1.011 Project Evaluation Time & Money: The Principle of Equivalence Carl D. Martland

Engineering Economics, Chapter 3, Sections 3.1-3.10

- 1. Equivalence in Cash Flows
- 2. Discounting Cash Flows
- 3. Discrete Annuities

Concept of Equivalence

- "Economic equivalence is established, in general, when we are indifferent between a future payment, or series of future payments, and a present sum of money." EE p. 72
- Why is this critical?
 - We often have various options expressed as time streams of costs and benefits expressed in financial terms. Which is the best?
- Why does this get complex and interesting?
 - ► What is equivalent for you might not be for me!
 - This is often the basis for negotiation & planning.

Using Equivalence

- If we have an appropriate discount rate, we can convert any arbitrary stream of cash flows to various equivalent (but more easily understood) cash flows:
 - P = present value
 - ightarrow F = future value at time t
 - A = annuity of A per period for N periods
- To make these conversions, we first need to understand the "time value of money"

Time Value of Money

\$1 today is worth more than \$1 dollar next year

How much more depends upon the opportunities for using or investing that \$1

If we invest in a government bond earning i% per year, then our \$1 will be worth (1+i) at the end of one year and $(1+i)_t$ at the end of t years

Likewise, earning \$1 at the end of year t is worth $1/(1+i)_t$ today

Present Value

The Present Value of receiving cash Ct in a future year t is obtained by discounting the net benefits at an appropriate discount rate:

PV of
$$C_t = C_t / (1+i)_t$$

The PV for a series of cash flows is obtained by summing the discounted benefits for each year:

PV of Project =
$$\Sigma[C_t/(1+i)_t]$$

PV of \$1.00 Received at Time t

	5 Yrs	10 Yrs	20 Yrs	50 Yrs	100 Yrs
1%	0.95	.91	0.82	0.61	0.37
5%	0.78	0.61	0.38	0.088	0.0076
10%	0.62	0.038	0.15	0.0085	0.000072
20%	0.40	0.16	0.026	0.00011	0.00000001

Meaning of PV of a Time Stream of Cash Flows

- PV > 0
 - This project is better than making an investment at i% per year for the life of the project
 - This project is worth further consideration
- PV < 0
 - This project does not provide enough financial benefits to justify investment, since alternative investments are available that will earn i% (that is the meaning of "opportunity cost")
 - The project will need additional, possibly non-cash benefits to be justified

Equivalence of Cash Flows

Equivalence Factors

- [F/P,i,N] = future value F after N periods given present value P and discount rate i
- [P/F,i,N] = present value given future value F, i, & N
- [F/A,i,N] = "uniform series compound amount factor"
 - ► How large will my IRA be after contributing \$A at i% for N years?
- [A/F,i,N] = "sinking fund payment"
 - Annual savings to have a downpayment of a house in N years
- [A/P,i,N] = "capital recovery factor"

► What will the mortgage payments be?

[P/A,i,N] = "uniform series present worth factor"
My business makes \$A/year - should I sell for \$X?

Equivalence Factors -How Do I Get Them?

- Use the tables at the back of the book
- Use a financial calculator at a bank's web site
 - (e.g. www.boston.com to get the Boston Globe, then go to real estate and look at mortgage loans)
- Use the financial functions on a spreadsheet
- Create your own spreadsheet
- Just remember the basics:
 - $\blacktriangleright P = F/(1+i)_N$

Uniform Series, Compound Amount Factor [F/A,i,N]

Uniform Series, Capital Recovery Factor [A/P,i,N]

