
Design Lab 4: Staggering Propor­
tions 

We will be working in simulation, so you can use any machine capable of running “soar” 
and “idle -n”. Both partners should log in to the Homework Tutor in the same browser, on 
two different tabs. 

• Athena machine: Do athrun 6.01 update and add -f 6.01. 
• Lab laptop: Do athrun 6.01 update. 
• Personal laptop: Download design lab 4 zip file from course web page. 

Code and data are in ~/Desktop/6.01/lab4/designLab/. 
Remember to email your code and plots to your partner. 
You will need to bring these to your oral interview for discussion. 

In this lab, we will program the robot to move along a wall, maintaining a constant, desired

distance from the wall. We will use a simple proportional controller, with the same structure as 
the controller that we used for last week’s wallFinder system. 
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We will observe the behavior of this week’s wallFollower system, and we will analyze a signals 
and systems model to understand the behavior of this system. 

1 Proportional wall-follower 
The figure at the right illustrates the structure of the wallFollower system. 
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Fix the forward velocity V = 0.1 m/s, and adjust the rotational velocity

ω[n] (not shown) to be proportional to the error, which is the difference

between the desired distance di[n] = 0.4 m to the right wall and the actual

distance do[n]. Notice that when the rotational velocity ω[n] of the robot is

positive the robot turns towards the left, thus increasing its angle θ[n].

T = 0.1 seconds represent the time between steps.


Implement the proportional controller by editing the brain in 
propWallFollowBrainSkeleton.py. The brain has two parts connected 
in cascade. The first part is an instance of the Sensor class, which implements a state machine 

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

http:propWallFollowBrainSkeleton.py
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whose input is of type io.SensorInput and whose output is the perpendicular distance to the 
wall. The perpendicular distance is calculated by getDistanceRight in the sonarDist module 
by using triangulation (assuming the wall is locally straight). All of the code for the Sensor class 
is provided. 

The second part of the brain is an instance of the WallFollower class. You should provide code 
so that the WallFollower class implements a proportional controller. 

Check Yourself 1. What should be the types of input to and output from a state machine of 
the WallFollower class? 

Run your brain in the world wallTestWorld.py. Determine how the behavior of the system is 
affected by the gain k of the proportional controller. The brain in propWallFollowBrainSkele­
ton.py issues a command during the setup to rotate the robot, so it starts at a small angle with 
respect to the wall. Generate slime trails to illustrate how the system’s performance depends on 
the value of the proportional gain k; for instance, does it affect the convergence of the output to 
the desired value?. Be sure to take and save screen shots of some of your slime trails. 

Checkoff 1. • Show your slime trails to a staff member, and explain the implications 
of the slime trails for choosing the “optimum” value of k. 
• Compare the range of behaviors of the wallFollower system to the range 
of behaviors of the wallFinder system from last week. 

2 Analytical model 
The signals and systems approach allows us to predict analytically salient aspects of the behavior 
in these simulations for any value of the gain without having to run the simulation. 

Develop an analytical model of the proportional wall follower as follows (see an analogous de­
velopment for wallFinder in section 6.5 of the readings): 

•	 Assume that the controller can instantly set the rotational velocity ω[n] to be proportional to 
the error signal e[n] = di[n] − do[n]. (This is an approximation, which simplifies the analysis. 
If you like, you could test the validity of this assumption after you have finished the lab.) 
Express this relation as a difference equation. 

• Write difference equations describing the “plant,” that is, an expression for do[n], that depends 
on ω. It is useful to break this problem into two parts: 

http:wallTestWorld.py
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− an expression for θ[n], that depends on ω and 

− an expression for do[n], that depends on θ.


Linearize the relation between do and θ using the small angle approximation (sin θ ≈ θ).

(This is an approximation, which simplifies the analysis. If you like, you could test the

validity of this assumption after you have finished the lab.) 

The subsystems represented by your difference equations connect together to form a system

of the following form. Note that in this model there is no delay in the sensor. Label each wire 
in the block diagram with the name of the corresponding signal. 

+
−

Figure 1 Structure of Control System 

• Convert your difference equations into operator (R) equations, and find the system function.


H = 
Do 

Di 
= 

Wk.4.2.2 Enter the system function into the tutor by entering the numerator and 
denominator polynomials. 

• Find an algebraic expression for the poles of the system (ask a staff member to check it before 
you spend time computing periods). 

•	 Assume that the time per step of the robot T = 0.1s, and that V = 0.1m/s. Determine whether 
the system’s behavior is periodic for gains of 0.5, 1.0, 2.0, 4.0, and 10.0. If it is periodic, deter­
mine the period. 
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Checkoff 2. Show your system function to a staff member. Discuss what the poles 
reveal about the behavior of the system (oscillation? stability?). Explain 
what happens to the period as the gain increases. 

3 Software model 
Now, use the Python SystemFunction class to model and analyze the proportional wall follower, 
as follows. (We suggest that you open the file dl4Work.py (which imports sf) in idle and use it 
to do the work in this part of the lab.) 

The SystemFunction class provides two primitive kinds of system functions, gain (sf.Gain) 
and delay (sf.R). They are implemented as functions, but named with uppercase variables by 
analogy with the sm.Gain and sm.R state machines. 

def Gain(k):


return sf.SystemFunction(poly.Polynomial([k]), poly.Polynomial([1]))


def R():


return sf.SystemFunction(poly.Polynomial([1, 0]), poly.Polynomial([1]))


These can be combined with sf.Cascade, sf.FeedbackSubtract, and sf.FeedbackAdd to 
make any possible system function; and the structure of the combination will be the same as 
it would have been to build up the analogous state machine. 

Implement Python functions called controller, plant1, and plant2 that return instances of the 
SystemFunction class that represent the three blocks in figure 1. Pass the important parameters 
for each block (e.g., k) as inputs to the corresponding function. 

Write a Python function wallFollowerModel(k, T, V) that calls the previous Python functions 
to make system functions for the components and composes them into a single SystemFunction 
that describes the system with desiredRight as input and distanceRight as output. 

Checkoff 3. Discuss the structure of your code with a staff member. 

Wk.4.2.5 Enter the definition for wallFollowerModel. Do not enter any import 
statements. 

Use the dominantPole method of the SystemFunction class, and the function sf.periodOfPole(p) 
to determine whether your model predicts oscillatory behavior and, if so, with what period, for 
gains 0.5, 1.0, 2.0, 4.0, and 10.0. Compare to the values you derived by hand. 
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Visualization 
You can construct an LTISM state machine that corresponds to your system function with (assum­
ing k is set to some gain value): 

mySF = wallFollowerModel(k) 

sm = mySF.differenceEquation().stateMachine(previousInputs, previousOutputs) 

where previousInputs and previousOutputs are lists of values used to initialize the state ma­
chine. The lengths of the lists depend on the order of the difference equation for the system, as 
they did in the LTISM class. The values in previousInputs would generally be desiredRight. 
The values in prevousOutputs would generally be some constant (that is different from de­
siredRight) indicating the initial distance from the wall. You could then simulate the wall fol­
lowing behavior with 

result = ts.TransducedSignal(sig.ConstantSignal(desiredRight), sm) 

To see what the resulting signal is like, just do result.plot(end = 300). (Hint: remember the 
-n switch for idle -n.) 
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