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ABSTRACT

Development of borehole geophysics has recently focused on reservoir
characterization. Within this effort, extensive full waveform acoustic surveys
have demonstrated a correlation between the occurance of open fractures and
attenuation of Stoneley waves. A relationship is obtained here between
fracture permeability and attenuation of Stoneley waves, on the basis of a
physical mechanism. This mechanism involves an energy transfer under the
form of a fluid flow inside permeable formations. It is applied to the cases of a
single open fracture, a multi-fractured medium and a homogenecus porous
medium. Theoretical results show the effects of frequency, borehole radius,
permeability, fracture density and porosity on attenuation. The single fracture
theory is applied to observed attenuation data due to isolated large open
fractures: the theoretical fracture apertures obtained compare faverably te
values determined from packer tests.

NOMENCLATURE

attenuation of the Stoneley wave
amplitude attenuation
.energy attenuation

diffusion equation coefficient

Stoneley wave phase velocity

fracture density

Stoneley wave horizontal wavenumber

width of a small layer in a porous medium

width of a fractured or porous medium

medified Bessel function of the i-th order

Stoneley wave vertical wavenumber

permeability

fracture width

fracture aperture obtained from inversion of the attenuaticn

fracture aperturs oblained from packer tests
{r.t) fluid pressure distribution in the porous medium
fluid pressure distribution in the fracture
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Fr incident Stoneley wave pressure in the borehole

Pp transmitted Stoneley wave pressure in the borehole
Pr reflected Stoneley wave pressure in the borehole

gp(r.t) rate of Auid flow in the porous medium
gr{r .t} rate of fluid flow in the fracture

qr rate of Auid flow in the borehole, associated with the
incident Stoneley wave

qr rate of fluid flow in the berehole, associated with the
reflected Stoneley wave

gr rate of fluid flow in the borehole, associated with the
transmitted Stoneley wave

R borehole radius

Sg boreheole cross-section

Sy fracture cross-section

T time period of the Stoneley wave

vp fiuid particle velocity in the fracture

Uy fluid particle velocity for the incident Stoneley wave

Up fluid particle velocity for the reflected Stoneley wave

ur fluid particle velocity for the transmitted Stoneley wave

Upy P-wave velocity in the fiuid

Zp impedance of the borehole fluid flow

ZF impedance of the fracture fluid flow

a attenuation coeflicient in Pr/ Pr=ezp (—az)

¥ fAuid compressibility

M dynamic fluid viscosity

Pr fluid density

) Stoneley wave angular frequency

Br fracture impedance coefficient

INTRODUCTION

Borehole geophysics are being increasingly applied to reservoir
characterization. In particular, full waveform acoustic logging surveys seem to
be of great interest in identifying fractured zones in a reservoir. Such a
technique c¢ould be very helpful in determining quantitatively the total
permeability of a fractured hydrocarbon reservoir in carbonate formations,
since it can be related to fracture permeability (Stearns and Friedman, 1969).
In addition, applications can be found in other areas, such as mapping ground
water flow for various purposes (Davison etal., 1982).

Field experiments with full waveform acoustic logging toels show a gooed
correlation between fractures in crystalline formations and Stoneley wave
attenuation in those formations. Iso-offset sections from ELF AQUITAINE's
multi-offset tool E'V.A, show altnost complete attenuation of P and S waves as
well as partial attenuation of the Stoneley wave, opposite a pertion of the
formation where a.- hydro-fracturing experiment was conducted (Figure 1,
Arens and Arditty, 1982). Similar attenuation of the whole wave train, including
Stoneley waves, was correlated with the occurance of fractures by means of a
televiewer log, on the Hi Vista well in Southern California, and a study {Moos and
Zoback, 1983) focused on the P and S-wave velocities in such fractured
crystalline rocks. Pinally, an extensive survey in two well sites of Manitoba,
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Fracture permeability determination 231

Canada, used full waveform logs, televiewer logs and hydrologic experiments to
detect fractures in granite (Paillet, 1980; Davison efal., 1982). Figure 3 shows
the correlation between fractures detected by a televiewer log and attenuation
of the Stoneley wave at the corresponding depthas.

