spectrum, and use it to measure local variation
and anisotropy. We define this matrix Σ such that the entry at the
ith row and jth column is:

Σi,j ≡
∫

z∈Ω

⟨z, ei⟩ ⟨z, ej⟩
∣∣∣ℓ̂(z)

∣∣∣ dz. (6)

Here ⟨., .⟩ denotes an inner product, ei and ej are members of the
canonical basis of the Fourier domain Ω = Ωx×Ωy×Ωt×Ωp×Ωt,

and
∣∣∣ℓ̂(z)∣∣∣ is the amplitude of the local light field spectrum. The

diagonal elements in Σ represent the variances of the amplitude of
the spectrum along each dimension and Σi,j , i ̸= j represent the
covariances between the ith and jth dimensions. The covariance of
the spectrum 1 conveys important information such as the extent of
variation and anisotropy.

A conceptually simpler interpretation is that we approximate the
amplitude spectrum of the local light field using a 5D Gaussian
defined entirely by the above covariance matrix: g(z) = e−zT Σ−1

g z,
with Σg(i, j) = ej

TΣei .This representation is close to Heckbert’s
elliptical Gaussian filters [Heckbert 1989].

Some transport operators clamp energy in subspaces of the spec-
trum, causing the covariance matrix to contain a few null Eigenval-
ues. The Gaussian is then degenerate, and the concept less elegantly
fits our purpose. Nevertheless, the equivalence between covariance
and (possibly degenerate) Gaussians will be useful to derive some
formulae, particularly during convolution of spectra.

In the remainder of this section, we explain how the 5D covari-
ance representation of the light field spectra can be updated through
transport processes such as motion, free space transport, occlusion
and reflection using simple matrix operations.

4.1 Background

A convenient property of covariance matrices is that updating the
covariance matrix of a signal when the domain is transformed by a

1Since we approximate the local light field, Equation 6 adopts the definition
of covariance of functions that is used to study the relationship along the
different input dimensions. This differs from the more common usage of
covariance is to study relationships between random variates.

linear operator is straightforward: Let Σ be the covariance matrix
of the signal, and Σ′ the covariance matrix of the signal after the
transformation of its domain by a 5D matrix M . We have:

Σ′ = |M |MTΣM (7)

We provide a proof of this property in Appendix B. We will use
this property to update the covariance matrix after changes of co-
ordinates due to general motion, reflection, and transport through
free space.

We also need to be able to handle convolutions for occlusion and
reflection (texture as well as cosine term). Although there is no gen-
eral formula, for zero-centered Gaussians, convolution is equivalent
to summing up the covariance matrices. That is, given two Gaus-
sians with covariance matrices Σ1 and Σ2, the covariance matrix
of their convolution is:

Σ1⊗2 = Σ1 + Σ2 (8)

We adopt this as an approximation of the covariance matrix of the
convolution of two spectra.

The covariance of the sum of spectra also has a simple expres-
sion: since spectra are zero-centered, the covariance of the sum is
the sum of the covariances. If spectrum h is defined as h(x) =
αf(x) + βg(x), then the covariance matrix of h is:

Σh = αΣf + βΣg (9)

4.2 Motion

Object motion is handled identically for all processes – light
sources, occlusion and reflection – through a change of coordinates.

Let Σ be the covariance of the incident local temporal light field.
Let G be the matrix operator transforming the local light field in the
static coordinate system of the moving object. According to Equa-
tion 7 the covariance of the signal in the moving frame is (See 0??)

Σst = GTΣG (10)

Next we apply all necessary transformations that happen in the
moving frame (e.g. reflectance) updating Σst to Σ′

st. Finally we
convert back the covariance into the world coordinate system by
transforming Σ′

st back into the global static frame:

Σ′ = (G−1)TΣ′
stG

−1 (11)

4.3 Transport through free space

The local light field spectrum undergoes a shear in angle during
transport of distance d through free space. This is a linear transform
of the space by a matrix Td defined in Table II. Using Equation 7,
the covariance Σ′ after transport is

Σ′ = TTd Σ Td (12)

4.4 Occlusion

The spectrum resulting from occlusion is the convolution of the
incident spectrum and the blocker’s spectrum. The convolution of
two Gaussians is given in Equation 8 and we estimate the result-
ing covariance matrix by summing the incoming covariance matrix
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(a) Time transform matrix

G =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
vx vy rθ rϕ 1



(b) Travel matrix

Td =


1 0 −d 0 0
0 1 0 −d 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(c) Scale matrix

Sα =


1 0 0 0 0
0 α 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



(d) Curvature matrix

Cη =


1 0 0 0 0
0 1 0 0 0

−ηx 0 1 0 0
0 −ηy 0 1 0
0 0 0 0 1


(e) Symmetry matrix

M =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1



(f) Lens matrix

Lf,d =


1 0 −d 0 0
0 1 0 −d 0
1
f

0 1 0 0

0 1
f

0 1 0

0 0 0 0 1



(g) Occlusion matrix

ΣB =


Ox,x Ox,y 0 0 0
Ox,y Oy,y 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(h) Cosine term matrix

