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Abstract

Anya is an incubator design intended for use in the developing world. It aims to reduce the in-
stances of premature infant death in the developing world, specifically targeting places where
household electricity is uncommon. Thus, Anya requires a nonelectric heating method. Paraf-
fin wax, a phase change material with high latent heat storage, was selected as the heating element
for study. The wax can be melted in boiling water, used to deliver heat to the incubator, then melted
again once the material has solidified.

A one-dimensional thermal circuit model was developed to predict the thermal behaviors of the
incubator as a function of the thermal resistances of the materials used and ambient air temperature.
The thermal behaviors studied were steady-state temperature, duration of heating element usage,
and time for the air chamber to reach steady-state temperature.

By melting quantities of wax, placing it in coolers with plastic container lids, and measuring the
temperature response over time, the mathematical model was evaluated. The tests were difficult to
compare to the model, as nonuniform melting temperatures of the wax and lack of airtight contain-
ers for the tests caused irregularities in the results. However, the simulations’ behavior implicated
two features the model should incorporate for future study: (1) the thermal resistance and temper-
ature gradients within the air chamber, and (2) the thermal capacitance of the resistive materials
used between the wax and the air chamber.

Thesis Supervisor: Sanjay Sarma
Title: Professor of Mechanical Engineering
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Introduction

The market for medical devices in India is growing (see Figure 0.1). Products that will best pen-

etrate this market will be of high quality, but affordable. In general, competitive products for the

developing world market must be durable and low-maintenance. Great products for this market

provide independence from electricity and are easily serviceable by local professionals or through

the mail.

1.6
1.79 2.01

2.25
2.52

2.82
3.16

3.54
3.96

4.44
Current CAGR:

12%

CAGR: ?%

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 0.1: Projected medical device market in India, in billions of USD. The current
compound annual growth rate (CAGR) is an attractive 12%. Source: Pacific Bridge
Medical. Figure graphic from Datta and Neogy [1].

Approximately 7,400 premature infants die every day in the developing world. Of those deaths,

5,900 of them occur in the home, where people have no access to incubators. In 2011, 9 million

of the 12 million premature births in the developing world occurred in homes. Premature infant

mortality is only slightly lower in smaller hospitals, the site of 1,500 premature infant deaths per

day. In smaller hospitals in the developing world, incubation systems are not readily available,

medical professionals often have limited training, and cross-contamination is common [1].

13



Incubation Solutions Available Today

Currently available mobile incubators are quite expensive (over $2000 per unit), and impractical

for developing countries [1]. GE Healthcare’s Airborne 750i Infant Transport Incubator is designed

for intra-hospital transport only, and would be too cumbersome to remove from a neonatal intensive

care unit (NICU). The Air Shields C300 is also too heavy for transport, and has reliability issues

(Figure 0.2) [1].

Figure 0.2: Left, GE Airborne 750i Infant Transport Incubator; right, Air Shields
C300 (Images from GE Healthcare [2], Whittemore Enterprises [3] respectively).

Besides these options, there are few alternatives. The kangaroo care method, where the mother

holds the baby close to her chest or in her clothes, costs nothing, but skin-to-skin contact increases

likelihood of infection transfer to the vulnerable premature infant [1].

A Garam bag, an insulation device similar in design to a sleeping bag, is portable, can be used

at home, and costs only $1.25 [1]. However, this product is only practical for infants born after

proper gestation. Premature infants do not generate heat, and therefore the insulation does little

good. This product also has a similar disadvantage to kangaroo care: it does not provide protection

from infection transmission.

An innovative product on the market is the Embrace infant warmer (Figure 0.3). It is also shaped

like a sleeping bag, but incorporates a phase change material (PCM) that steadily releases heat.
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Heating the Embrace’s WarmPak requires the exclusive use of the AccuTemp heater (provided

with the product), which uses an AC power source (see Figure 0.4). The phase change material

provides up to 6 hours of heat [4].

The Embrace sells for $150, more than ten times the expense of the Garam bag, due to the addition

of the PCM and heater. The intended users of this product are nurses and doctors, but it is not the

elegant solution that many hospitals would hope for, thus unlikely to replace traditional incubators.

The cost of $150 is also high for a less comprehensive product designed for developing countries

[5]. It also does not provide complete protection from disease transmission, as the infant’s face is

still exposed.

Figure 0.3: The Embrace product includes a sleeping bag-shaped device, the WarmPak
(a PCM-filled heating pad, placed in a pouch in the Embrace), and the AccuTemp
heater (see Figure 0.4). Image from Embrace [4].
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Figure 0.4: Heating the Embrace. Image from Embrace [4].

Anya

This paper focuses on Anya: an innovative, portable incubator design that can be used in both the

home and the NICU. Anya was envisioned by Subhrangshu Datta and Chitro Neogy, MIT Sloan

graduates and founders of FrontierMed Technologies. FrontierMed Technologies sponsored the

work done in this thesis, as well as work by Elaina Present and Delian Asparouhov.

An Anya prototype can be seen in Figure 0.5, and concept sketches of this product can be seen in

Figure 0.6. The undergraduate thesis work done by Elaina Present covers the design and manu-

facturing of this product, and Delian Asparouhov, an undergraduate research student, is currently

designing the monitoring system and mobile application [6].

Compared to hospital incubators, Anya will be much less costly and cumbersome, so it can be used

in the home. It can be configured for use in both the hospital and the home, will be of a modest

size (one child per incubator), and can be carried from a hospital with ease.

Compared to the products resembling sleeping bags (the Garam bag, the Embrace), Anya will

provide a heat source and a complete cover for the child for complete protection. Its exterior and

docking station will look professional and fit naturally into a NICU setting.

Unlike the Embrace, the goal of Anya is independence from an electric power source, allowing

users without electricity in their homes to use the product, and allowing all users with premature

infants more mobility in living and traveling. Thus, the focus of this work is to investigate methods

for the incubator to provide heat without electricity. Outside of the NICU, a reusable heating

element will be used to heat the chamber. The heating element must be boiled and reinserted when

16



Figure 0.5: A 30-week old infant in an Anya prototype at Gangaram Hospital, New
Delhi, India. The incubator will also incorporate a cover or shield, not shown. Image
from Datta and Neogy [1].

Figure 0.6: Anya will be able to transform from a portable, carriable incubator into
a hospital-style, stationary incubator with a small footprint. Images from Datta and
Neogy [1].
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the liquid material has solidified (see Figure 0.7). Boiled water is readily available to families

living and traveling in rural parts of the developing world. It is common to find large pots of

boiling water along the road for use in making tea, so these can be utilized in reheating the heating

element allowing the incubator to be “refueled” in villages near users’ homes, and in the hours-

long journey to and from the hospital. These pots of water are much more common than electricity,

so Anya will be more convenient than the Embrace for both living in areas without electricity and

transport.

Remove PCM pack and
reheat when      is illuminated

3

Place PCM pack in boiling
water until      is illuminated

1

Place heated PCM
pack in PCM pocket

2

Figure 0.7: The envisioned heating method for Anya. Original graphics from Datta
and Neogy [1].

