Synthesis and Aggregation Behavior of Pluronic F87/Poly(acrylic acid) Block Copolymer with Doxorubicin

Y. Tian¹, P. Ravi¹, L. Bromberg¹², T.A. Hatton¹², K. C. Tam¹³

¹Singapore-MIT Alliance
²Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA
³School of Mechanical & Production Engineering and Division of Chemical & Biomolecular Engineering, Nanyang Technological University, 50 Nanyang Avenue, SINGAPORE 639798

Abstract – Poly(acrylic acid) (PAA) was grafted onto both termini of Pluronic F87 (PEO₆₇-PPO₃⁹-PEO₆₇) via atom transfer radical polymerization to produce a novel muco-adhesive block copolymer PAA₈₀-b-F87-b-PAA₈₀. It was observed that PAA₈₀-F87-PAA₈₀ forms stable complexes with weakly basic anti-cancer drug, Doxorubicin. Thermodynamic changes due to the drug binding to the copolymer were assessed at different pH by isothermal titration calorimetry (ITC). The formation of the polymer/drug complexes was studied by turbidimetric titration and dynamic light scattering. Doxorubicin and PAA₈₀-b-F87-b-PAA₈₀ block copolymer are found to interact strongly in aqueous solution via non-covalent interactions over a wide pH range. At pH > 4.35, drug binding is due to electrostatic interactions. Hydrogen-bond also plays a role in the stabilization of the PAA₈₀-F87-PAA₈₀/DOX complex. At pH 7.4 (α=0.8), the size and stability of polymer/drug complex depend strongly on the doxorubicin concentration. When C_{DOX} < 0.13 mM, the PAA₈₀-F87-PAA₈₀ copolymer forms stable inter-chain complexes with DOX (110 ~ 150 nm). When C_{DOX} > 0.13 mM, as suggested by the light scattering result, the reorganization of the polymer/drug complex is believed to occur. With further addition of DOX (C_{DOX} > 0.34 mM), sharp increase in the turbidity indicates the formation of large aggregates, followed by phase separation. The onset of a sharp enthalpy increase corresponds to the formation of a stoichiometric complex.