ΣC =


0 0 0 0 0
0 0 0 0 0
0 0 C 0 0
0 0 0 C 0
0 0 0 0 0



Table II. : Linear time-transformation matrices (a) G and G−1 (corresponding to−vx,−vy,−rθ,−rϕ) perform transformations into and out
of the static coordinate frame;(b) Td performs an angular shear due to travel in free space; (c) Sα performs a spatial scale due to the incoming
or outgoing cosines; (d) Cηis a spatial shear that accounts for local curvature during reparametrization for reflection; (e) M performs the
symmetry of the signal to express it in the reflected frame; (f) Lf,d performs the camera transformation. Non-linear transformation matrices:
(g) ΣB is the occlusion matrix that represent the transform of the blocker visibility function; (h) ΣC is the differential cosine irradiance
matrix.

and the covariance of the blocker spectrum. The transformed co-
variance due to occlusion, Σ′

st, is the sum of the covariance before
occlusion, Σst, and the covariance of the blocker spectrum, ΣB :

Σ′
st = Σst + ΣB (13)

4.5 Reflection

Shading is performed as a composition of the transformations due
to the following processes [Durand et al. 2005], which we further
describe below: a foreshortening (and alignment) along the incident
ray; a spatial shear due to curvature; a mirror reflection; a convolu-
tion due to the irradiance cosine term; a multiplication by the spec-
trum of the BRDF; a second curvature shear; and finally a different
foreshortening along the reflected ray.

Foreshortening for incident ray. To handle reflections, we need
to project our light field into the local frame of the object. This pro-
cess is also done when we project the local light field on the out-
going direction. Those two projections are handled by combining
a rotation Rz around the local direction to align the local x of the
local light field with the object’s surface, and a scale along the y
direction by the inverse cosine of the angle θ between the incoming
direction and the normal n. Later on, the covariance matrix might
need to be further rotated around the normal, to match the coor-
dinate system of the next component such as texture, curvature or
BRDF. Notations are summarized in Figure 5.

The scale Sα is anisotropic in space since the foreshortening is
purely in the plane containing the normal and incident (or reflected)
ray. We have:

Σ′
st = STα RT

z Σst Rz Sα (14)

where α = 1/ cos θ is the scaling factor, θ is the incident (or re-
flected) angle. Matrices Rz and Sα are shown in Table II.

Curvature. The effect of local curvature is a spatial shear of the
local light field spectrum and remains the same for the covariance.

Fig. 5: Successive transformations to convert the incoming light field (with
axes x, y), into the frame of the object (with axes x′′, y′′): a rotation Rz to
align x with the object’s plane and a scale along y′ by 1

cosα .

Let Rη be the rotation matrix that aligns the frame of the light field
with the directions of principal curvature, we have:

Σ′
st = CT

η RT
η Σst Rη Cη (15)

where Cη is shown in Table II, and (ηx, ηy) represents the principal
eigenvalues of the local curvature tensor.

Mirror reflection. The expression of the local light field in the re-
flected direction implies a reflection along the angular dimensions.
The angular covariance terms are therefore negated, leaving the an-
gular variance terms untouched:

Σ′
st = MT Σst M (16)

where M is shown in Table II.

Cosine term. Before shading, the incoming spectrum is con-
volved with the spectrum of the clamped cosines of incident di-
rections. Following Equation 8, the corresponding operation on the
covariance is an addition of the covariance matrices of the spectrum
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of the clamped cosine and that of the light field’s spectrum:

Σ′
st = Σst + ΣC (17)

where ΣC is shown in Table II.

Shading. Shading by the BRDF is a convolution in the primal,
and an angular product of the spectrum with the spectrum of the
BRDF in the Fourier domain.

When we consider time- and space-invariant BRDFs, their spec-
trum only has energy along the two angular dimensions. In the pri-
mal domain, they have the shape of a 2D Gaussian multiplied by
Diracs in the other three dimensions. The covariance matrix of the
spectrum is therefore not invertible, although well defined.

In the scalar case, the multiplication of zero-mean Gaussians re-
sults in a Gaussian whose covariance is the harmonic mean of the
inputs. In the 5D case, we need to do a summation of the pseudo-
inverse of the covariance matrix by the pseudo-inverse of the BRDF
frequency spectrum, and invert the result:

Σ′
st = (B+ + Σ−1

st )−1 (18)

where B+ is the pseudo inverse of the covariance matrix of the
BRDF’s spectrum. We give a full proof of this in appendix C.

Texture. The effect of texture is to add spatial frequencies. Specif-
ically, the transformed spectrum is a convolution of the incident
spectrum with the local spatial spectrum of the texture. As with
occlusion, we sum the incoming spectrum’s covariance and the co-
variance of the texture ΣT , after possibly rotating it into the same
coordinate system using a rotation Rt:

Σ′
st = RT

t ΣstRt + ΣT (19)

4.6 Lens

We described the lens operation in terms of local light-fields in Sec-
tion 3.1. The operator being a linear transform of the space, the
operation on the covariance matrix becomes:

Σ′
st = LTf,dΣstLf,d (20)

Where the matrix L is described in the Appendix 0??.

4.7 Putting it all together

To illustrate the power of our theory, we carry out the analysis of an
intriguing case. Consider a spherical mirror rotating around one of
its axes ω. It is well known that, despite the motion, the reflection
remains perfectly sharp even for finite exposure times. Indeed, our
theory predicts the same.