Phase Change Materials

Several phase change materials were investigated for use in the heating pack. A phase change

material utilizes latent heat rather than sensible heat to store energy. Energy storage by means

of sensible heat is demonstrated by a proportional temperature change. Latent heat is stored in a

18



material as it changes phase (e.g., from a solid to a liquid), and does not cause temperature change.

At low temperatures (around room temperature or just above), materials such as water (which

boils at 100◦C) simply increases in temperature with the addition of heat. Phase change materials

change phases at lower temperatures, so with the addition of heat, they will store the energy in the

form of a temperature change until the phase change temperature is reached, then store the amount

of latent heat energy required for the phase change until the phase change is complete, then resume

absorbing sensible heat energy [7]. One kilogram of water heated from 20◦C to 85◦C stores about

272 kJ of energy, while one kilogram of paraffin wax heated from 20◦C to only 55◦C stores about

277 kJ. While water has a much higher heat capacity than paraffin wax (4.184 kJ/kg versus about

2.5 kJ/kg), the latent heat of fusion that paraffin wax can absorb in its phase change is about 200

kJ/kg. Water does not undergo a phase change in the range of incubation temperatures, so it will

not store any energy in the form of latent heat.

In selecting a phase change material for study, PCMs were evaluated for cost and latent heat of

fusion. Sodium acetate trihydrate initially looked promising. It seemed easy to produce at a low-

cost, melts at 58◦C, and has a latent heat of fusion of 264-289 kJ/kg [8]. In addition, it is able

to remain stable in the liquid state under certain conditions (supercooling), so after melting the

used solid in boiling water, it can be stored in liquid form and activated when needed. Agitation

(nucleation) of the material causes its solidification (crystallization), initiating its release of heat.

However, in initial experimentation, sodium acetate proved difficult to keep in a stable state and

tended to self-nucleate, perhaps due to the impurities of laboratory experiments. Thus, there was

no distinct advantage to using sodium acetate over a typical, self-nucleating PCM. Paraffin wax,

a PCM without a nucleation requirement, was selected for study in this paper, as it has a melting

temperature between 58 and 62◦C and is a common, inexpensive material [9]. However, most of

the theory used in the paper can be applied to any similar material used.

Anya’s Technical Requirements

The technical requirements for this product that need to be considered by the thermal studies in

this paper are total weight (under five kilograms, preferably less), a chamber temperature of 31 to

34◦C, and provision of heat for two to four hours [1]. This work encompasses modeling of the
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heat transfer processes for the incubator, as well as experimentation testing the accuracy of these

models.

Limitations of This Study

The anticipated limitations of the work done in this thesis are the following:

Thermal Resistance Selection for External Shield

It should be noted that a substantial limitation in this analysis is the restricted number of materials

acceptable for use as the outer shield. Parents or caretakers absolutely must be able to visually

monitor the child, so the shield must be clear, and not so thick that clarity becomes an issue.

Clear acrylic or plexiglass are the most obvious choices. Glass materials are clear, but could be

dangerous to the infant if the shield shattered due to an impact. Glass is also very dense and would

thus increase weight. Plastic has a relatively low resistance (or, rather, a high thermal conductivity)

compared to cotton batting or padding that will cushion the child. Difficulties in obtaining correct

ratios of resistances will result from the rigidity of this requirement, and this will affect many

future design decisions when using the analysis in this thesis.

Heat Losses Through the Incubator Body

In this paper, it is assumed that all heat transfers to the outside of the incubator occur through the

external shield of the incubator, and not through the body of the incubator. In the final design, a

comparison of the thermal resistances of the incubator body and shield will need to be made. For

this model to accurately predict the incubator’s thermal behaviors, the majority of the heat losses

should be through the shield. If this is not the case, the model will need to be adjusted.

Ventilation Considerations

This paper does not cover ventilation, air exchange, or air circulation devices, which will likely

need to be incorporated into the final incubator to provide fresh, clean air to the infant. Any
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exchanges of internal and external air will likely cause losses in heat or power, and these losses are

not considered in the following sections. The ventilation system will have to be examined, and the

models used in this paper will have to be adjusted to reflect the heat and air exchange.
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One-Dimensional Heat Transfer Model

Abstract

This essay analyzes the idealized one-dimensional heat transfer through the incubator chamber.
The incubator is modeled as a simple thermal circuit consisting of a resistor (the material between
the air chamber and wax), a capacitor (the air contained in the chamber), and a resistor (the shield
between the chamber and the environment) in series.

It is found that the steady-state temperature of the chamber air depends upon the ratio of the
resistances chosen for the resistors (like a voltage divider), the external temperature, and the heater
temperature. The required heating element mass depends upon the resistances chosen, and expo-
nentially decays in response to an increase in resistances. Two high resistances (above 0.75 K/W)
provide an adequate duration of heat for less than one kilogram of wax. The transient response of
the air temperature is in the form of a linear first order equation, and the model predicts that the air
will take less than three minutes to complete 98% of its rise in temperature. A low resistance pro-
vides a faster response time, but at the expense of additional heat source mass required for giving
sufficient heating time—a poor trade-off.

The steady-state temperature is found to be quite sensitive to the environmental temperature, even
for high resistances. This property should be examined with experiments using various resistances
and possibly incubator materials that can be changed for use in various climates. The mass of wax
should be selected for the lower environmental temperatures to ensure sufficient usage time. The
model predicts no change in response time of the temperature rise in the air chamber for changing
external temperatures. This is likely one of the model’s several limitations.
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1.1 Thermal Circuit

The Fourier Law of Conduction, Equation 1.1, states that the rate of heat transfer through a material

is proportional to the temperature gradient and the cross-sectional area through which the heat

transfer is taking place, viz.

Q̇ =−kA
dT
dx

(1.1)

where dT
dx is the temperature gradient through the medium, k is the thermal conductivity, and A

is the cross-sectional area [10, (6.1)]. For a conduction path of constant cross-sectional area with

length, l, Equation 1.1 can be integrated from x = 0 (where T = Ta) to x = l where (T = Tb) [10,

(6.2)],

Q̇
∫ l

0
dx =−kA

∫ Tb

Ta

dT (1.2)

or

Q̇ =
kA
l
(Ta−Tb). (1.3)

More simply, we can let Ta−Tb = ∆T :

Q̇ =
kA
l

∆T. (1.4)

Equation 1.4 can be directly compared to Ohm’s law, which states that the current through a resistor

is proportional to the voltage drop across the resistor divided by the resistance (Equation 1.5). ∆T

is the “temperature drop” across our thermal resistor.

i =
∆V
R

(1.5)

Considering these heat transfer equations in terms of thermal resistance allows us to make direct

analogies to electrical circuits, which have been extensively studied and thus their behavior is well-

known. Thermal resistance is analogous to electrical resistance; as the rate of heat transfer, Q̇, is

analogous to current, i; and temperature drop, ∆T , is analogous to voltage drop, ∆V .

The system boundaries and heat transfers have been defined in Figure 1.1. The values for Q̇1 and
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Tenv

p

Air
T,m,c

Wax
T   ,m    ,ΔHwax      fusion

°
wax      

Resistor 1

Resistor 2

p

Air
T,m,cpp

Q1

Control Volume

Q2

Figure 1.1: Left, the incubator with system temperatures and properties. Right, the
system boundaries (dashed border) and heat transfers (Q1, Q2) are defined. Baby
graphic from [11].

