
Software Lab 8: Describing Cir
cuits

• Athena machines: Do add -f 6.01 and athrun 6.01 update.
• Lab laptop: Do athrun 6.01 update.
• Personal laptop: Download software swlab8.zip file from course web page.

You can write your code in the file circSkeleton.py in lab8/swLab

The software lab for this week is to develop a method for describing circuits at a high level of
abstraction, and convert that description into linear equations in the representation from software
lab 7.

1 Circuit equations
In the last software lab, we wrote and solved sets of linear equations. We can use this software to
help us solve circuits. For example, using the NVCC method, we might write the equations for
this circuit (see Section 7.6 in the Course Notes). We are using ’n1’, ’n2’, etc., as the names of
the node voltages and ’i1’, ’i2’, etc as the names of the component currents.

+10 A+15 V
3 Ω

2 Ω

n1 n2

n3

i1
i2

i3

i4

as follows:

ckt = le.EquationSet()

ckt.addEquation(le.Equation([1.0, -1.0], [’n1’, ’n3’], 15.0))

ckt.addEquation(le.Equation([1.0, -1.0, -3], [’n1’, ’n2’, ’i1’], 0.0))

ckt.addEquation(le.Equation([1.0, -1.0, -2], [’n2’, ’n3’, ’i2’], 0.0))

ckt.addEquation(le.Equation([1.0], [’i3’], 10.0))

ckt.addEquation(le.Equation([-1.0, -1.0], [’i4’, ’i1’], 0.0))

ckt.addEquation(le.Equation([1.0, -1.0, 1.0], [’i1’, ’i2’, ’i3’], 0.0))

ckt.addEquation(le.Equation([1.0],[’n3’], 0.0))

And then we could solve it:

Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Software Lab 8 — Fall 09 2

ckt.solve()

i1 = -1.0

i2 = 9.0

i3 = 10.0

i4 = 1.0

n1 = 15.0

n2 = 18.0

n3 = 0.0

That’s convenient, because it saves us from our own algebra errors, but it’s hard to keep all those
coefficients straight. We will develop software that allows a more compact specification:

c = circ.Circuit([circ.VSrc(15, ’n1’, ’n3’),

circ.Resistor(3, ’n1’, ’n2’),

circ.Resistor(2, ’n2’, ’n3’),

circ.ISrc(10, ’n3’, ’n2’)])

c.solve(’n3’)

The major simplification is that we don’t have to mention the currents when specifying the com
ponents and we don’t have to specify the KCL equations at all. When we call c.solve(’n3’), a
set of equations is automatically constructed, with node ’n3’ as ground, and then solved:

n1 - n3 = 15

n1 - n2 - 3 * i_n1->n2_39 = 0

n2 - n3 - 2 * i_n2->n3_40 = 0

i_n3->n2_41 = 10

i_n1->n3_38 + i_n1->n2_39 = 0.0

-i_n1->n2_39 + i_n2->n3_40 - i_n3->n2_41 = 0.0

n3 = 0

The currents are automatically given names. So, i_n1->n2_39 is a current that flows between
nodes n1 and n2.1

Wk.8.1.1 For the circuit above write the EquationSet and the more abstract repre
sentations.

1 We append an additional unique number (in this case 39) to the name, because, if there are multiple components in
parallel between n1 and n2, we need to be able to speak of several different current components between those nodes.

Software Lab 8 — Fall 09 3

2 Overview of the Circuit class
A Circuit class instance is created with a list of component instances, as shown above. The key
method is the solve method, which constructs an equation set from the components and solves
it. We will define each component type as a class which can construct the relevant equation for
that type of instance (see below).

However, the solve method will also need to construct the KCL equations at every node (except
the ground). So, we will need to know which components are connected to which nodes. In our
implementation, we use the NodeToCurrents class to keep track of which component current
enters (or leaves) each node. Each component has has a method that provides this information
(see below).

Every type of component, for example voltage source, resistor, and op amp, will be a subclass of
the Component class. Every subclass of the Component class has to supply two methods: getE
quation, which returns an instance of le.Equation that contrains the voltage across the termi
nals of the component, and getCurrents, which returns the list of currents that this component
adds to the nodes to which it is connected. All two-input components have the same pattern of
currents: they make a new current variable when created, and then assert that it flows into their
node n1 and out of their node n2. So, we have implemented this pattern as the default getCur
rents method in the Component class.

class Component:

def getCurrents(self):

return [[self.current, self.n1, +1],

[self.current, self.n2, -1]]

Here is how the Resistor component is implemented.

class Resistor(Component):

def __init__(self, r, n1, n2):

self.current = util.gensym(’i_’+n1+’->’+n2)

self.n1 = n1

self.n2 = n2

self.r = r

def getEquation(self):

your code here

The util.gensym procedure takes a string as an argument and returns a string which is the
argument with a unique integer appended to it.

Wk.8.1.2 Implement the getEquation method for the Resistor class.

http:self.n1
http:self.n2

Software Lab 8 — Fall 09	 4

Wk.8.1.3	 Implement the OpAmp class as a voltage-controlled voltage source; see Sec
tion 7.8.1 of the Course Notes.

3 Implementing the Circuit class
The Circuit class has two methods;

class Circuit:

def __init__(self, components):

self.components = components

def solve(self, gnd):

es = le.EquationSet()

n2c = NodeToCurrents()

for c in self.components:

es.addEquation(c.getEquation())

n2c.addCurrents(c.getCurrents())

es.addEquations(n2c.getKCLEquations(gnd))

return es.solve()

A circuit is just a list of instances of the Component class. When we ask the circuit to solve itself,
we provide the name of a node, passed in as parameter gnd, which will be the ground node and
have voltage 0; then the solve method:

0. Makes a new empty equation set es.

1. Makes a new instance, n2c, of the NodeToCurrents class. This class keeps track of which
currents are flowing into and out of each node.

2. For each component, adds the equation that describes the relationship between voltage and
current that the component induces, and it adds the currents to the appropriate nodes in
NodeToCurrents.

3. Adds the KCL equations that result from the node-current relationships stored in n2c, and one
that sets the node named by the gnd variable to have voltage 0.

4. Solves the equations.

You can read about the NodeToCurrents class and its methods in the documentation.

Wk.8.1.4 Implement the NodeToCurrents class. Please debug your code in the
circSkeleton.py file and then paste it into the Tutor.

MIT OpenCourseWare
http://ocw.mit.edu

6.01 Introduction to Electrical Engineering and Computer Science I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