Consider the transformations undergone by the incident light field
through reflection at an arbitrary point x on the sphere of radius r
(See notations on Figure 6). The incident spectrum is first repre-
sented in the local tangent frame. This amounts to a rotation about
the incident ray and a spatial scale by the incident cosine. Let Σ
denote the covariance of the incident spectrum in the local tangent
frame at the starting time of exposure t = 0. This transformation is
independent of the exposure.

The next step involves transforming Σ into the moving object’s
static coordinates, using G, where reflection can be treated as an

Fig. 6: Notations for the rotating sphere example. A mirror sphere rotates
around an axis ω. Our model correctly predicts the zero angular-time co-
variance of the light reflected at point x. vx, vyrθ and rϕ are respectively
the spatial and angular velocities, in the local coordinate system at point x.

instantaneous process. Following this, reflection involves a trans-
formation due to curvature Cη (with η = 1/r), reparametrization
in the direction of mirror reflection M , and a multiplication by the
BRDF spectrum (constant for specular reflection). After reflection,
the inverse transformations are applied for curvature and motion.

The resulting reflected covariance is given as Σ′ = RTΣR where:

R = G−1 Cη M C−η G =


1 0 −2η 0 0
0 1 0 −2η 0
0 0 −1 0 0
0 0 0 −1 0
0 0 −2(rθ − ηvx) −2(rϕ − ηvy) 1


vx and vy are the translational velocities and rθ and rϕ are the
angular velocities of the point of reflection. The time-angle covari-
ance terms disappear if rθ = ηvx and rϕ = ηvy , which is indeed
the case for all points on the sphere! This confirms that the reflec-
tion does not vary over time and remains sharp.

In the presence of texture on the sphere, since we add the covari-
ance of the texture during reflection, the reflection contains time-
space coefficients corresponding to the covariance of the texture.
That is, for a finite exposure, a spinning sphere with texture is pre-
dicted to be blurry as expected.

5. TRACING COVARIANCE

In this section, we use the already derived update equations to esti-
mate the local 5D covariance after integration on the image plane.
For each pixel, we sample light paths (Section 5.1), and estimate
the covariance matrix at the sensor by applying the operations on
covariance matrices from the light to the camera (Section 5.2). We
pay particular attention to handling occlusion (Section 5.3) since
care is needed to determine when the local light field is partially
occluded. Other update operations are straightforward. Finally we
show how to accummulate covariance matrices (Section 5.4) to ob-
tain an estimate of the matrix at each pixel.
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5.1 Path tracing covariance to the camera

For each pixel, we trace a small number of rays (typically 10 to 100
depending on the scene’s lighting complexity) to estimate covari-
ance. Rays are cast from different lens locations and at different
times and the resulting hit positions in the scene are connected to
one of the light sources. Given a path, we propagate a covariance
matrix from the light source to the lens. We initialize the matrix
with the covariance of the light and update it according to the oper-
ators derived in Section 4.

Since the covariance matrix is symmetric, we only have to update
15 floating point values at each operation. We also keep track of
the orientation of the tangent plane (two unit vectors) to be able to
handle anisotropy.

5.2 Covariance of light sources

Diffuse area light sources have no variation in angle, and their spa-
tial covariance depends on their size. For example, at rectangular
light sources, we align the tangent plane with the principal direc-
tion of the light source and use the following formulae:

Σ1,1 = 2 (π/sx)
2, Σ1,2 = 0, Σ2,2 = 2 (π/sy)

2

where sx, sy are the sizes of the light along the principal directions.
For environment maps, we compute the local angular covariance
using a windowed Fourier transform on the 2D map of angles. Spot-
lights have angular content and the angular variance is inversely
proportional to the half-angle of spread. We have not implemented
light sources with temporally varying emissivities, such as video
projectors, but they can be included by computing the DFT of their
temporal emission. We do, however, handle light sources that are
in motion. For moving light sources, we apply the motion matrix
defined in Equation 5 after computing the covariance of the light
source.

5.3 Occlusion

Partial occlusion of the local light field potentially introduces en-
ergy in the high frequencies of the magnitude spectrum. To account
for this, we developed a volumetric data structure that stores local
normal distributions to answer two queries: (a) does an occluder ex-
ists in the neighborhood of a path; and (b) if yes, what anisotropy
does it introduce in the local light field spectrum with reference to
its 2D local spatial frame.

Occlusion due to blockers is characterized, at a given location, by
a 2D binary function along the spatial dimensions. The frequency
content of this 2D function is captured by the silhouettes of the
blockers, which can be deduced from the surface normals that are
orthogonal to the direction of propagation (See Figure 7). We ex-
ploit this observation by storing 3D normal distributions, and using
them to estimate occlusion caused on a local light field by extract-
ing normal distributions in the plane orthogonal to the light path.

We use a regular 3D grid, where each voxel contains a 3 by 3 co-
variance matrix of the distribution of surface normals inside the cor-
responding voxel. This 3D covariance matrix is built by uniformly
sampling normals on objects and accumulating 3D covariance con-
tributions for each normal inside the voxel.

When a ray crosses a voxel “near” an obstacle we add the covari-
ance matrix of the occluder to the covariance matrix of the spectrum

Fig. 7: When an occlusion is detected during ray tracing (a), we need to find
an approximated equivalent 2D occluder (b), and compute its local spec-
trum (c). For that, we use the local distribution of normals of the occluder
near the occlusion point in the tangent plane.