Q̇2 are defined in Equation 1.6 and Equation 1.7, respectively.

Q̇1 =
k1A
l1

(Twax−T ) =
Twax−T

R1
(1.6)

Q̇2 =
k2A
l2

(T −Tenv) =
T −Tenv

R2
(1.7)

In the above equations, we see that the thermal resistance of a conducting material can be given

by the characteristic length divided by the product of the thermal conductivity of the material

and the area, or Ri =
li

kiA
. Besides identifying with the electrical analogy, using R instead of the

individual components l, k, and A allows R to include convection components if necessary (for

example, convective resistances, 1
hcA , could be added in parallel to conductive components) [10,

(6.13),(6.14)].

The following sections use these basic equations to model the steady-state temperatures, heater

material mass requirements, and transient air temperature response based on thermal resistances of

chosen materials, ambient temperature, and heating element temperature. These properties have a

significant impact on the incubator’s ability to maintain the infant’s temperature as well as on the

incubator’s usability by the parent or caretaker.

It should be noted that a substantial limitation in this analysis is the restricted number of materials

acceptable for use as the outer shield. Parents or caretakers absolutely must be able to visually
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monitor the child, so the shield must be clear, and not so thick that clarity becomes an issue.

Clear acrylic or plexiglass are the most obvious choices. Glass materials are clear, but could be

dangerous to the infant if the shield shattered due to an impact. Glass is also very dense and would

thus increase weight. Plastic has a relatively low resistance (or, rather, a high thermal conductivity)

compared to cotton batting or padding that will cushion the child. Difficulties in obtaining correct

ratios of resistances will result from the rigidity of this requirement, and this will affect many

future design decisions when using the analysis in this thesis.

In this paper, it is assumed that all heat transfers to the outside of the incubator occur through the

external shield of the incubator, and not through the body of the incubator. In the final design, a

comparison of the thermal resistances of the incubator body and shield will need to be made. For

this model to accurately predict the incubator’s thermal behaviors, the majority of the heat losses

should be through the shield. If this is not the case, the model will need to be adjusted.

This paper does not cover ventilation, air exchange, or air circulation devices, which will likely

need to be incorporated into the final incubator to provide fresh, clean air to the infant. Any

exchanges of internal and external air will likely cause losses in heat or power, and these losses are

not considered in the following sections. The ventilation system will have to be examined, and the

models used in this paper will have to be adjusted to reflect the heat and air exchange.

1.1.1 Steady-State Temperature

At steady state, two resistors in series will have an equal current flowing through them. Similarly

for the thermal circuit, at steady-state temperature (i.e., when the temperature of the chamber

has reached a constant temperature), the heat flux through the system is constant (Q̇1 = Q̇2). In

the electrical analogy, at steady state, capacitors become fully charged and behave like a wire.

Likewise, this model assumes that at steady state, the air temperature is constant throughout the

chamber, and the dominant heat transfer occurs where the major temperature gradients are: across

resistors 1 and 2. Thus, the capacitance can be ignored. See Figure 1.2.

Setting Equation 1.6 and Equation 1.7 equal to each other (since Q̇1 = Q̇2) enables us to define

one resistance with respect to the other by a ratio of the system temperature drops (Equation 1.8).
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Figure 1.2: At steady state, the capacitor is equivalent to a simple electrical wire,
and the equivalent circuit is shown on the right. Instead of voltages, temperatures are
indicated. Individual circuit elements created in Adobe Illustrator by Swann [12].

Here, Tf is the final (steady-state) temperature.

R2 = R1
Tenv−Tf

Tf −Twax
(1.8)

This property is similar to that of a voltage divider in an electrical circuit, where R2 = R1
∆V2
∆V1

, or

∆V2 =
R2
R2

∆V1.

The following conclusions can be made from Equation 1.8, assuming environmental and wax

temperatures are known:

1. By defining the chamber’s steady-state temperature and one resistance, the other resistance

can be obtained.

2. Given two resistances, the steady-state temperature can be found.

3. If Tf is 35◦C (approximately the desired air temperature for the infant’s environment), Twax

is 50◦C (a low estimate of paraffin melting temperature), and Tenv is 20◦C (i.e. there a 15◦C

temperature drop from inside to the outside of the chamber and from the heating element to

the inside of the chamber), R1 = R2.
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1.1.2 Steady State - Calculating the Required Mass

The mass of the incubator can hinder the usability of the product. A large mass of wax not only

adds to the weight, but will also be difficult to handle and take a long time to melt during the

reheating process. However, a smaller quantity of wax means less energy available for heating

the incubator, thus shorter usage times. A balance must be struck between weight and the length

of time that the wax provides heat. This section calculates the amount of mass required for the

inputs of usage time and resistances. Greater resistances will reduce the heat flux and thus extend

the heating time, as high resistances in an electrical circuit reduce the current flowing through the

circuit, and therefore extend battery life.

The mass of heating element, mwax, required for a certain heating time can be calculated using the

substance’s latent heat of fusion, ∆H◦f usion, the material property that defines the change in enthalpy

of the substance as it melts. This is an important consideration for choosing the material. Too low

of a latent heat of fusion requires that more mass be used, as we will see below. The latent heat

of fusion for paraffin wax is between 145 and 240 kJ/kg (paraffin can contain a wide range of

hydrocarbons with different properties) ([13], cited by [7]). For modeling purposes, 200 kJ/kg was

used.

If we assume that all enthalpy drops occur due to the emission of heat, the overall heat transfer, Q,

can be found by multiplying the mass of the wax by the latent heat of fusion,

Q = mwax∆H◦f usion. (1.9)

To solve for the mass required, the overall heat transfer for a heating period must be found. Inte-

grating Equation 1.6 at steady state over the required time period of heating (t f ) enables us to find

the overall heat transfer, Q.

Q =
∫ t f

0
Q̇dt =

∫ t f

0

Twax−Tf

R1
dt (1.10)

Equating Equation 1.9 and Equation 1.10 and solving for mass yields Equation 1.11.

mwax =
Twax−Tf

∆H◦f usion

t f

R1
(1.11)
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Figure 1.3 shows the mass of wax required for different lengths of time as resistance increases.

Note the differences in mass required between one hour and four hours before and after the point

where the slope becomes less than 1 kg/K/W (R =0.75 K/W for the two hour line): the difference

is very significant to the left of this point, but much less significant to the right. The difference in

required masses at R = 0.2 K/W is 4.05 kg (i.e., 4.05 kg more is required for three more hours),

whereas at R = 2, only 0.405 kg more is need for the three extra hours. Therefore, the resistances

selected should be to the right of the change in the magnitude of the slope, as heating time will be

more efficient per kilogram of weight added. However, the resistance chosen should not be too far

to the right of this change in slope, because insignificant amounts of mass will be saved. It can be

seen in the following section that increasing resistance has its costs in other ways, such as a slow

system response time.
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Figure 1.3: The graph above shows that the amount of wax required for different
lengths of time heat is provided or emitted for a range of resistances, given that the R1
and R2 are equal to one another and the ambient temperature is 20◦C.
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Based on Figure 1.3, the absolute resistance for parts selected should be greater than 0.75 K/W, as

it will be easier to select a sufficiently light mass for a long duration of use.

