
6.01: Introduction to EECS 1 Week 10 November 10, 2009

1

6.01: Introduction to EECS I

Bayesian estimation, etc.

Week 10 November 10, 2009

What about the bet?

• Total number of legos in the bag = 4
• Random variable R: number of red legos in the bag.

• Domain DR =?
• Assume uniform prior on R (all values equally likely):

• Random variable L0: color of first lego we draw out of the bag

• Observation model:

Pr(L0 = red | R = n) =?
Pr(L0 = white | R = n) = 1− Pr(L0 = red | R = n)

• We want to know:

Pr(R = n | L0 = whatever color we observed)

Bayes!!

What do we know after first Lego draw?

0 1

Number of Red Legos

normalize

432

 divide by sum

Pr(R = r)

Pr(L0 = l0 | R = r)

Pr(L0 = l0, R = r)

Pr(R = r | L0 = l0)

What do we know after second Lego draw?

0 1

Number of Red Legos

normalize

432

 divide by sum

Pr(L1 = l1 | R = r, L0 = l0)
= Pr(L1 = l1 | R = r)

Pr(L1 = l1, R = r | L0 = l0)

Pr(R = r | L0 = l0, L1 = l1)

Pr(R = r | L0 = l0)

Hidden Markov Models

System with a state that changes over time, probabilistically.

• Discrete time steps 0, 1, . . . , t
• Random variables for states at each time: S0, S1, S2, . . .

• Random variables for observations: O0, O1, O2, . . .

State at time t determines the probability distribution:

• over the observation at time t

• over the state at time t+ 1

Hidden Markov Models

System with a state that changes over time, probabilistically.

• Discrete time steps 0, 1, . . . , t
• Random variables for states at each time: S0, S1, S2, . . .

• Random variables for observations: O0, O1, O2, . . .

• Initial state distribution:

Pr(S0 = s)
• State transition model:

Pr(St+1 = s | St = r)
• Observation model:

Pr(Ot = o | St = s)
Inference problem: given actual sequence of observations o0, . . . , ot,

compute

Pr(St+1 = s | O0 = o0, . . . , Ot = ot)

6.01: Introduction to EECS 1 Week 10 November 10, 2009

2

Bayes Jargon

• Belief – a probability distribution over the states

• Prior – the initial belief before any observations

Are my leftovers edible?

• DSt = {tasty, smelly, furry}
• Pr(S0 = tasty) = 1; Pr(S0 = smelly) = Pr(S0 = furry) = 0
• State transition model:

St+1

T S F

T 0.8 0.2 0.0

St S 0.1 0.7 0.2

F 0.0 0.0 1.0

• No observations

• What is Pr(S4 = s)?

State transition update

Pr(St+1 = s) =
∑

r∈DS
Pr(St+1 = s | St = r) Pr(St = r)

Copy Machine

0.9 0.1

good bad

P(S0 = s)

s
0.7 0.3

0.1 0.9

good bad

P(St+1 = s|St = good)

s

P(St+1 = s|St = bad)

0.8 0.1

0.1 0.7 0.2

0.1

perfect smudge black

P(Ot = o|St = bad)

P(Ot = o|St = good)

o

Initial state distribution State transition model

Observation model

A perfect copy!

Step 1: Bayes Evidence:

Build joint distribution:

Pr(S0, O0) = Pr(O0|S0) Pr(S0)

O

perfect smudged black

S
good 0.72 0.09 0.02
bad 0.01 0.07 0.09

Condition on actual observation O0 = perfect

Pr(S0 | O0 = perfect) = {Pr(S0 = good , O0 = perfect)
Pr(O0 = perfect) , . . .}

Pr(S0 | O0 = perfect) = {good : 0.986,bad : 0.014}

A perfect copy!