(Equation 13). First, we rotate the voxel’s 3D matrix to align it with
the frame of the ray. Then, from this rotated matrix, we extract the
2D x− y sub-matrix corresponding to the tangent frame of the ray.
This 2D sub-matrix is the covariance matrix of normals projected
to the x− y plane of the local light field of the ray. We convert this
2D matrix into a 5D covariance matrix of the blocker, by padding
other dimensions with zeros (See Figure 8).

Fig. 8: We use a voxel grid to hand occlusion, and store normal distributions
at each voxel. This information is used to estimate the local 2D spectrum
of obstacles as they partially occlude a the local light field at points along
the central light ray. The stored covariance matrix (of the local normal
distribution) is first rotated to align it with the local frame of the ray and
then the appropriate 2D sub-matrix (corresponding to the tangent frame of
the ray) is projected to the XY plane of the local light field.

If the normal distribution at each voxel is filtered to obtain a sin-
gle normal direction, the resulting 5D occlusion matrix is equiva-
lent to the half plane occlusion approximation used in Soler et al.
[2009]. Furthermore, our approach enables the encoding of direc-
tional information for occlusion while seamlessly avoiding artifacts
due to unwanted occlusions at either end of the ray. At the ends,
where the distribution of normals is close to the normal at the in-
tersection points, the occlusion covariance matrices automatically
become null.

We handle moving occluders conservatively by filling the grid with
positions of the moving object, sampled during the shutter interval.
This conservative estimate of the occlusion through time allows us
to store the same amount of data as for the static case.
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5.4 Aggregating covariance due to multiple paths

Each light path provides us with a 5D covariance matrix that char-
acterizes the local frequency spectrum. To obtain the combined co-
variance estimate at a given pixel position, we accumulate the vari-
ous contributions. Since the covariance of two zero-centered func-
tions is additive (Equation 9), we can build a Monte-Carlo estimate
of the covariance matrix from the different samples Σi acquired at
pixel p. We use this estimate of the covariance matrix to estimate
the density and filter per pixel.

Σ ≃
∑
i∈p

Ei
E

Σi (21)

Where Ei is the radiance carried by sample i, E is the total radiance
carried by samples for the current pixel.

6. RENDERING

Our rendering algorithm involves four steps as illustrated in Fig-
ure 1:

(1) We accumulate covariance per pixel by tracing a number of
covariance light-paths using the theory described in Section 5.

(2) We compute, at each pixel, the required 5D sampling density,
as well as a 2D reconstruction filter (Section 6.1).

(3) For each pixel, we sample its 5D domain with the determined
sampling rate and store these 5D samples into a 2D xy-grid
(Section 6.2).

(4) For each pixel, we sum the weighted contribution of all sam-
ples inside the 2D reconstruction filter, possibly using samples
from nearby pixels (Section 6.3).

We provide an illustrative example in Figure 0?? where the method
is applied to a sphere lit by an environment map.

6.1 Estimating sampling density and reconstruction filters

2D bandwidth. In contrast to Egan et al. [2009], we perform re-
construction in the 2D image domain rather than the full 5D light
field. This is made possible by a new derivation that considers the
effect of the lens aperture and exposure interval as a multiplication
followed by an integration, rather than a convolution. Our deriva-
tion might result in slightly higher sampling rates, but it alleviates
the need to sample outside the shutter interval or lens. Furthermore,
our approach avoids the need for higher-dimensional acceleration
structures for efficient sample queries.

We first model the effect of integration over a finite shutter inter-
val and lens aperture before considering sampling. The incoming
radiance (Figure 9 (a)) is multiplied (windowed) by the shutter
function (b), which corresponds to a convolution in the Fourier do-
main (c). Depth of field and motion blur result from the integral
of this windowed radiance along time and aperture, which corre-
sponds to slicing in the Fourier domain (d). The resulting 2D slice
is the Fourier transform of the final image. In the case of motion
blur, a longer shutter speed corresponds to a smaller kernel (b), and
we get the intuitive behavior where longer shutter speeds lead to
less high frequencies for moving parts in the final image. This 2D
bandwidth is the key to deriving 2D reconstruction filters.

Sampling and reconstruction. We seek to compute the illumi-
nation for each pixel by sampling radiance in 5D (in the space of
lens, image and time) and averaging these samples using an appro-
priate reconstruction kernel. Following Shannon, sampling creates
replicas in the Fourier domain (Figure 9 (e)). The goal of accurate
sampling is to prevent replicas of the spectrum from overlapping
the useful signal. that characterizes the final image, as shown by
Figure 9 (d)

We need to pack the Gaussian functions, which we approximate
with ellipsoids of half axes lengths given by the matrix eigenval-
ues’ square root. Critical sampling is obtained when the sampling
distance along the eigenvectors is proportional to the square root of
the eigenvalues’ product (the product of sigmas), as illustrated in
Figure 9.

The sampling density in 5D is consequently the product of twice
the eigenvalues, that is 32 times the square root of the determinant
of the covariance matrix, up to a constant k, the 5D volume of in-
tegration.

N = 32k
√
|Σ | (22)

Our situation is different from that of traditional sampling because
we are only interested in the final sliced spectrum. That is, our goal
is to prevent replicas of the full spectrum in (c) (See Figure 9) to
overlap the sliced spectrum in (d). We must consider the replicas
of the full spectrum (c) and not that of the slice (d) because (c) is
the only function we can access accurately with point sampling.