1.1.3 Transient Response

As seen from the previous section, the possible resistances and the ratio between the two resis-

tances must be evaluated for a suitable steady-state temperature. However, the transient response

also must be taken into account. This section highlights the effects of chosen resistances on the

speed at which the chamber reaches the desired temperature from the starting temperature. It is hy-

pothesized that high resistances between the wax and the chamber will result in a slower transient

response. An incubator with a more resistant material or greater thickness of material between the

baby and the wax will take a longer time to heat from ambient temperature after the chamber has

been closed. This time-dependent model will be compared to experimental data in section 3.2.

Derivation of the Ordinary Differential Equation

First, the thermodynamic system being considered is the air-filled chamber, above the first resistive

layer which covers the wax, and below the second resistive layer leading to the outside of the

chamber, as defined in Figure 1.1. We begin with the first law of thermodynamics in Equation 1.12

[10, (2.9)]:

dU = δQ−δW (1.12)

Since no work is being done on the system, the work term is nonexistent.

dU = δQ−���*
0

δW (1.13)

The internal energy of the system is defined from the energy constitutive relation and written in

differential form in Equation 1.14 [10, (3.24)].

dU = mcpdT (1.14)
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The heat transfer components can be written as a sum of the two heat transfers (across R1 and R2).

dQ = dQ1 +dQ2 (1.15)

From Equation 1.13, Equation 1.14, and Equation 1.15, we get

dQ1 +dQ2 = mcpdT. (1.16)

Differentiating Equation 1.16 with respect to time, we obtain

Q̇1 + Q̇2 = mcp
dT
dt

. (1.17)

Q̇1 and Q̇2 are not explicitly known. However, Equation 1.6 and Equation 1.7 are dependent on T ,

and if the ordinary differential equation is linear, we will be able to solve it. Substituting for Q̇1

and Q̇2 respectively, we see the beginnings of our ODE in Equation 1.18.

Twax−T
R1

+
Tenv−T

R2
= mcp

dT
dt

(1.18)

Rearranging, a final ordinary differential equation of the form dx
dt + p(x)x = q(x) (linear first-order

equation) has been discovered [14, Section 1.5, (3)]:

dT
dt

+
1

mcp

(
1

R1
+

1
R2

)
T =

1
mcp

(
Twax

R1
+

Tenv

R2

)
. (1.19)

Solution of the ODE

For clarity and simplicity in solving, let

F =
1

mcp

(
1

R1
+

1
R2

)
(1.20)

and

G =
1

mcp

(
Twax

R1
+

Tenv

R2

)
. (1.21)
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Thus, the ordinary differential equation becomes

dT
dt

+FT = G. (1.22)

The solution to a linear first-order equation like the one above is

T (t) =Ce−Ft +
G
F

(1.23)

where C is a constant determined by initial conditions. We know the temperature of the chamber is

initially equal to environmental temperature, Tenv (i.e., T (t = 0) = Tenv). From this, it is determined

that C = Tenv− G
F . Substituting, we find the solution to the ODE as follows,

T (t) =
(

Tenv−
G
F

)
e−Ft +

G
F
. (1.24)

Substituting the values of F and G, the final solution to the ODE in terms of physical properties is:

T (t) =
(

Tenv−
(R1 +R2)(R1Tenv +R2Twax)

R2
1R2

2

)
e
− R1R2

mcp(R1+R2)
t
+
(R1 +R2)(R1Tenv +R2Twax)

R2
1R2

2
. (1.25)

Matlab Function

The function odetair was created to simulate the system response after the chamber is opened

and closed. The function accepts inputs such as R1, R2, Tenv, and Twax. It can also be manipu-

lated to accept the cross-sectional area, chamber height, and the characteristic length and thermal

conductivity of each resistor as inputs in order to easily compare model and empirical results (see

section 3.2).

Figure 1.4 shows the various transient responses of the system for a range of resistances. The

temperature of the chamber should rapidly increase at t =0, then slowly approach the steady-state

temperature. We see the hypothesis was correct: this model predicts that increasing the resistance

also increases the rise time of the system. The next section will quantify that increase. From this

figure, however, it appears that for the resistances we are examining, the time to reach steady sate

should not be more than 200 seconds (at least, according to the model).
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Figure 1.4: The graph above shows the predicted transient response of the air chamber
temperature as it starts from 20◦C. Here, R = R1 = R2. Wax temperature is assumed to
be a constant 55◦C.
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Response Time

The time for the air temperature to complete 98% of its rise from ambient to steady-state tempera-

ture can be defined as:

T (t = t98%) = 0.98(Tf −Tenv)+Tenv. (1.26)

Equation 1.25 at 98% of the steady-state temperature looks like:

T (t = t98%) =

(
Tenv−

G
F

)
e−Ft98% +

G
F
. (1.27)

At steady-state temperature (i.e., when t→ ∞), we know the exponential term disappears, so G
F =

Tf . Thus, we obtain

T (t = t98%) =
(
Tenv−Tf

)
e−Ft98% +Tf . (1.28)

Equating Equation 1.26 and Equation 1.28, we find

0.98(Tf −Tenv)+Tenv =
(
Tenv−Tf

)
e−Ft98% +Tf . (1.29)

Alternatively,

0.02(Tenv−Tf ) =
(
Tenv−Tf

)
e−Ft98% . (1.30)

Dividing by (Tenv−Tf ) yields

0.02 = e−Ft98% . (1.31)

Solving for the time after which 98% of the temperature rise has occurred, we find

t98% =
1
F

ln0.02. (1.32)

Substituting for F , we can obtain a more specific definition:

t98% =
mcp

1
R1

+ 1
R2

ln0.02. (1.33)

We find, if R1 = R2 = R,

t98% = R
mcp

2
ln0.02. (1.34)
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Figure 1.5: This graph shows the linear relationship derived in Equation 1.34.

Since m and cp are scalar quantities, the 98% rise time is found to be linear with respect to re-

sistance. Figure 1.5 illustrates the linear relationship between resistance and 98% response time

demonstrated by Equation 1.34. The response time increases by 35.38 seconds per ◦K/W, which in

comparison to total hours of usage, is not significant for the low values of R being considered (R¡4

K/W).

The last section recommended resistances of greater than 0.75 K/W. This section has indicated

that, according to the current model, most resistances will not slow down the system significantly

in comparison to a two to four hour usage time. However, to minimize unnecessary increases in

response time, a range of 1 to 2 K/W seems to balance mass requirements and speed requirements.

These speed predictions were challenged by experimental data, as seen in Essay 3. Additions to

this model will need to be made.
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1.2 Sensitivity to Outside Temperature

The models in section 1.1 assumed an external temperature of 20◦C. In this section, environmental

temperature will be varied. It is important to understand the ability of the system to operate in a

range of external temperatures.

1.2.1 Steady-State Temperature

It is necessary to investigate how the steady-state temperature would change according to various

external temperatures in which the incubator could be used. The final incubator will need to operate

in various climates, and it is unlikely that the same resistances would be as effective for all external

temperatures, as the temperature of the chamber would change. The relationship between the

external and internal temperatures is obtained and analyzed in this section.