In this paper, a model is derived which relates the fracture permeability
and the attenuation of Stoneley waves. The proposed mechanism attributes the
Stoneley wave attenuation to fluid flow inside the formation and reflection at
the fracture interface. The mechanism is first analyzed for an isclated Iracture
and then extended te a homogeneously fractured medium. A variation of the
theory is then used to model Stoneley wave attenuation in a perous medium.
Subsequently, the eflects of the -model parameters on the computed
attenuation are discussed. Finally, theoretical fracture permeabilities are
obtained from real data and compared to values obtained from packer tests in

wells.

THEORETICAL DEVELOPMENT

The proposed mechanism for the attenuation of Stoneley waves involves
the transfer of part of the Stoneley wave energy to a fluid flow in the permeable
formation. Consider an incident Steneley wave propagating along a borehole. A
monochromatic Stoneley wave induces in the borehole fluid a pressure
variation {Cheng and Tokséz, 1981)

P(r.z t) = B I(fr) etlst—&=) (1)
with
2
FR=R? (1= =) (2)
Bt

where o is the frequency, ¢ the phase velocity of the Stoneley wave, k=w/ ¢ the
vertical wavenumber, vy the P-wave velocity in the fluid, f the horizontal
wavenumber and B a constant.

All calculations can be carried out for such a monochromatic wave, without
loss of generality. The z-dependence of the Stoneley wave is similar to that of a
compressional plane wave traveling along the z-axis. The wave train has a
succession of alternating compressions and dilatations. Each compression
provokes a pressure buildup at the interface between boerehole and formation.
Therefore, when a compression phase encounters the permeable formation, be
it a single isolated fracture, a series of fractures in a "fractured medium", or a
porous medium, the pressure gradient at the interface forces the fluid to
diffuse into the fracture {Figure 4). Hence, part of the Stoneley wave energy is
lost, resulting in its attenuation. The eflect of the Stoneley wave propagating
within the formation can be neglected in the case of "hard” formations because
most of the energy is in the fluid (Cheng etal., 1982).
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Theory for isolated fractures

The simplest case of an isolated fracture intersecting a vertical borehole of
radius R is considered first. The fracture is modeled by a plane horizontal Auid
layer of width L surrcunded by an impervious "hard” formation, such as
compact limestone or granite (Figure 5a). L is small in comparison to the
wavelength of the Stoneley wave and the fracture length is long encugh to be
considered as infinite within the theory. The fluid in the fracture and the
borehole ig in equilibrium under hydrostatic pressure before the Stoneley wave
arrival.

When a compression phase of the Stoneley wave hits the fracture, fluid is
forced into the fracture. It is assumed that the diffusion process inside the
fracture is over before the start of the dilatation phase, so that a similar but
reversed mechanism can occur at the next half-peried 7/2. A good
approximate solution for the diffused pressure (Appendix A(i), Figure 6) is given
by

¥
s (r-R)
Pp(rt)= Pg - erfe [(46?5)5‘5 (3)
where
2 £
erfo(z) =1 - (5f) [exp (=% dp (4)
LG
and
1 _ 12yu .
b— - LE (5)
The attenuation is defined by
_ Pr
A=1 Py (6)

where Pr and Pr are respectively the incident and transmitted Steneley waves
{Figure 7a). The attenuation can be expressed after setting the appropriate
boundary conditions. The problem is analogous to that of a plane sound wave
propagating in a duct, and attenuated by an absorptive strip (Young, 1953).
The transmission coefficient calculated in Appendix B(i) is

Pr 1
B TT+X (™
where <
- Prel ﬂ’_gﬁ_) 1 [ 2lw a
T 24p L(FR) [21? o an L (8)
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Application to the case of a homogeneously fractured medium