Since only the slice should not overlap, we can make the replicas
half overlapping as shown in Figure 9.f. For the simple 2D case of
our example, that means we only need half the samples predicted
by sampling theory (since our minimum distance along the time
axis is halved). In our general 5D case we can have 3 dimensions
half overlapping leading to a 1/8 reduction of samples:

N = 4k
√
|Σ | (23)

The reconstruction filter is then simply the inverse transform of
the 2D slice shown in Figure 9 (d). It is further explained in Sec-
tion 6.3.

6.2 Sampling radiance

For each pixel, we sample the 5D pixel’s domain, with the num-
ber of samples from Equation 23. We store those samples in a 2D
grid. The samples contain the integrated radiance (a number of sec-
ondary light rays are sent to integrate radiance per sample) for the
given sub-pixel position, lens coordinate and time value. We com-
pute this value using path tracing and importance sampling of light
sources but other integration methods could be used (multiple im-
portance sampling, Metropolis light transport, etc).

6.3 Reconstruction

To perform reconstruction, we sum the samples with weights based
on their position in the image plane. We choose to use a Gaussian
filter since it has a convenient formulation in both Fourier and pri-
mal spaces.

Given our covariance matrix Σ for current pixel, we compute the
filter by slicing its inverse Σ−1 along the two spatial components

Σ−1
s = Σ−1

x,y
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window)
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windowing
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(convolution
in Fourier)
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time (slicing):
Final image spectrum

Spectrum after naive sampling Spectrum after smart sampling

Fig. 9: Sampling and reconstruction, in two dimensions (Ωx,Ωt) for simplicity. For the spectrum reaching the sensor (a), we first convolve
it (c) with the kernel of the shutter (b) (or the lens kernel). We are interested in the integration of the signal in the primal space. This is
translated into the frequency domain into a slice of our convolved spectrum (d). We show that we can organize our samples (f) to allow us to
save samples from the original packing (e).

Then, to obtain the filter in image space, we need to apply an in-
verse Fourier transform. Since we are using a Gaussian filter, the
covariance of the filter in the primal is the inverse of the covariance
of the filter in Fourier space (up to a constant factor). Our recon-
struction filter will therefore have the following formulation:

wΣs(x− p) = e−
1
2 (x−p)T Σs(x−p) (24)

6.4 Implementation details

Similar to Egan et al.[2009] we need to take into account the vari-
ation of covariance in a neighborhood (last paragraph of their ap-
pendix). In particular, the reconstruction for a pixel with a low-
frequency prediction needs to gather samples from distant pixels.
However, the spectrum estimate of these distant pixels could be
very different, and in particular reveal high frequencies that cannot
be handled by such a wide reconstruction filter. To avoid this, we
only use samples from pixels whose filters overlap the pixel we are
looking at.

We post-process the matrices in image space after the covariance
tracing step in order to maintain some coherence and avoid outliers
(low frequency with respect to the neighbors) that can occur when
the number of covariance matrices sampled per pixel is not enough
to correctly capture the frequency content. For this, we use a max
filter on the determinant of the matrix. This post-process is in favor
of high frequency covariance matrices and thus conservative. We
apply this process per pixel and each matrix takes the max within
its filter footprint.

In our implementation, we used a Gaussian shutter. Other kind of
shutter can be used as long as the covariance of their spectrum is
defined.

7. RESULTS

In this section, we present the results of our covariance tracing,
adaptive sampling and reconstruction algorithms. First, we validate
the use of covariance tracing with respect to measured covariance
from a path tracer (Section 7.1). We show that we can predict the
effects of motion, texture and occlusion using covariance matrices.
Then, we perform unit tests (Section 7.2) to validate our algorithm

for the different phenomena such as blur due to shallow depth-of-
field, motion blur, occlusion, etc. Finaly, we demonstrate the effi-
cacy of our algorithm in rendering complex scenes in comparison
with a path tracer with multiple importance sampling (Section 7.3).

7.1 Validation of the covariance computation

We validated our covariance computation by comparing to ground
truth covariance matrices. We designed a path tracer that records
dense radiance samples in 5D space and computed the covariance
component over the Fourier transform of this 5D function. Fig-
ure 10 presents the comparison of measured local light-fields (us-
ing a path tracer) from a light source reflecting on a diffuse striped
plane moving orthogonally to the direction of the stripes. Our pre-
dicted covariance matrices are close to the measured quantities, and
the correlation factors are correctly estimated 2.

Figure 11 presents the comparison of measured local light-fields
from a light source occluded by a rotated quad. We show that the
occlusion grid correctly estimates the anisotropy of the local light-
field after the blocker. It should be noticed that our predicted co-
variance matrix estimates a higher degree of occlusion anisotropy.
This is because the windowed Fourier transform applied to com-
pute the reference covariance introduces parasitic low frequencies
in all directions at the same time.

Figure 12 presents an analysis of different regions on a soft shadow
casted by a moving occluder. Our analysis correctly predicts re-
gions where the shadow is influenced by the motion and regions
where the motion doe not change the shadow. Note that the source
used in Figure 12 is smaller than the one used in Figure 11 resulting
in higher spatial covariance.