In the following lines, we rearrange Equation 1.8 and solve for Tf .

R2Tf −R2Twax = R1Tenv−R1Tf (1.35)

(R1 +R2)Tf = R1Tenv +R2Twax (1.36)

Tf =
R1Tenv +R2Twax

R1 +R2
(1.37)

With this result, we see that if R1 = R2,

Tf =
R(Tenv +Twax)

2R
=

Tenv +Twax

2
. (1.38)

In other words, if R1 = R2, the internal steady-state temperature is the average of the wax’s melting

temperature and the external temperature.

Figure 1.6 shows the steady-state temperature of the chamber as a function of external temperature

for various ratios of R1 and R2 (R2
R1

), as seen in Equation 1.37. From this graph, it is clear that

certain resistance ratios are more appropriate for different temperatures. The acceptable ranges are

shown in Table 1.1.
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Table 1.1: Temperature ranges for various resistance ratios (see Figure 1.6).

R2
R1

Ambient Temperature Range (◦C)
0.25 25 to 30
0.50 19 to 25
0.75 13 to 20
1.00 7 to 15
1.25 1 to 10
1.50 -5 to 5

External Temperature ( oC)
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Figure 1.6: This graph shows the internal steady-state temperature of the chamber as
a function of external temperature for various ratios of R1 and R2 (or, R2

R1
). The area

between the dashed lines represents the acceptable temperature range for inside the
chamber (31-35◦C).
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Fixed ratios are not the best choice for a robust incubator. A ratio of 0.75 would work in a tem-

perate climate, but its range still spans only seven degrees, from 13 to 20◦C (for more ranges, see

Table 1.1). A simple solution to this problem would be to provide various paddings and coverings

for the incubator to adjust the resistance ratio as necessary for the climate or daily temperature

forecast.

1.2.2 Required Mass

As a follow-up to subsection 1.1.2, it can be seen from Equation 1.11 that the mass required to

heat the chamber depends on the steady-state temperature of the chamber, Tf . It can be seen from

subsection 1.2.1 that Tf is dependent on the environmental temperature. Combining Equation 1.11

and Equation 1.38, the mass of wax needed for two hours of heating as a function of external

temperatures, assuming equal resistances, is found to be:

mwax =
Twax−Tenv

2∆H◦f usion

t f

R1
. (1.39)

Figure 1.7 reflects Equation 1.39’s correlation between outside temperature and the mass required

as well as chosen resistances. For higher resistances, the mass required is less sensitive to tempera-

ture changes, whereas for low resistances, the mass required varies greatly with changes in outside

temperature. For resistances below the point where the magnitude of the slope becomes less than

1, around 0.7± 0.1 K/W, the mass requirement is more sensitive than with resistances greater than

0.7 K/W.

The maximum difference between the mass required for temperatures of 10◦C and 30◦C is 3.6 kg

at R =0.1 K/W, which decreases rapidly to 0.36 kg at R =1.0 K/W, and finally to 0.036 kg at

R =0.01 K/W. In this model, the mass required for 30◦C is will always be 50% of the mass re-

quired for 10◦C. Alternatively, designing for 10◦C will give the user twice as much time of use as

designing for 30◦C.
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From this, it is recommended that the final heating element’s mass be designed for operation in

lower temperatures. The mass of the heating element should be selected based on a relatively low

operating temperature, such as 10◦C, for within the range of recommended resistances the mass

penalty is minimal. If this is done, and the operating temperature is above the design temperature,

there is a great benefit to the user of an increased duration of heating. Choosing the resistances to

be greater than 0.7 K/W if R1 = R2 is highly recommended. This graph should also be regenerated

for instances when the resistances are not equal, so the point with a dramatic change in slope can

be found for different resistance ratios.
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Figure 1.7: This figure shows the mass of wax required for two hours of heating at
environmental temperatures of 10 to 30◦C and resistances of 0.1 to 5 K/W.
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1.2.3 Response Time

As seen from Equation 1.34, the 98% rise time will not change with a change in outside tempera-

ture. Because Tenv is not present in the equation, the model does not predict any difference in rise

time if the environmental temperature changes. This does not seem correct, as it should take longer

for the wax to heat up a cold chamber than a room temperature one. Perhaps like a time constant

in a circuit, the model does not predict a difference in the time constant for different step inputs.

Experimentation will be best method in determining the accuracy of these statements.
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Experimentation

Abstract

This essay details the experimental procedure designed to evaluate the model developed in Essay 1.
Paraffin wax was melted in plastic bags submerged in boiling water. A more ideal boiling configu-
ration for melting the wax in plastic bags was designed after trial and error, but in the future plastic
bags should not be used. After melting, the wax was placed at the bottom of a portable cooler. A
thin towel or blanket simulated the thermal resistance of a cotton pad or batting that will cushion
the infant. Large, thin plastic container lids were used to seal the cooler instead of its typical lid,
as the thin lids would more accurately simulate the material to be used for the incubator’s shield.
Various numbers of Vernier TMP sensors were used to measure combinations of air temperature,
pad temperature, and wax temperature.
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2.1 Overview

2.1.1 Wax

Wax was packaged in two separate gallon-sized plastic bags for testing. After subsequent rounds

of heating, the cooled wax adhered itself aggressively to the plastic bags, and could not be removed

from them (Figure 2.1). The wax and bags were placed in more plastic bags, eventually into two

two-gallon plastic bags. Plastic bags are not recommended for use in this experiment, as they tend

to melt very quickly if left unattended. Wax is flammable and very difficult to clean off of surfaces

without damaging them, so it is recommended that a container with a higher melting temperature

be used for future experimentation. However, the few kilograms of wax provided heat much longer

than expected, but did take at least twenty minutes to melt in the set up used.

Figure 2.1: In preparation for a second round of heating, new bags had to be used.
Upon removing the first plastic bag, it was found that they are weakened and prone to
tearing after coming into contact with the hot pot.
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2.1.2 Boiling

It took a few attempts to arrange the boiling set-up, although the configuration explained here is

still imperfect. Polyethylene zip-top bags melt between 105 and 115◦C [15]. Boiling requires a

water temperature of 100◦C, so the conducting surface beneath the water will be hotter. Thus,

setting the plastic bags directly on the bottom of a large pot where the surface is in direct contact

with the stove led to quite a bit of melted plastic and loss of some liquid wax into the boiling water.

For reference, paraffin wax melts between 58 and 62◦C [9]. This experiment used candle-making

wax, which was found to melt over a range of 45-55◦C (see subsection 3.2.2).

The addition of a straining pot, like one for spaghetti, within the first pot on the stove improved the

situation, and the plastic did not melt as quickly (see Figure 2.2 and Figure 2.3).

Wax

Wax

A B

Figure 2.2: Boiling configuration A caused the plastic bag to melt, as the bottom of
the pot was quite hot. The surface on which the plastic bag rests in configuration B was
not in direct contact with the burner and therefore cooler, so it was easier to prevent
the bag from melting.