0.10.9

good bad
S

Pr(S0)

0.010.72

.014.986

Pr(O0 = perfect | S)

Pr(S0 | O0 = perfect)

Pr(O0 = perfect and S0)

divide by 0.73

0.8 0.1

6.01: Introduction to EECS 1 Week 10 November 10, 2009

3

Time passes

Step 2: Total Probability:

Build joint distribution:

Pr(S0, S1 | O0 = perfect) = Pr(S1|S0) Pr(S0 | O0 = perfect)

S1

good bad

S0
good 0.690 0.296
bad 0.001 0.012

Marginalize out S0:

Pr(S1 | O0 = perfect) =
∑

s

Pr(S0 = s, S1 | O0)

Pr(S1 | O0 = perfect) = {good : 0.691,bad : 0.308}

Time passes

.014.986Pr(S0 | O0 = perfect)

0.3
0.9

.308.692

good bad

0.7
0.1

Pr(S1 | O0 = perfect)

Pr(S1 | S0)

A smudged copy, another day

.758.242

0.3
0.9

.754.246

0.7
0.1

.308.692

good bad
S

.216.069

divide by 0.285

0.1 0.7

Pr(S2 | S1)

Pr(S2 | O0 = perfect , O1 = smudged)

Pr(S1 | O0 = perfect , O1 = smudged)

Pr(O1 = smudged and S1 | O0 = perfect)

Pr(O1 = smudged | S1)

Pr(S1 | O0 = perfect)

Stochastic State Machine

There are no actions in a Hidden Markov Model.

A Stochastic State Machine is like an HMM with actions. The state

transition model now involves an input, that is, an action.

Pr(St+1 | St, It)

The initial state distribution and observation model are like an HMM.

It’s the probabilistic generalization of a State Machine.

Python Model

initialStateDistribution = dist.DDist({’good’: 0.9, ’bad’: 0.1})
def observationModel(s):

if s == ’good’:
return dist.DDist({’perfect’ : 0.8,

’smudged’ : 0.1, ’black’ : 0.1})
else:

return dist.DDist({’perfect’ : 0.1,
’smudged’ : 0.7, ’black’ : 0.2})

def transitionModel(i):
def transitionGivenI(oldState):

if oldState == ’good’:
return dist.DDist({’good’ : 0.7, ’bad’ : 0.3})

else:
return dist.DDist({’good’ : 0.1, ’bad’ : 0.9})

return transitionGivenI

Python SSM

class StochasticSM(sm.SM):
def __init__(self, startDistribution, transitionDistribution,

observationDistribution):
self.startDistribution = startDistribution
self.transitionDistribution = transitionDistribution
self.observationDistribution = observationDistribution

def startState(self):
return self.startDistribution.draw()

def getNextValues(self, state, inp):
return (self.transitionDistribution(inp)(state).draw(),

self.observationDistribution(state).draw())

6.01: Introduction to EECS 1 Week 10 November 10, 2009

4

Copy Machine Machine

copyMachine = ssm.StochasticSM(initialStateDistribution,
transitionModel, observationModel)

>>> copyMachine.transduce([’copy’]* 20)
[’perfect’, ’smudged’, ’perfect’, ’perfect’, ’perfect’, ’perfect’,

’perfect’, ’smudged’, ’smudged’, ’black’, ’smudged’, ’black’,
’perfect’, ’perfect’, ’black’, ’perfect’, ’smudged’, ’smudged’,
’black’, ’smudged’]

Python State Estimation

class StateEstimator(sm.SM):
def __init__(self, model):

self.model = model
self.startState = model.startDistribution
self.obsD = self.model.observationDistribution
self.transD = self.model.transitionDistribution

def getNextValues(self, state, inp):
(o, i) = inp
sGo = dist.bayesEvidence(state, self.obsD, o)
dSPrime = dist.totalProbability(sGo, self.transD(i))
return (dSPrime, dSPrime)

Note that we’re making the state estimator be a state machine as

well.

Where am I?

• Mapping: Assume you know where the robot is. Build a map

of objects in the world based on sensory information at different

robot poses.

• Localization: Assume you know where the objects in the world

are (the map). Determine the robot’s pose.

• SLAM: You know neither the location of the robot or of the

obstacles. Do simultaneous localization and mapping.