7.2 Unit tests

In this section, we propose to review some basic examples in or-
der to view the effects handled by our theory. These examples are

2Differences between values are explained by the window we applied to
compute the Fourier transform of measured light-fields and to their coarse
resolutions.
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Fig. 10: A Comparison of predicted and measured covariance matrices of light field spectra for a toy scene involving a square light source
with a Gaussian emission pattern, illuminating a textured reflector at a distance of 1m. The reflector is translating vertically at a speed of
0.1m.s−1. The first row shows the sliced spectrum of 5D measurements at three positions (just after the source, just before the reflector, and
just after the reflector), to be compared with the predicted covariance matrices in the following row. Notes: (1) In the measurements, we
zeroed values below 10−6 for clarity. (2) some positive values in the measurements come from the windowing applied before the FFT, e.g. the
θ − θ and φ− φ covariances in the 1st and 3rd steps. (3) At each step, we show slices with the most significant correlation, i.e. respectively
the X − Y , Y − θ, and Y − t slices.

provided as pedagological examples and so we do not compared to
ground truth or focus on efficiency.

In Figure 13, we show how shininess and curvature of an object
can affect the covariance, the respective reconstruction filters and
the predicted number of samples required. The filters are correctly
oriented along the surface, due to our handling of anisotropy.

In Figure 14, we show how motion elongates reconstruction filters
along the projected direction of the motion. In Figure 15, we il-
lustrate that our algorithm exploits angular frequency to adapt the
reconstruction of the depth-of-field effect. Both effects exploit the
fact that slicing the 5D covariance matrix to produce 2D filters will
stretch the filter in the direction of the shear (e.g. angular directions
for the lens, direction of motion for time).

In Figure 16, we show the effect of occlusion on the estimate of fil-
ters. We underline the effect of the resolution of the occlusion grid
on small scale elements. Our voxel-based method tends to overes-

timate occlusion and can possibly lead to oversampling of smooth
regions if the resolution of the occlusion grid is not high enough.

7.3 Comparisons

We compared our algorithm implementation to a standard path
tracer. The snooker scene (Figure 17) presents a billiard scene un-
der the lighting of a sky environment map. The scene exhibits both
low and high frequency materials (diffuse, glossy, and specular).
Frequency information is computed using 15 covariance samples
per pixel. We limited the maximum number of primary rays per
pixel to 100 for our algorithm. We used a 200-wide voxel grid for
the occlusion detection. We show a zoomed comparison between
our algorithm and a path tracer in Figure 18 for an equal time of
computation.

The helicopter scene (Figure 21) shows a toy lit by a square light
source. The blades of the helicopter are rotating around its rotor’s

ACM Transactions on Graphics, Vol. V, No. N, Article N, Publication date: Month YY.



• 13

Predicted covariance Measured covariance

Measured spectrum (log scale)

Fig. 11: A comparison of the predicted and measured covariances at the
edge of the shadow caused by the square occluder. Our estimate correctly
captures the anisotropy of the signal (the first eigenvector is (0.69, 0.71)).
It is significantly more anisotropic (eigenvalues 89 and 0.05) than the mea-
sured covariance (eigenvalues 31.2 and 10.8), which we attribute to the
effect of windowing in the measurement (see the bars along each axis in the
spectrum image).

Predicted covariance

Predicted covariance

Fig. 12: We analyze the effect of a moving occluder on our covariance esti-
mator. Our estimator correctly depicts the anisotropy created by the motion
of the occluding plane along the y axis. Occlusions by edges orthogonal to
the motion bring high frequency to the temporal domain while occlusions by
edges along the motion don’t affect the temporal domain. We do not provide
measured covariances because the windowing of the measured light-field
introduced too much frequency to be compared against our prediction.

axis creating motion blur, while the textured background of the
scene is out of focus. We used 10 light paths per pixel to estimate
the covariance and a maximum of 200 samples per pixel for the
reconstruction. Again, we compare our results with a path-traced
image computed within the same amount of time.

We performed all computations on a Xeon W3520 at 2.66 GHz
with 8GB of RAM. Our algorithm takes advantage of parallel com-
putation for sampling both covariance rays and radiance rays.

(a) Input scene (b) Reconstruction filters

Fig. 13: Four spheres of different size and shininess are lit by a square light
source. The curvature and shininess of the spheres influence the reconstruc-
tion filter shapes. The filters align correctly with the geometry factor allow-
ing us to filter samples along curvature. Note: we extract the maximum
frequency of the BRDF for the covariance estimation.

(a) Input scene (b) Reconstruction filters

Fig. 14: The motion of the planes influence the reconstruction filters shape
(b) by elongating them in the direction of the motion. Note: the frequency
of the texture has been set to its max to produce a comprehensive figure.

(a) Small lens radius (b) Larger lens radius

Fig. 15: A comparison of two different aperture sizes, for the same camera
configuration (position, direction and sensor size). For a small aperture (a),
the depth of field is large (little defocus blur) and the filters are not changed.
For a bigger aperture size (b), the depth of field is much shallower and and
the filters are bigger.

We emphasis the effect of the 5D windowing in Figure 20. Since
the spatial x − y windowing is a user parameter, it can be used to
control the width of the filters in low frequency regions. We noticed
that using too wide a filtering kernel leads to diffusion of high fre-
quencies during the max filtering step. A trade-off must be made
to obtain an optimal speed of our method.
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(a) Input scene (b) Reconstruction Filters (red inset)

Fig. 16: A complex occluder is casting a sharp shadow onto a diffuse plane.
We present different resolutions of the occlusion grid for the red inset pre-
sented on the input scene (a). The example on the right half of (b) correctly
depicts the contour of the shadow on the plane as the resolution of the grid
is fine enough. On the contrary, the left half of (b) over-estimates the occlu-
sion due to a coarse resolution of the grid.