2.1.3 Testing

Large coolers with interior dimensions similar to the proposed incubator were used for assessing

the models proposed in Essay 1. To simulate the layer of padding between the baby, a thin towel

or blanket was set atop the bags of melted wax (Figure 2.4).
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Figure 2.3: Solid wax was placed into gallon-size, zip-top bags and placed into a pot
with a straining pot inside. The plastic of the zip-top bags melt easily upon contact
with metal surfaces directly touching the burner, so the second pot is a necessity (see
Figure 2.2 for an illustration).
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Figure 2.4: The wax, enclosed in a plastic bag for boiling purposes, was placed on top
of phone books to accurately represent the height of the chamber. A towel was placed
atop the wax to simulate cotton padding or other materials used to cushion the infant.
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To simulate the top of the incubator, plastic container lids were used instead of the cooler lids to

provide a more accurate thermal resistance between the air in the chamber and the environment

(see Figure 2.5).

The cooler was assumed to be perfectly insulating, similar to the sides of the chamber in the model

detailed in Essay 1. The double-walled cooler probably did not contribute significantly to heat

losses, as gaps between the plastic lid and the cooler would have provided a way for the heat to

escape with less resistance.

Temperature sensors (TMP variety from Vernier) in various quantities were used to detect the

temperature throughout the simulation. The most important temperature to measure was the air

temperature in the chamber, but other probes were added to gain further insight. The sensors were

connected to the experimenter’s laptop (MacBook Pro) via a Go! Link by Vernier in Test 1, and

in Tests 2 and 3, via a LabPro by Vernier. Data was recorded using LoggerPro, and often the

computer was left to sit with the cooler, as tests took several hours.

Figure 2.5: Test 1 set-up. A thin plastic lid with a 4.25” TMP probe placed through a
small, drilled hole and allowed to hang in the air chamber.

53



2.2 Test 1

The first test was performed in a residential setting in a wide, open space with a constant ambient

temperature of 19.8◦C. In this test, only one temperature probe was used. A hole was drilled in the

lid of a plastic tub, and the probe was placed through the hole that was very appropriately sized so

air could not escape (see Figure 2.5).

A large, double-walled cooler was used. The air chamber’s dimensions were 11”x22”x9”h, after

the addition of a few phone books beneath the wax to make the chamber’s dimensions more closely

match that of the future incubator (see Figure 2.6).

Figure 2.6: Two boxes were placed in the cooler to elevate the sample and provide
more insulation underneath. The two bags of wax were placed with one layer of towel
above the wax.

54



2.3 Test 2

2.3.1 Set-Up

The second test was performed in a kitchen in a residence hall in Boston, with a less steady en-

vironmental temperature. When the experiment began, the room was 21.1◦C, but the tempera-

ture likely decreased by a few degrees due to an open window. Three temperature sensors were

used: one measuring the air temperature, one stuck into the wax, and one atop the blanket. A

12.5”22.5”11.5”h double-walled cooler was used. Again, a plastic lid was used, but in this in-

stance the top probe was fed under the lid and taped to the underside of the lid, instead of dangled

through a hole in the top. The sensor atop the blanket entered through the side. The probe in the

wax went through a hole in the bottom of the cooler, presumably used for draining the cooler. For

a photograph of the set up, see Figure 2.7.

Figure 2.7: A photograph of the Test 2 set-up. A sensor measuring wax temperature
enters through the side of the cooler (to the right in this photo).
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In this test, the plastic lid did not fit perfectly on the top of this cooler, and only small amounts of

tape were available. An extra blanket covered the 0.5” gap on one side of the cooler, while a weight

in the form of a measuring tape normalized the upward bend of the plastic top (see Figure 2.8).

2.3.2 Disturbance

Unfortunately, the lid was bumped during this test. It was very clear upon returning to the test

set-up that the blanket, which could now be seen on the floor, had fallen and allowed hot air to

escape after 69 minutes of testing. The time of the disturbance was easily determined from a

sharp corner in the temperature response (see section 3.1.2). Approximately 121 minutes into the

experiment, the blanket was placed back on the test set up. This event was also visible in the data

collected. Although not intentional, this event allowed us to see the incubator’s ability to recover

after opening the chamber or after a leak is created.

Figure 2.8: Photograph of the closed Test 2 configuration.
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2.4 Test 3

As Test 2 had some unexpected interruptions, the test was repeated. Test 3 used a similar set up

to Test 2, but the cooler was placed in a space with a more stable ambient temperature. Less wax

was used (due to some losses during heating), but the decrease in mass should only have affected

the time that the wax would be emitting heat. The ambient temperature was 24.4◦C. The room was

large, but there was not a lot of air movement or devices that created heat.
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Results & Discussion

Abstract

This essay shows, elaborates on, and discusses the results of the tests described in Essay 2. The re-
sults’ steady state temperatures did not match the model, likely due to the inconsistencies between
testing and modeling. For example, the model assumed a perfectly sealed chamber, while in the
test environment the plastic lids chosen did not fit well. The non-steady wax temperatures also may
have affected the experimental results, and caused the experiment to differ from the model, which
assumes the heating element maintains a constant temperature during melting. The non-steady
wax temperature is likely due to the selected paraffin being a mix of alkanes of various lengths
with differing melting points. Future tests may benefit from using purer paraffins. The heating
element provided heat longer than expected for all tests. The model was very inaccurate in its pre-
dictions of the transient response, particular in generating accurate rise times. The model predicted
98% rise times in seconds, while the tests showed tens of minutes instead. Efforts in reducing the
experimental uncertainties would likely result in a better match between the experiment and the
model, but additions need to be made to the mathematical model—most importantly, the resistance
and temperature gradients of the air chamber, and the capacitance of the resistors in the thermal
circuit.
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3.1 Data Collected

3.1.1 Test 1
T
e
m
p
e
r
a
t
u
r
e
(
o
C
)

Time (min)

Cooler Test 1

0 50 100 150 200
18

20

22

24

26

28

30

32

34

Air Temp

Ambient Temp

Figure 3.1: The collected data for Test 1. The ambient temperature was not measured
in this test, but the line on the graph is the initial ambient temperature plotted for all
time.

In Test 1, only the air temperature was recorded. Data collection began about ninety seconds after

the lid was closed. The air temperature peaked at a temperature of 32.35◦C after 29 minutes and

18 seconds (98% of rise completed in 20 minutes, 30 seconds). It then decreased at an average of -

0.050◦C/min for 62 minutes. The decay slowed at 91 minutes in (when T =29.23◦C), then declined

at a slower rate of -0.014◦C/min for the remaining 148 minutes. For a graphical depiction, refer to

Figure 3.1. There is no clear steady-state temperature, as the temperature was never unchanging.

In a simple test of the wax solidifying in open air, a similar shape was seen (see subsection 3.2.2

for elaboration on this point).
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3.1.2 Test 2
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Figure 3.2: The collected data for Test 2. The ambient temperature was not measured
in this test, but the line on the graph is the initial ambient temperature plotted for all
time.

A graph of the data collected for Test 2 can be found in Figure 3.2.

Wax Temperature

The wax temperature peaked immediately at 53.35 ◦C (taking 8 minutes, 24 seconds), then de-

creased at an average rate of -0.093◦C/min after 123 minutes and 20 seconds of testing. It remained

at 42.68◦C for the remainder of the test. Here, we see a similar phenomenon to the wax melting

with no load (see subsection 3.2.2).
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Blanket Temperature

The blanket temperature peaked after 19 minutes and 16 seconds at 32.33◦C, and remained fairly

constant. After 32 minutes of testing, the cooler was unintentionally disturbed (see subsection 2.3.2),

as evidenced by the sudden decrease in blanket and air temperature shown in the data in Figure 3.2.

