1.011 Project Evaluation CEE Projects & Accessibility: Case Studies

Carl D. Martland

- 1. Chesapeake Bay Bridge
- 2. BART
- 3. Transcontinental Railroad

Benefits of Improved Access

- Reduced transport costs for existing users
 - ► Lower transport expense (\$ saved)
 - ► Less travel time (hrs saved x value of time)
 - ► Fewer accidents (\$, injuries, fatalities avoided)
- Increased demand for transportation
 - Additional consumer surplus (difference between value of trip and cost of trip)
- Changes in economic geography
 - Increased land values and development potential
 - ► More location options for time and \$ constraints
 - ► More options for trade (spatial price equilibrium)

Chesapeake Bay Bridge & Tunnel

Overview

Construct 17.6 mile bridge & tunnel to cross mouth of Chesapeake Bay and connect Norfolk VA and tip of Delmarva Peninsula

Motivation

- ► Seasonal access to excellent beaches
- ► Alternate to I-95 for interstate traffic (shorter, less congested route between VA and Delaware)

Financing

- Raise construction funds through bonds
- ▶ Pay principal & interest from tolls

Background: Chesapeake Bay Bridge-Tunnel

- 1920s various private ferry services
- 1930 Chesapeake Bay Ferry Commission
 - ► Issued bonds to buy out private ferry companies
 - Established regular shuttle service
- 1955 Lucius Kellam, member of the Commission pushed for permanent crossing
 - ► VA General Assembly approved concept, authorized study of bridges and tunnels
 - ► US Navy would not accept a bridge; 17.6 mile tunnel deemed too expensive; selected a combination
- 1960 Commission became "Chesapeake Bay Bridge-Tunnel Commission

Financing: Chesapeake Bay Bridge-Tunnel

- \$200 million raised from sale of bonds to build bridge
 - ► Three levels, with increasing interest rates
 - ► Annual financing costs approx. \$13 million (30 years at 5%)
- Substantial tolls possible because of markets served (\$10/auto, \$60/truck)
 - ► Tolls averaged \$20 million per year and were immediately able to cover bond interest payments
- Expansion also financed through tolls
 - Parallel Crossing will eventually create a second two-lane bridge
 - ► Parallel Tunnels after Parallel Crossing is completed

Chesapeak Bay Bridge-Tunnel: Issues

- Threat to private ferry operators
 - ▶ Legislature created Commission with authority first to operate the ferry service and then to become the bridge commission
- Naval security required more expensive approach
- Disruption of the Bay's ecosystem
 - ► The islands built for the tunnel exits became bird sanctuaries
- Capacity
 - ► The 2-lane facility is congested during peak periods
 - ▶ Pace of expansion is balanced against ability to finance through tolls

Bay Area Rapid Transit System

Overview

Construct 81 mile automated rail transit system with 37 stations in four counties around San Francisco and a 3.8 mile tube under Oakland Bay

Motivation

- Relieve traffic congestion and reduce dependence upon auto
- ► Provide transit option for commuting

Financing

- Local taxes to finance construction
- ► Fares to cover a portion of operating cost
- Local taxes to cover operating deficit
- ► Federal funds for expansion

BART: Selected Milestones

- 1946 formation of committee to look at traffic problems
- 1957 report of Bay Area Rapid Transit Commission recommending "total development plan" before transit decision
- Early 1960s: State legislature formed 5-county
 BART district; public narrowly approved financing
- 1964 testing & design began
- 1966 construction began
- Mid-1972 operations begun
- 1991 major capital improvement campaign

BART: Issues

- Financing with tax money: one county backed out of project because of tax issue
- Inflation: inflation was 3% at time of planning, but
 7% at time of construction
- Market: (affluent) suburban commuters or (poorer) urban dwellers
- Expansion: how to finance what most agreed was necessary and desirable expansion to the airport (finally begun in 1991 with federal funds)
- Automation: how much automation is needed?
- Engineering: Golden Gate Bridge could not carry trains, so Marin County was out

BART: Financing Problems

- Costs totaled \$1.7 billion (which would require over \$110 million/year to repay over 30 years @ 5%)
- Fares for the system would only cover \$30-40 million, leaving a substantial operating deficit (for 132,000 daily passengers in the first few years after system opened in 1972 barely half of projections)
- Area-wide sales tax of 0.5% was added to cover construction overruns and operating deficits (approx. \$50 million/year)
- System cannot generate profits and therefore needs state or federal support for capital projects
- Benefits to local economies translate to support only through a political process - but the benefits are real!

BART: Early Benefits

- Traffic diverted from the Oakland Bay Bridge
 - ▶ 4,000 fewer vehicles/day when tube opened
 - ▶ But, traffic returned to pre-BART levels in less than two years
- Approx. 2,000 new trips on BART across the Bay
- BART market share of about 30% for commuting trips in relevant corridors and 20% for all trips
- Expansion of metropolitan area

Transcontinental Railroad

Overview

- Construction of railroad linking Omaha, NE and Sacramento, CA
- ▶ Dramatic reduction in transport time and cost

Motivation

- ► Connect California to the rest of the country
- ▶ Open the west for development

Financing

- ► Federal payments for construction work
- Federal donations of land to operating companies

Transcontinental Railroad: Selected Milestones

- 1819 first mention of idea (given technology, the idea for a project is not a great leap!)
- 1836 Asa Whitney's proposal and advocacy
- 1849 RR convention studied merits of routes, recommended St. Louis - San Francisco
- 1850s Congress couldn't decide which route (via New Orleans, St. Louis, or Chicago-Omaha)
- 1853 Gadsden purchase for best rail route in SW
- 1856 surveys of routes completed
- 1862 in midst of war, N route was only possibility! And, congress now could act.
- 1869 first trip

Trans. RR: Financing

- Congress paid for construction
 - ► \$48,000 per mile in mountains
 - ►\$12,000 per mile in plains
- Land grants:
 - ► The railroads were given a 200-ft right-of-way
 - ► Alternate 10-mile by 10-mile sections were given to the railroads (worth \$2 billion once they were accessible!)
 - ► The government kept the rest of the land
- Contractors (UP and CP RRs) could raise funds based upon these federal grants
- Reduced rates for government goods: these lasted until 1930s - a major benefit

Trans. Railroad: Selected Issues

- Manpower
 - Midst of Civil War!
 - ► Used 20,000 Chinese on Central Pacific route
 - ► Used 10,000 Mormons and many foreigners (mostly Irish) on UP route
- Corruption
 - ► Vast sums attract brilliant, but unscrupulous financiers
 - Difficult to verify that funds were used to pay for construction; many scandals
- Conflicts with indians
- Quality vs. cost of construction
 - Rickety bridges, tight curves, and steep grades

Comparison of the Projects

	CBBT	BART	TCRR
Financing	Simple	Complex	Innovative
Benefits	Access	Congestion reduction	Security Connectivity Development
Public Role	Authority	Authority Funds	Authority Funds Development User