The fracture width L is an adequate parameter for the case of a single
fracture. However the offsets of full waveform acoustic logging tools generally
do not make it possible to isclate a single fracture and they integrate the
effects of several fractures in the overall attenuation. Therefore, the
permeability K is substituted for L as the parameter describing a fractured
medium of thickness A, made of a density d of even and regularly spaced
fractures (Figure 5b, Appendix A(i)). The fracture pressure is still given by
equation (3) but in terms of K and 2. Its coefficient b is such that

1 [12q2]7°

For a single fracture, the transmission coefficient is still given by equation
(7), and X given by

X=£!i.f_£°__(£‘?.)_[ L +2_[.°ir (10)

2 LfR) | 2R w|b

£
d

For the total layer of thickness 7, n=Hd is the number of fractures in this
layer. The effect of the upgeing reflected waves on the boundary conditions can
be neglected in comparison to the downgoing incident wave, since the reflection
coefficient of a single fracture is much smaller than !. The fransmission
coefficient of the layer is

Prl
Pr iy

As X« for large densities, equation {11) can be approximated by

fﬂ]n (11)

Py

£r -nX
) 12
PI] ( )

Theory for a porous medium

It is reasonable to assume that Stoneley waves can be attenuated along
any kind of porous medium. In such a general porous medium, the flow
properties are governing its permeability K and its porosity ¢. Darcy’s law and
the continuity equation, respectively, take both into account. In the case of
fractures, these equations are connected by a relation between K and the width
L of a single fracture, in other words by means of an implicit porosity model, in
which all the fluid is contained within parallel planes. Here, the porosity is an
external parameter, in the same sense as the fracture density discussed in the
previous section, and is the interconnected porosity.
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The diffused pressure in the porous medium (Appendix A(iii), figure 7b) is
given by equation (3), changing the subscript F for "fracture” into the
subscript D for "diffused"”, and b is such that

1
Loz 9
Figure 7b and Appendix B(ii) show the new boundary conditions. The
attenuation is still defined by equation (6). The transmission coefficient for a
thin layer of thickness h is .

P T 1+ x (14)
with
X =ah (15)
where
_ pref I(fR) _1_+_2__g’é K (16)
w L{FR) b

and b is given by equation (13).

Application to the case of an extended porous medium

When the thickness H of the porous medium is of the same order of
magnitude or larger than the wavelength, it is no longer possible to apply the
boundary conditiens of Appendix B(ii) directly. However, for a thin layer of
width 2 within the medium (Figure 7b), much thicker than the pore dimensions
but thin enough for the coefficient X in equation (186) te verify X<, the
transrnission ceoefficient for that layer can be approximated by

Pr —ah
—_— Mg’ 17
[PIL (17)

where a is given by equation (18). Therefore, the total transrmssmn coefficient
for the porous medium of thickness 5 is

Pr

ool
7, g (18)

H
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RESULTS AND DISCUSSION

The theoretical attenuations just derived depend on three subsets of
parameters: formation and fluid parameters, frequency and borehole radius,
and flow parameters of the medium {permeability and porosity).

Formation parameters only appear through the period equation of the
Stoneley wave. They have little effect on the attenuation, as the Stoneley wave
is only slightly dispersive. Fluid parameters do not change as much as
formation parameters. Therefore, only the second and third subsets of
parameters are likely to have a major effect on attenuation.

The results presented in this section are divided into three parts. First,
the frequency and borehole radius eflfects on attenuation are shown. Second,
the effects of permeability and porosity are evaluated and the possibility that
the two parameters are correlated is discussed. Finally, some permeabilities
(fracture widths) obtained from packer tests on isclated fractures are
compared with permeabilities determined from full waveform data, using the
present theory.

The effect of frequency and borehole radius variations on attenuation.