The temperature then dropped to a local minimum of 27.56◦C at 119 minutes, 20 seconds. When

the lid was restored, it took 17 minutes to reach its new steady-state temperature of about 29◦C.

Air Temperature

The air temperature reached a steady-state temperature of 25.8◦C after 29 minutes and 40 seconds.

A sudden elevation of temperature occurred at 50 minutes in to about 26.3◦C; this pattern was also

reflected subtly in the blanket temperature (see Figure 3.2). After the cooler was disturbed, the

temperature rapidly decreased to 24.3◦C, then declined at a slow rate of -0.06◦C/min. It reached

a low of 22.31◦C, which is still above the initial ambient temperature of 21.1◦C. Perhaps the air

chamber was not able to fully reach ambient temperature due to the heat continuing to rise from

the wax. The ambient temperature also may have changed slightly throughout the test, changing

the overall steady-state temperature. It is surprising the opening of the chamber was not reflected

in the temperature of the wax. After the cover was restored, the air temperature recovered to a new,

lower steady-state temperature of 24.17◦C.

3.1.3 Test 3

A plot of the data collected for Test 3 can be found in Figure 3.3.

Wax Temperature

The wax temperature peaked immediately at 54.30 ◦C (taking a quick 90 seconds), then decreased

at a rate of about -0.138◦C/min to 52.44◦C at 15 minutes into the test. It then decreased more

quickly at a rate of -0.187◦C/min until 36 minutes and 40 seconds, when it began to decrease at a

much slower rate of about -0.044◦C/min for the remainder of the test.
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Cooler Test 3

Time (min)

T
e
m
p
e
r
a
t
u
r
e
(
o
C
)

0 10 20 30 40 50 60 70
20

25

30

35

40

45

50

55

60

65

70

Wax Temp

Blanket Temp

Air Temp

Ambient Temp

Figure 3.3: The collected data for Test 3. The ambient temperature was measured in
this test.

It should be noted that much of the liquid wax was lost into the boiling water at one point during

heating. The shorter chain alkanes would have melted first, so they likely comprised a greater

percentage of the volume lost than longer-chain alkanes. The remaining paraffin would have then

contained mostly longer-chain alkanes. Thus, the remaining paraffin had a higher, more uniform

melting temperature. See subsection 3.2.2 for more details.

Blanket Temperature

The blanket temperature reached a steady-state temperature of 31.65◦C, in a 98% rise time of 17

minutes and 30 seconds.
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Air Temperature

The air temperature increased rapidly at the start (reaching 26.26◦C in 2 minutes and 30 seconds,

increasing at a rate of 0.824◦C/min). After the period of rapid temperature increase passed, it

increased at a much slower rate, 0.073◦C/min—one-tenth of the previous rate. A steady-state

temperature of 27.9◦C was achieved with a 98% rise time of 32 minutes and 40 seconds.

3.2 Model Comparison & Discussion

Figure 3.4, Figure 3.5, and Figure 3.6 show the system’s responses and the model’s predictions

for the properties used in the test plotted simultaneously. The following sections will discuss the

trends in the model’s accuracy and begin to address its shortcomings.
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Figure 3.4: Comparison of the model and data for Test 1 (R1 =0.2209 K/W,
R2 =0.0847 K/W).
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Figure 3.5: Comparison of the model and data for Test 2 (R1 =0.1235 K/W,
R2 =0.0741 K/W).

Table 3.1: Summarizes the model and test properties. *Percent difference in steady-
state temperature from 0◦C; **Percent difference in steady-state temperature (as an
increase from ambient).

Test 1 2 3
R1 0.2209 K/W 0.1235 K/W 0.1235 K/W
R2 0.0847 K/W 0.0741 K/W 0.0741 K/W
R2
R1

0.3834 0.6 0.6
Tenv 19.8◦C 21.1◦C 24.2◦C
Tpeak 32.35◦C 26.47◦C 28.28◦C

Tf n/a 25.8◦C 27.9◦C
Tf ,model 28.17◦C 31.93◦C 34.01◦C

%1* n/a -19.2% -18.0%
%2** n/a -50.5% -62.3%
t98% 22 min 28.03 min 32.67 min

t98%,model 10.2 s 11.6 s 11.6 s
% diff 12841% 16797% 16798%
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Figure 3.6: Comparison of the model and data for Test 3 (R1 =0.1235 K/W,
R2 =0.0741 K/W).
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3.2.1 Steady-State Temperature Trends

Because a steady state was not reached in Test 1, the model’s steady-state value is difficult to

compare. The percent error of the steady-state values as a rise from ambient temperatures for

Tests 2 and 3 were -50.5% and -62.3%, respectively. The steady-state temperatures were not as

high as predicted. Referring back to our model, we know that a lower-than-expected steady-state

temperature indicates a lower ratio of R2 to R1 was present in the experiment. An imperfectly

fitting lid could have produced an experimentally lower effective-R2.

This is especially clear when we compare the peak temperatures between tests. Test 1 had a

significantly lower environmental temperature, but reached a higher peak temperature than the

other tests (see Table 3.1). In Test 1, the lid was taped securely in place; in Tests 2 and 3, the lid

was less flat and it was not possible to completely seal all air gaps. This means more air was likely

able to escape from the chamber, which decreased the effective thermal resistance (i.e., there was

a lower R2 in the test than Matlab calculated for a lid which fit properly).

3.2.2 Nonuniform Wax Temperatures

In a preliminary examination of the paraffin wax to determine its melting temperature, a simple test

was performed: a small quantity of wax was heated by boiling water, then set out to cool at room

temperature with a TMP probe inside the bag of melted wax. Two recorded temperature profiles

are shown in Figure 3.7.

Normal cooling curves for a pure material would appear more like Figure 3.8: an initial drop to the

melting point, a flat portion where the material is changing phase and only emitting latent heat, then

another sharp drop for as it emits sensible heat and drops from the phase change temperature to

ambient temperature. In Figure 3.7, the temperature profile (specifically of Test A) shows an initial

sharp drop (-3.51◦C/min); a subsequent, less steep drop (-0.177◦C/min); followed by another sharp

drop (-0.460◦C/min); and lastly another less steep drop (-0.147◦C/min).

The likely explanation of this phenomenon is that paraffin wax contains several different hydrocar-

bons of various lengths, each having unique melting temperatures (see Figure 3.9) [17]. It is likely

that the first drop in Figure 3.7 is a simple decrease in sensible heat. The subsequent, flatter portion
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Figure 3.7: Graph of the no-load temperature profile of solidifying paraffin wax.