These scenes demonstrate that our method allows us to save com-
putation time for the low frequency parts of the scene as shown in
Table III.

Scene Our (covariance tracing / reconstruction) Reference
Snooker 25m (2m36 / 16s) 2h25m

Helicopter 29m (2m / 16s) x

Table III. : Timing comparison between our algorithm and our reference
tracer for the snooker (Fig. 17) and for the helicopter scene (Fig. 21). The
first column shows the time taken by our algorithm. Inside the brackets we
show the covariance acquisition and the reconstruction timings. For the
helicopter scene, we do not report the path tracer timing since we are doing
an equal time comparison.

7.4 Discussion

Comparison to Egan et al.. We differ from Egan et al. [2009]
in that we consider the shutter effect as a multiplication by a unit
pulse, whose size depends on the time the shutter stays open, fol-
lowed by an integration along time in the primal domain. On the
contrary, Egan et al. consider the shutter effect to be the convo-
lution of the signal by the same unit pulse taken at discrete time
(again in the primal space). As a result, in our final reconstruc-
tion, filters are not sheared in space-time like with Egan et al.’s
approach, which dramatically simplifies implementation. This also
means that there is no need to consider samples outside the shutter
interval. The reconstruction filter can be sheared in the image plane
if the 5D spectrum (Figure 9 (a)) is not isotropic. This is usually
the case with moving objects where the spectrum reaching the lens
(Figure 9 (a)) is sheared along the object motion.

Comparison to Soler et al. [2009]. Our approach has the same
benefit as Soler et al.’s depth of field approach because we can
take advantage of low bandwidth either along the lens or the image.
However, their method relies on a two-step reconstruction whereas
we do one single 2D reconstruction. As a result, their method can
only exploit low bandwidth along either of the axes — angle or
space — but not diagonally, while our method is able to achieve this

as well. Furthermore, our method handles motion blur and general
light paths.

Comparison to 2D post-processing. Our method is different
from 2D post-processing solutions [Max and Lerner 1985; Potmesil
and Chakravarty 1981] that blur a 2 or 2.5D image with spatially-
varying filters according to depth or motion. The ressemblance ex-
ists only for purely diffuse planes. In general, our reconstruction
filter is not simply the circle of confusion or motion vector: it takes
into account complex effects in combination such as glossy high-
lights, occlusion, and lighting.

In a simple case such as the defocus of a diffuse object, the size of
the reconstruction filter is exactly the size of the circle of confusion.
But for more complex situations such as glossy objects or occlusion
boundaries, the bandwidth becomes higher and the reconstruction
filter is smaller.

8. LIMITATIONS

The main complication in computing the covariance matrix is the
detection of partial occlusion. Since we use a voxel grid we add
two major constraints: First, the locality of the frequency analysis
is bound to the resolution of the voxel grid. This can result in over
estimating the occlusion in scenes where tiny details occur (such
as leaves on a tree). Second, the use of the voxel grid adds the cost
of ray marching during the occlusion detection step. To retain the
same locality in the occlusion detection for different scene sizes,
the size of the voxel grid must be adapted, potentially increasing
the computational cost of the frequency analysis.

Furthermore, our method might become ineffective in very com-
plicated regions where effects such as occlusion and depth of field
or motion blur co-occur. Since we use pre-integrated light samples,
variance is only reduced by the number of samples gathered. For
such regions, gathering from outside a pixel will create noticable
aliasing and we obtain worse results than path tracing, with say
stratified sampling, which decreases the variance in all dimensions
simultaneously. However, since we are able to identify such conflu-
ences of complex effects, we could still use traditional path tracing
for these pixels.

9. CONCLUSION

We have presented a new method to propagate frequency informa-
tion along light paths. We demonstrated the use of the covariance
matrix for adaptive sampling in a one bounce ray tracing algorithm,
which permits the sharing of samples across pixels using a 2D re-
construction method. We validated the usability and the validity of
our approximation against some ground truth covariance matrices.

We aim to further exploit the possibility of the covariance matrix in
more general cases such as volumetric environments or complete
global illumination algorithms such as path tracing methods.
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(a) Equal time reference using 512 samples per
pixel (25 minutes)

(b) Our algorithm (25 minutes) (c) Reference with same maximum number of sam-
ples per pixel (3000 samples per pixel, 2 hours 25
minutes)

Fig. 17: The snooker scene rendered using our algorithm at the center, with a path tracer using the maximum number of samples in a pixel
used in our algorithm at the right (same quality), and using the same amounts of time as our algorithm at the left.

Fig. 18: A close-up comparison for the snooker scene (Figure 17) between our algorithm and equal time path tracing. We present several
regions where the effect of our adaptive sampling and reconstruction are perceptible. In the red inset (a) we demonstrate that we make the
rendering of glossy out-of-focus surface converge faster. The yellow inset (b) show the rendering of motion-blur with a glossy surface. The
green inset (c) emphasizes the rendering of complex combinations of effects such as depth-of-field occlusion of glossy surfaces. In this setting,
we can see that our algorithm exhibits artifacts because of a limited number of samples. Finally the blue inset (d) shows the rendering of
both out of focus diffuse green region of the pool and the glossy ball.
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APPENDIX

A. MOTION SHEAR

We show that the transformation of motion can be seen as a shear
in a first order approximation. We will provide demonstration for a
3D spectrum that is anisotropic in space and anisotropic in angle.