The usual frequencies of full waveform acoustic logging tools range
between 1 and 40 Khz. For example, peak frequency of Stoneley waves
recorded by ELF AQUITAINE's tool E.V.A. is about 8 kHz, while that of the U.S.G.S.
tool is 34 kHz. Figures B-10 show that attenuation increases slightly with
increasing frequency. This is valid for isolated fractures of different widths
(Figure 9) as well as for porous media of different permeabilities (Figure 10).
Such low dispersion implies that attenuation will be very similar over a narrow
enough frequency spectrum. Therefore, the best way to invert attenuation of a
real signal for permeabilily is to calculate the theoretical attenuation for the
central frequency of the Stoneley wave.

Variation in the borehole radius R affects attenuation in a much more
drastic way. The phase velocity is only slightly affected by a change of K.
However, the coeflicients 4(fR)/ [;(fR) and 1/2R in equations (8), {10) and
(18) control the R dependence of attenuation. The predominant factor is
1/RR. Figure 11 shows that in boreholes with smaller radii the observed
attenuation are greater.

The effect of permeability and porosity variations on attenuation.

Figures 12 and 13 show how the attenuations in the thinly fractured
medium and the porous medium approaches depend on fracture density and
porosity, respectively. A greater porosity and a greater permeability produce a
greater attenuation (Figure 13). This result suppoerts intuition and agrees with
the observations of Staal and Robinson (1977) and with the results of
Rosenbaum's theory {Rosenbaum, 1974). It may not be obvious intuitively,
however, that, for a given permeability, many fractures of a lesser width
produce more attenuation than fewer fractures of a greater width (Figure 12).
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However, this is evident from equation (12), where nX=hdX only involves d*/% in
the coefficient 2/ m(w/ b))

In the case of a fractured zone, the dependency between porosity and
permeability is implicit in the model of parallel plates {(Figure 5b). As porosity
is defined as an external parameter in the porous medium theory, an "a-priori"”
dependence on permeability is not assumed. However, the two parameters are
generally dependent. The curves of Figure 13 are calculated without
introducing poresity-permeability dependence.

It would be gratifying to link the two approaches in a model applicable to
both. The parallel plates model, as a specific porous medium, may be such a
model. However, the boundary conditions are different in that reflected waves
are only considered in the fractured medium meodel, a porous medium being too
smooth to generate them. Therefore, no comparison can be made between the
two approaches, and they should be tested separately on real data. According
to the lithology porous sandstones are likely to adapt well to the porous
medium theory, whereas fractured carbonates or crystalline rocks will be
better handled with the single fracture or the fracture density theory.

Determination of fracture apertures from observed attenuation data and
comparison with packer test results.

Figure 3 showed good correlation between Stoneley wave attenuation and
open fractures, as evidenced by a televiewer log. This subset of data belongs to
a fairly exhaustive survey made in Canada for the purpose of nuclear waste
storage in granite (Paillet, 1980; Davison efal. 1982). Hydrologic tests were
used in addition to borehole geophysics logs. Some packer tests designed to
straddle single, epen fractures evidenced by cores and televiewer logs, are
avajlable jointly with Stoneley wave attenuation values on the same fractures.

The Stoneley wave energy attenuation A4y (Paillet, 1980} is first
transformed into an amplitude attenuation A4 by means of

Ay =1 —[1-4g]% (19)

Fracture widths are then obtained from an attenuation versus fracture width
plot (Figure 14). Physical parameters required to model the attenuation from
equation (B) are listed in Table 1. Spectral analysis (Paillet, 1980) yielded a
central frequency of 34 Khz for the Stoneley wave. Attenuation is computed
here on the basis of this value.

Similarly, fracture apertures were estimated f{rom fluid-injection tests,
using a single fracture model (Davison efal., 1982). Results of the comparison
between the two estimates are listed in Table 2, including the relative deviation
AL/ Ly of the acoustic estimate [; versus the packer test estimate L.