Figure 3.8: A typical cooling curve. Image from [16].
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is a phase change of a longer alkane from a liquid to a solid which is emitting latent heat, while the

other alkanes are only emitting sensible heat. The next decrease is another drop in sensible heat

for more molecules. The final, gradual decay is likely occurring during the solidification of shorter

alkane molecules, which are only emitting latent heat while the already-solidified and still-liquid

portions emit sensible heat. The major changes in slope indicate alkane melting temperatures in

two groups: one around 55◦C, and the other at 38◦C. Lines at these temperatures were plotted in

Figure 3.9 along with various alkane melting points in order to speculate which higher alkanes may

be present in the wax used in the experiments. Straight-chain alkanes (which the name ’paraffin’

describes) have the form CnH2n+2. ’Paraffin wax’ indicates a mixture of alkanes that fall within

the range of 20≤ n≤ 40 (according to [18]) or 24≤ n≤ 36 (from [9]) . From Figure 3.9, it seems

the paraffin wax used in the experiment (Country Lane Candle Supplies’ general purpose candle

making wax) contains alkanes where n is between 20 and 26, likely with one group where n is

closer to 20 (icosane) and another where n is closer to 26 (hexacosane) [17].
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Figure 3.9: Graph of various alkane melting temperatures. Data from [17].

This general trend is reflected in the wax temperature profile for Test 2, and the air temperature

72



for Test 1. In Test 3, some liquid wax was lost in boiling. The wax that would have melted first

would have been the shorter hydrocarbon chains, so the recovered wax may have been made of

predominately longer chains, thus the paraffin had a more uniform melting temperature.

3.2.3 Length of Heating

In all tests, the wax seemed to provide heat for more than adequate amounts of time. After comple-

tion of all tests, the wax was still warm, although bits were solidified. From the transient response

graphs in section 3.1, it is clear that the quantities of wax used (a few kilograms) were sufficient

to provide several hours of heat. The simulations were not run for a sufficient amount of time to

determine the time taken to reduce the wax to room temperature. With no load and only a small

quantity of wax (Figure 3.7) sitting out at room temperature, we see it took the wax almost two

hours to return to room temperature. No load implies a high heat flux out of the wax, so in a system

with resistance, it would provide warmth even longer.

3.2.4 Transient Response

The transient response predictions of the model created in subsection 1.1.3 were very inaccurate

for these experiments. The predictions for rise time were several orders of magnitude different

from the experimental rise times (seconds compared to tens of minutes).

The expected reason this model fails to accurately predict the transient response is that the model

does not take into account temperature gradients across the air chamber. While the Fourier Law

of Conduction is suitable for this system in steady state, the gradients within the chamber and

in resistor 1 must be addressed. The thermal conductivity of air is very low, which makes it a

great resistor (this is why double-walled coolers are effective). Therefore, while the bottom of the

chamber may quickly begin to get warm, it likely takes much longer for the air towards the top

of the chamber (where T was measured in this experiment) to feel the full effects of the heat the

wax is providing. The thermal resistance of the air chamber should be considered in studying the

transient temperature response. This property would be difficult to overcome in the future incubator
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design. Every time the incubator is opened and closed, these temperature gradients would need to

be overcome, and the air reheated.

The other reason this model could have failed may be due to characterizing the resistors as purely

resistive devices, rather than devices with both thermal resistance and capacitance. If the blanket or

towel was a pure thermal resistor, the top-side of the blanket would reach steady-state temperature

(an even temperature drop) almost immediately. We see from the data taken in Tests 2 and 3 that

this is simply untrue. The blanket temperatures’ 98% rise times were 18 minutes, 35 seconds and

17 minutes, 30 seconds for Tests 2 and 3 respectively. The long length of time for the blanket

to warm indicates a high thermal capacitance that the model simply does not account for. This

could be an obstacle for the incubator design, as the baby may need the emitted heat faster than

the incubator can deliver. This effect may be mitigated if the infant is lying on the surface of the

resistor, however; the baby’s temperature would help heat the pad so the time constant would be

lower, and thus the air would heat faster.

3.3 Reducing Experimental Error

As detailed above, better-fitting lids would allow less heat to escape, thus experiments would be

more likely to achieve the expected steady-state temperature.

The current model uses a constant temperature to model the wax melting. Using paraffins with

a more uniform chemical composition would allow easier study of the air chamber temperature,

because there would be less variability in melting temperature from the heat source.

3.4 Further Developments to the Model

As detailed in a previous section, the following adjustments would likely improve the model’s

ability to predict the real behavior of the incubator:

1. Accounting for a changing wax temperature, or using a pure paraffin wax so the melting

temperature is more constant,
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2. Accounting for the thermal capacitance of the blanket or towel (currently a simple resistor),

and

3. Adding thermal resistance of the air to the circuit, and accounting for temperature gradients

within the air and determining its effects on rise time.

3.5 Future Work

If the flaws in the experiments listed in section 3.3 are addressed, the model in Essay 1 may

accurately predict steady-state temperatures. However, the transient response of this model would

not accurately describe the behavior of this system to the correct time scale without the addition of

the items detailed in section 3.4, or other critical considerations.

If the project’s designers desire a more accurate model, the next step would be to add the resistance

of the air and the capacitance of the towel to the model. A new thermal circuit must be constructed

to obtain a more accurate prediction of the transient response. If the next iteration of the model pre-

dicts rise times that are in tens of minutes rather than a few seconds, then the model is progressing

in the right direction.

Once the additional circuit components are added, the next model should incorporate the ambient

temperature and the wax temperature as dynamic quantities in the Matlab simulation. A modified

differential equation would need to be written, where Tenv and Twax are functions of time. Then,

the measured environmental and wax temperature profiles from tests can become factors in the

simulation, and the predicted air temperature profile should more closely match the measured air

temperature profile.

More thorough tests should be performed, without plastic bags. A metal water bottle (as suggested

by Stephen Ho) or another more effective container could be used for boiling and containment.

Experiments should investigate more pure paraffin waxes, in order to see if there is a definitive

advantage to using a purer material with a more uniform melting point. The range of melting points

is important information in order to select proper resistances. Experiments should be performed

with various paraffins to evaluate their cooling profiles.
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The designers of the incubator should be consulted to discuss resistor options, including the fea-

sible range of resistors given other aspects of the incubator design, e.g., the requirement of a

transparent cover or the need for a comfortable barrier between the wax and the infant. The upper

bounds of resistance for the lid and the barrier between the infant and the wax need to be identified.

With the consideration of possible wax melting temperatures and resistances in mind, the steady

state temperature of the air chamber in various climates can be determined. The rise time (either

obtained from the adjusted model or more experimentation) should also factor into the choice of

resistances.

Testing should be performed with materials that would be used in the final incubator. A better

chamber should be constructed for testing, or better yet, the final incubator design should be used.

If using the final design is not possible, a chamber with a better seal and of the correct size would

provide for consistent testing. A more stable testing environment would ensure that the results

accurately describe the incubator’s behavior. More certainty in experimentation would allow de-

signers to make the best choices possible for the final product.

3.6 Conclusion

The transient response of the model detailed in this thesis would not accurately describe the tran-

sient thermal response of the incubator without further modification, but it may accurately predict

steady state temperatures if the flaws in the experiments are addressed. Essay 1 provides insight

into the steady state temperature and mass considerations. The experimental set-up detailed in Es-

say 2 provides a starting point for future experimentation. The results of the experiments detailed

in this essay, Essay 3, can guide the revision of the model. The progress made by this thesis in the

thermal design of the incubator should advance the product into the next phases of prototyping.
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