Week 10

Hidden Markov Models

System with a state that changes over time, probabilistically.

- Discrete time steps $0, 1, \ldots, t$
- Random variables for states at each time: S_0, S_1, S_2, \ldots
- Random variables for observations: O_0, O_1, O_2, \ldots

State at time t determines the probability distribution:

- over the observation at time t
- over the state at time t+1

Hidden Markov Models

System with a state that changes over time, probabilistically.

- Discrete time steps $0, 1, \dots, t$
- Random variables for states at each time: S_0, S_1, S_2, \ldots
- Random variables for observations: O_0, O_1, O_2, \dots
- Initial state distribution:

$$\Pr(S_0 = s)$$

• State transition model:

$$\Pr(S_{t+1} = s \mid S_t = r)$$

Observation model:

$$\Pr(O_t = o \mid S_t = s)$$

Inference problem: given actual sequence of observations $o_0,\ldots,o_t,$ compute

$$\Pr(S_{t+1} = s \mid O_0 = o_0, \dots, O_t = o_t)$$

6.01: Introduction to EECS 1

Week 10

Bayes Jargon

- Belief a probability distribution over the states
- Prior the initial belief before any observations

Are my leftovers edible?

- $D_{S_t} = \{ \text{tasty, smelly, furry} \}$
- $\Pr(S_0 = \text{tasty}) = 1; \Pr(S_0 = \text{smelly}) = \Pr(S_0 = \text{furry}) = 0$
- State transition model:

		S_{t+1}		
		Т	S	F
	Т	0.8	0.2	0.0
S_t	S	0.1	0.7	0.2
	F	0.0	0.0	1.0

- No observations
- What is $Pr(S_4 = s)$?

A perfect copy!					
Step 1: Ba	ayes E	Evidence:			
Build joint distribution:					
$\Pr(S_0,O_0) = \Pr(O_0 S_0)\Pr(S_0)$					
				0	
			perfect	smudged	black
	S	good	0.72	0.09	0.02
	5	bad	0.01	0.07	0.09
Condition on actual observation $O_0 = perfect$ $Pr(S_0 \mid O_0 = perfect) = \{ \frac{Pr(S_0 = good, O_0 = perfect)}{Pr(O_0 = perfect)}, \ldots \}$ $Pr(S_0 \mid O_0 = perfect) = \{good : 0.986, bad : 0.014\}$					

6.01: Introduction to EECS 1

Week 10

Python Model

Stochastic State Machine

There are no actions in a Hidden Markov Model.

A Stochastic State Machine is like an HMM with actions. The state transition model now involves an input, that is, an action.

 $\Pr(S_{t+1} \mid S_t, I_t)$

The initial state distribution and observation model are like an HMM. It's the probabilistic generalization of a State Machine.

Pytho	n SSM
class <mark>S</mark> t	tochasticSM(sm.SM):
def	<pre>init(self, startDistribution, transitionDistribution,</pre>
	<pre>self.startDistribution = startDistribution</pre>
	<pre>self.transitionDistribution = transitionDistribution</pre>
	<pre>self.observationDistribution = observationDistribution</pre>
def	<pre>startState(self):</pre>
	return self.startDistribution.draw()
def	<pre>getNextValues(self, state, inp):</pre>
	<pre>return (self.transitionDistribution(inp)(state).draw(),</pre>
	<pre>self.observationDistribution(state).draw())</pre>

Week 10

Copy Machine Machine

Where am I?

robot poses.

are (the map). Determine the robot's pose.

obstacles. Do simultaneous localization and mapping.

```
copyMachine = ssm.StochasticSM(initialStateDistribution,
                               transitionModel, observationModel)
>>> copyMachine.transduce(['copy']* 20)
['perfect', 'smudged', 'perfect', 'perfect', 'perfect', 'perfect',
  'perfect', 'smudged', 'smudged', 'black', 'smudged', 'black',
  'perfect', 'perfect', 'black', 'perfect', 'smudged', 'smudged',
  'black', 'smudged']
```

Python State Estimation class StateEstimator(sm.SM): def __init__(self, model): self.model = model self.startState = model.startDistribution self.obsD = self.model.observationDistribution self.transD = self.model.transitionDistribution def getNextValues(self, state, inp): (o, i) = inp sGo = dist.bayesEvidence(state, self.obsD, o) dSPrime = dist.totalProbability(sGo, self.transD(i)) return (dSPrime, dSPrime) Note that we're making the state estimator be a state machine as well

One-dimensional localizer Mapping: Assume you know where the robot is. Build a map of objects in the world based on sensory information at different Localization: Assume you know where the objects in the world SLAM: You know neither the location of the robot or of the State space: discretized values of x coordinate along hallway ٠ **Input space:** discretized relative motions in x Output space: discretize readings from a side sonar sensor

 $\Delta = \mathsf{round}((x_t - x_{t-1})/w)$

where w is width of a state bin.

Assume nominal distance is all that matters; new state distribution is a triangular distribution, with half-width hw_s , centered on the nominal displacement.

Assume nominal distance is all that matters; observation distribution is a triangular distribution, with half-width hw_d , centered on the nominal distance.

6.01: Introduction to EECS 1

Week 10

Extending to multiple dimensions

- State is x, y, θ
- Have to handle coordinate transforms instead of simple Δx
- Use all 8 sonars

Week 10

Spam filtering	ľ
----------------	---

Given an email message, m, we want to know whether is is **Spam** or **Ham**.

Make this decision based on W(m), the words in message m (could also use features based on typography, email address, etc.).

If

 $\Pr(\operatorname{Spam}(m) = T \mid W(m)) > \Pr(\operatorname{Spam}(m) = F \mid W(m))$

then dump it in the trash.

Learning

We'd like to estimate $\Pr(\mathrm{Spam}(m) \mid W(m))$ from past experience with email. But we'll never see the same W twice!

Use Bayes' rule:

$$\Pr(\operatorname{Spam}(m) \mid W(m)) = \frac{\Pr(W(m) \mid \operatorname{Spam}(m)) \Pr(\operatorname{Spam}(m))}{\Pr(W(m))}$$

We can estimate $\Pr(\operatorname{Spam}(m))$ by counting the proportion of our mail that is spam.

Pr(W(m) | Spam(m)) seems harder...

Assume:

- Order of words in document doesn't matter
- Presence of individual words is independent given whether the message is spam or ham

Spamistic words

- Given our assumptions, Assume:
- Order of words in document doesn't matter
- Presence of individual words is independent given whether the message is spam or ham

$$\Pr(W(m) \mid \operatorname{Spam}(m)) = \prod_{w \in W(m)} \Pr(w \mid S(m))$$

And now, we can count examples in our training data: $\Pr(w \mid S(m)) = \frac{\text{num spam messages with } w}{\text{total num spam messages}}$ $\Pr(w \mid H(m)) = \frac{\text{num non-spam messages with } w}{\text{total num non-spam messages}}$

Pr(spam given word) for an example message		
madam	0.99	
promotion	0.99	
republic	0.99	
enter	0.9075001	
quality	0.8921298	
investment	0.8568143	
valuable	0.82347786	
very	0.14758544	
organization	0.12454646	
supported	0.09019077	
people's	0.09019077	
sorry	0.08221981	
standardization	0.07347802	
shortest	0.047225013	
mandatory	0.047225013	

6.01 Introduction to Electrical Engineering and Computer Science I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.