Obviously, some limiting factors have to be considered before interpreting

the results. First, the depth of penetration of the flows are very dissimilar (10 to
100 meters in the case of fluid-injection tests, much less than 1 meter in the
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case of a diffused wave). Second, the nature of the flow is different (steady
injection in the first case, high frequency steady-state flow in the second case),
and permeabilities are unlikely to be the same for such different flow
conditions.

In the theoretical developments, three simplifications were made: 1) there
are no obstructions in the fractures to laminar flow (i.e., no turbulence,
irregular walls or loose particles); 2) the "return flow” from formation into the
borehole is small and does not contribute to the energy of the Stoneley waves;
and 3) there is no diffraction (scattering) of acoustic energy into other wave
modes. The first condition biases the theoretical results towards lower fracture
densities for given permeabilities. However, it does not affect the overall
permeability value for a given observed attenuation. The second condition
irnplies that we assume the maximurm attenuation for a given permeability.
Thus theoretical permeability calculated from attenuation may be lower than
the actual value. The third assumption means that we ignore attenuation due
to elastic scattering {as shown in Fig. 1) and attribute all attenuation to
permeability. thus we introduce a bias towards greater permeability.

Given these limitations the comparisons between the packer test results
and computed permeability based on our theory are extremely good except for
case 5 at depth 424 m and case 6 at depth 468 m (Table 2). These two
discrepancies are most likely due to possible changes in fracture properties
away !rom the borehole.

On the whele, however, Table 2 shows very good agreement between both
approaches for obtaining in-situ permeability due to large fractures. The
packer test might be more flexible for determining the permeability due to
extended fractures, because of its larger and variable depth of penetration. On
- the other hand, a borehole survey gives fast and very early results in the
. history of a well, and is relatively inexpensive. Therefore, permeability detection
- from acoustic surveys could add much value to the full waveform acoustic

logging method.

More work is necessary to improve and test the preserit theory. The effect
of dipping fractures with respect to the borehole is currently beinog
investigated. However, fractures intersecting at high angles {greater than 70°%
introduce additional complication and therefore can't be considered within the
theory (Paillet, 1980). Additional measurables such as attenuation of P waves
could add additional constraints to permeability determination. Finally, the
diffraction mechanisrn could be dealt with in a finite element scheme, taking
into account Stoneley waves in the formation as well as in the borehole fluid.
This appreach might yield better resulis for thin fractures.

CONCLUSION

Good correlation between the occurance of open fractures in crystalline
formations and the attenuation of Steneley waves led to the belief that a
physical mechanism could attenuate the amplitude of the Stoneley wave. The
core of the theory involves an irreversible energy transfer from the Stoneley
wave into the fracture fluid. Research aimed at building a theory on the basis of
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this mechanism was meotivated by its potential application to permeability
detection in a fractured reservoir. In the process of designing a theory that
could account for the attenuation of the Stoneley wave amplitude in fractured
media, another theory was set up to describe a similar process in the case of a
porous medium.

An extensive borehoele survey in Canadian crystalline fractured formations
(Davison etal., 1982) provided a basis to test the single fracture theory. From
real attenuation data, theoretical apertures of large open fractures were
obtained, with all other parameters fixed by the survey conditions. Those
values compare very favorably to apertures deduced from packer tests
designed to straddle the same fractures. The theory could therefore be of great
help in giving an estimate of permeability in fractured reservoirs, or checking
the effectiveness of hydrefracturing experiments, rapidly and at a low cost.
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Table 1.