One-dimensional localizer

• State space: discretized values of x coordinate along hallway

• Input space: discretized relative motions in x

• Output space: discretize readings from a side sonar sensor

Transition model

Pr(St+1 = s′|St = s) = Pr(St+1 = s′ | S∗(s) = s+ ∆)

= Tri(s′; s+ ∆,hws)
• Infer a nominal action based on the robot’s odometry.

• Let xt be the robot’s observed x coordinate at time t.

• The nominal action that the robot took at time t is

∆ = round((xt − xt−1)/w)

where w is width of a state bin.

• Assume nominal distance is all that matters; new state distrib-

ution is a triangular distribution, with half-width hws, centered

on the nominal displacement.

Observation model

Pr(O = d|S = s) = Pr(O = d|D∗(S) = d∗)

= Tri(d; d∗,hwd)
• s is a robot state and d is a sonar reading

• Calculate Nominal sonar distance: d∗(s)

θ
d

• Assume nominal distance is all that matters; observation distri-

bution is a triangular distribution, with half-width hwd, centered

on the nominal distance.

6.01: Introduction to EECS 1 Week 10 November 10, 2009

5

Continuous error distribution

Gaussian:

g(d, d∗, σ) = 1
σ
√

2π
e(d−d

∗)2/2σ2

σ = 0.3 σ = 0.1

Mixture distributions

Mixture of Gaussians:

Mixture of uniform and Gaussian:

Discrete error distributions

Primitive distributions:

0.050

0

0 100

0.050

0

0 100

Sq(x; lo, hi) Tri(x; center, hw, lo, hi)

Mixture distributions:

Pr
mix

(x) = pPr(D1 = x) + (1− p) Pr(D2 = x)

0.025

0

0 100

0.045

0

0 100

Must still sum to 1.

Localization = State Estimation

Define Stochastic State Machine

Apply standard state estimation algorithm.

Extending to multiple dimensions

• State is x, y, θ

• Have to handle coordinate transforms instead of simple ∆x
• Use all 8 sonars

Full localizer

Simulator Pr(O|S) Pr(S)

6.01: Introduction to EECS 1 Week 10 November 10, 2009

6

Full localizer: with angles

Simulator Pr(O|S) Pr(S)

Applications of Bayesian Estimation

• spam filtering

• speech recognition

• medical diagnosis

• tracking aircraft on radar

• robot localization

• ...

Spam filtering

Given an email message, m, we want to know whether is is Spam

or Ham.

Make this decision based on W (m), the words in message m (could

also use features based on typography, email address, etc.).

If

Pr(Spam(m) = T |W (m)) > Pr(Spam(m) = F |W (m))

then dump it in the trash.

Learning

We’d like to estimate Pr(Spam(m) |W (m)) from past experience with

email. But we’ll never see the same W twice!

Use Bayes’ rule:

Pr(Spam(m) |W (m)) = Pr(W (m) | Spam(m)) Pr(Spam(m))
Pr(W (m))

We can estimate Pr(Spam(m)) by counting the proportion of our mail

that is spam.

Pr(W (m) | Spam(m)) seems harder...

Assume:

• Order of words in document doesn’t matter

• Presence of individual words is independent given whether the

message is spam or ham

Spamistic words

Given our assumptions, Assume:

• Order of words in document doesn’t matter

• Presence of individual words is independent given whether the

message is spam or ham

Pr(W (m) | Spam(m)) =
∏

w∈W (m)
Pr(w | S(m))

And now, we can count examples in our training data:

Pr(w | S(m)) = num spam messages with w

total num spam messages

Pr(w | H(m)) = num non-spam messages with w

total num non-spam messages

Pr(spam given word) for an example message

madam 0.99

promotion 0.99

republic 0.99

enter 0.9075001

quality 0.8921298

investment 0.8568143

valuable 0.82347786

very 0.14758544

organization 0.12454646

supported 0.09019077

people’s 0.09019077

sorry 0.08221981

standardization 0.07347802

shortest 0.047225013

mandatory 0.047225013

MIT OpenCourseWare
http://ocw.mit.edu

6.01 Introduction to Electrical Engineering and Computer Science I
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