Given a point xt on the tangent plane of the central ray and an angle
θt, as shown in Figure 22 we want to estimate the new position
xt+dt and new angle θt+dt after a linear motion and rotation of the
tangent plane. We note that θ is the angle covered by the rotation
of the tangent plane during dt, y the tangential translation of the
tangent plane during dt, and xo the intersection between the tangent
plane at t + dt and the central ray at t.

Fig. 22: Shear from a light field frame to another.

The new value of the angle is a simple addition θt+dt = θt − θ.

We will decompose the derivation of xt+dt into two steps. First we
will find the intermediate position xz after taking into account the
translation only. Then we will infer the new position xt+dt from xz
by looking at the rotation.

The intermediate position is the result of a spatial shear with a travel
distance of t vz and a shift of distance y:

xz = xt − y + vz t tan(θt)

The last term is a second order term and we neglect it.

xz ≃ xt − y

The new position is found using the approximation that for very
small angles θt, we can apply the law of cosines on the triangle
defined by the intermediate point, the new point and the central
position after motion. This approximation gives us:

xt+dt ≃ xz
cos(θt)

The formulation for xt+dt is then :

xt+dt ≃ xt − y

cos(θ)

Substituting the expression of y with the velocity multiplied by
time, and putting it into a matrix formulation, we get :x′

θ′

t′

 =

 1
cos(θ)

0 − vx
cos(θ)

0 1 −vθ
0 0 1

x
θ
t


We can further linearize the one over cosine term :

1

cos(θt)
≃ 1

x′

θ′

t′

 =

1 0 −vx
0 1 −vθ
0 0 1

x
θ
t

 (25)

B. LINEAR TRANSFORMATION OF THE SIGNAL

In this section we derive the expression for the matrices to be used
to update the covariance matrix of the light field’s spectrum in each
situation.

We want to compute the covariance of the function f expressed
in a domain deformed by an invertible linear warping function B,
denoted as f ′, by the linear transform B with its associated matrix
B. For any point x in the space, the value for the f in the space
warped by B is :

f ′(x) = f ◦ B−1(x)

We want to express the covariance matrix Σ′ of f ′, based on the
covariance matrix of Σ of f . From the definition we gave in section
4 of the covariance matrix :

Σ′
i,j =

∫
x∈R5

⟨x, ei⟩ ⟨x, ej⟩ f ′(x) dx

=

∫
x∈R5

⟨x, ei⟩ ⟨x, ej⟩ f(B−1(x)) dx

We apply the change of variables Bu = x, to obtain the following
integral formula :

Σ′
i,j =

∫
u∈R5

⟨Bu, ei⟩ ⟨Bu, ej⟩ f(u) |B|du

=

∫
u∈R5

⟨u, BT ei⟩ ⟨u, BT ej⟩ f(u) |B|du (26)

Now we expand the dot products :

⟨u, BT ei⟩ =
∑
k

Bk
i ⟨u, ek⟩

Injecting this into Equation 26 gives

Σ′
i,j = |B|

∑
k

∑
l

Bk
i Bl

j

∫
u∈R5

⟨u, ek⟩ ⟨u, el⟩ f(u) du

= |B|
∑
k

∑
l

Bk
i Bl

jΣk,l

= |B|(BTΣB)i,j

Consequently, the matrix operator associated with the linear trans-
formation B of the space is

√|B|B.
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C. BRDF MULTIPLICATION

BRDF multiplication is a band limiting process. In the most general
situation, the 5D covariance matrix Σ of the signal doesn’t have
a full rank, and the calculation needs to be carefully conducted,
approximating the signal by a combination of a Gaussian and Dirac
functions.

Since Σ is always symmetric semi-definite and positive, it can be
diagonalized with an orthogonal transform. Let Λ be the diagonal
matrix of eigenvalues and U the matrix of eigenvectors:

Σ = UΛUT

Some of the eigenvalues λi might be null. Dirac along the as-
sociated eigenvector (since we always have energy in our light
path, the DC term is never zero). Using the notation ω =
(ωx, ωy, ωθ, ωϕ, ωt):

f(ω) = e−ω
TUΛ+UTω

∏
j

δj(ω)

Where Λ+ is the pseudo inverse of Λ, and δj(ω) = δ(⟨ej , ω⟩)
Because it has covariance only in the angular domain, the BRDF
spectrum is well represented by a product of a 2D Gaussian along
the θ and ϕ directions:

brdf(ω) = e−ω
TBω

Where B has zeros everywhere except for the angular part of the
matrix. Therefore, the product of the two functions is

f(ω)× brdf(ω) = e−ω
TUΛ+UTω

∏
j

δj(ω)e−ω
TBω

= e−ω
′T Λ+ω′

e−ω
′TUTBUω′ ∏

j

δj(ω)

= e−ω
′T (Λ++UTBU)ω′ ∏

j

δj(ω)

The covariance matrix Σ′ of this function is computed from the
pseudo-inverse of Λ+ + UTBU :

Σ′ = ((UTΣU)+ + UTBU)+

= UT (Σ+ + B)+U
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