Physical parameters used to invert attenuation
for fracture aperture.
Full waveform acoustic survey in granite {Paillet, 1980)

vp(mss) | vg(m/ss) | plkgs/m?)

granite 5850 3350 2650
fuid. 1500 0 1000
fluid viscosity i =103 Poiseuilles
Auid incompressibility - =1 =2.10° Pa
borehole radius R = 0.038 m
10-10
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Table 2.
Fracture apertures comparison
for the full wavelorm acoustic and packer test approaches.
Depth(m) | Ap | A4 | Lalum) | Ly(um) | AL/ Ly (%)
1) 450 (WN1Yll0.24 | 025 | 173, 157, -12,
2Y417. (WN:) !l 047 | 0.27 183, 285, -31.
3)430. (WNi1) || ©6.50 | 0.29 1B7. 128, +4B.
4) 442 (WNi) ) 082 | 0.38 220, 188. +17.
5) 424, (WN1) 1l 028 | 0.5 133, 18. +839.
8) 488. (WN4) i} 0.32 | 0.18 150, 48, +228.
Lg: Acoustic value Lp: Packer test value
APPENDIX A

Radial flow ip the formation
(i) Fluid layer approach

Consider an isolated fracture modeled by a plane fluid layer perpendicular
to the borehole {figure 5a ). Under the assumption of a one-dimensional laminar
flow, Darcy's law relates the fluid flow rate diffused inside the fracture gg(r.t)
to the pressure gradient 8Pg(r.£)/8r as

K L GPp(r.i)
by=-=—= —5 A
grlr.t) . o7 T P (A1)

where K is the fracture permeability, & the fluid viscosity and L the fracture
width. Assuming the fracture walls are rigid {i.e. L is a constant), the continuity
equation relates 8qgz(r t)/8+ to 8Pgpi{r t)/8t as

ogp(r.t) _ 8FPplr.t)
"'—a';"——-—ZJITL/ Bt - (Az)

where 7 is the compressibility of the fluid {Bevdoun efal.,1983). Rigorously,
Darcy's law should only be applied to a porous medium. Eguation {(A.1) should
therafore be modified, using the identity {Van Geli-Racht, 1982)

2
K= i—ﬂé- | (A.3)

characteristic of a fluid layer. Combining {4.1), {4.2) andé (A.3) yields the
diffusion equation
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1 9| 8Pp{rid)| 1 8Ppir.t)

—_—— = = A

r dr [T ar b 8t (a.4)
where

b 12

A compression phase of the Stoneley wave is defined as one positive half
eycle of a sine wave. Figure 6 shows how this pressure function imposed at the
fracture boundary is approximated by a boxcar function. A simple finite
difference analysis shows that attenuations computed with this approximation
are very close (less than 5% error) to what the actual sine dependency would
have given. The solution of (A.4) near the borehole for such a boundary
condition is (Rice and Cleary, 1976)

%
Ppi{r.t)~ Pg [g erfe {Ez;ﬁ;})—;} {A.6)
where
erfo(z) = 1 = (Fp) [empio®) 2p (A7)

The flow gp(R.t) inside the fracture is cbtained from Darcy's law (A.1).
After some algabra,

1

!,
2R T (mbi)¥ |

L3
gr{R .t) = aﬁﬁpp[ (A.8)

() Fracture density approach

In the case of a medium of fracture density d, the permeability X of the
medium, the width L of a single fracture and & are related by

d 3
K= —1%_ (A.9)

Bquation {A.1) is changed in

BFPpir ¢
ﬁ% : -—f-’é‘;fm)—  (A.10)

e
i !

fan £V =
Graiy =T
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12d2 /8

L= .@Ki = W[-KE—] (A.11)

(iii) Porous medium approach
Considering a porous layer of thickness h, permeability X and porosity ¢

(Figure 7b), under the assumption of a radial laminar flow, Darcy's law relates
the diffused flow rate gp(r ) to the pressure gradient 87p(r.t)/dr as

Kh an(f-,t)
= £ e AlZ
gp(r.t) _rr 3 ( )

The continuity equation relates dgp(r t)/8r to dPp(r t)/0t as

Ogp(rt) _ _, . oy 8Fp(r.t)

5 . (A.13)

Combining equations (A.11) and (A.12) yields the diffusion equation for a
porous layer

L 8| 8Pp(rt)| 1 8Pp(r.t) 4
r 5’[" ar |~ b5 &t (A.14)
where
L_eyu
e (A.15)
APPENDIX B
Boundary conditions

(i) Fluid layer approach

Due to the discontinuities at the edges of the fracture, the incident
pressure wave P; (Figure 8a) is assumed to be scattered in the form of a
reflected wave Fp and a transmitted wave FPr. Since the fracture width L is

small compared to the wavelength of the Stoneley wave, the reflected and
transmittied waves can be considered .as Stoneley waves of phase velocity c.

Pressure continuity can be written

Pr+ Pp=Fp (B-l)
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Fr(R) = Pr(R) (B.2)

where Pp(R) and Pr(R) are the transmitted pressure and the fracture pressure
at the borehole-fracture boundary (r=R).

Volume conservation relates the incident fluid flow across the berehole
cross-section g7, the transmitted flow gr and the diffused flow into the fracture

gr{f)
qr=qr + gr(R) (B.3)

All quantities are averaged over a half period of time 7/ 2 corresponding to
a compressive phase of the Stoneley wave. The three equations {(B.1), (B.2) and
(B.3) provide a unique solution for the unknowns Fr/ F;, Prp/F; and FPp/ Fr.
There only remains to connect equations (B.1), (B.2) and (B.3). To do so, the
concept of normal acoustic impedance is intreduced:

<P >
<v >
where < P > ahd < v > are respectively the averages of pressure and particle

velocity over the flow cross-section. Applying this concept, equation (B.3) can
be written

(B.4)

Spu; = Sguy + Spup (B5)
in which
1 Py Py
= — o = —— = —
v = 5 {(Pr—FPg) vr 7y F* 7, (B.6)

where Zp and Zp are respectively the borehole and fracture impedances, Sz and
Sg the borehole and fracture cross-sections, velocities and pressures being
averaged over those cross-sections.

The transmission coefficient comes from equations (B.1), (B.2), (B.5) and
(B.6)

Pp 1
P 1+ X (B.7)
with
x= LL IlUR) Zp (B.B)

2 I(fR) Zr

Impedances are calculated from (B.4). The borehole impedance is
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ZB =prc (B.Q)

The fracture impedance depends on a factor @y to be calculated for the
different expressions of the fracture flow:

Zr=pyc Op (B.10)
Ultimately, combining (B.8), (B.9) and (B.10),

1L I{SR) 1

2 L(/R) ®F (B.11)

X =
The average over a half-period T/ 2 of the fluid flow inside a single fracture is

EIE + %[‘;—r] (B.12)

where L is the fracture width and b is given by (A.5). The coeflicient @ of the
fracture impedance is such that

LS
qr{R) = *gEWRPF

s
A _Prfae| 1l | Elw
8  24n” (2B T w|3 (B.18)

When the permeability X is the parameter, as in the case of a fracture
density, the coefficient @z of the fracture impedance is such that

%
@
b}

where [ is the fracture width and b is given by (A.11).

Prc

1 1 2
—_— + =
Gp e

2R ' m

(B.14)

£
Ld

(#i) Porous medium approach

For a layer of porous medium of width h (Figure 7b), it is reasonable to
assume the absence of a reflected wave, as pores in a porous medium such as
porous sandstone are smaller scale inhomogeneities than fractures in a
fractured medium. The width A is still considered to be small compared te the
wavelength of the Stoneley wave of phase veloeity ¢. Thank's again to this
property, it is assurned that

Pr(R) = Pp{R) (B.15)

where Pr(R) and Pp{R) are the transmitted pressure and the diffused pressure
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at the borehole-fracture boundary (r=R). Volume conservation relates the
incident fluid flow g;, the transmitted flow gr and the diffused flow into the
porous medium gp{k)

gr = qr + 9p(R) (B.18)

Following the same development as in (i), the transmission coefficient is

Pr 1
B -1+ X (B.17)
with
X = ah (B.18)
where
%
_ pref o I(fR) 1 2le
S R AT (B.19)
and b is given by equation (A.15). _
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