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ABSTRACT

A full suite of geophysical logs, including nuclear, electric, acoustic transit-time, acous­
tic waveform, and acoustic televiewer logs, and high-resolution flowmeter measure­
ments have been used to investigate the lithologic and hydrologic properties of three
igneous plutons located on the southern margin of the Canadian shield. Geophysical
logs were used to identify lithologic boundaries, determine the properties of unfrac­
tured granitic or gabbroic rocks, interpret and calibrate the results of surface geophys­
ical surveys, and characterize permeable fracture zones that could serve as conduits
for fluid migration. Nuclear and acoustic transit-time logs provided good quantita­
tive correlation with changes in lithology. Electric logs yielded consistent qualitative
correlations, with lower resistivities associated with more mafic lithologies. Lithologic
contacts indentified on logs generally confirmed the results of surface electromagnetic,
seismic, and gravity surveys. All major fracture zones intersected by boreholes were
clearly indicated by the geophysical logs. Electric, epithermal-neutron, and acoustic
transit-time logs gave the most consistent indications of fracturing, but the lithologic
responses associated with some thin mafic intrusions were difficult to distinguish from
possible fractures, and some steeply-dipping fractures were not indicated by conven­
tional acoustic transit-time logs. Electric and neutron log response is attributed to
the effect of clay minearl alteration products in the vicinity of fractures. This alter­
ation may be indirectly related to permebaility, but no direct relationship between
resistivity or neutron attenuation and permeability appears to exist. Tube-wave at­
tenuation determined from acoustic waveform logs was related to the transmissivity
of equivalent infinite, plane fractures; these results agree qualitatively, and possibly
quantitatively with packer isolation and injection tests if the combined effects of differ­
ing scales of investigation and borehole enlargements in fracture zones are taken into
account. Tube-wave attenuation in waveform logs also compares well with the perme­
ability distributions determined from tube-wave generation in vertical seismic profiles.
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Comparison of conventional geophysical logs, acoustic televiewer images of the bore­
hole wall, and fracture frequency distributions measured on core samples indicates
that many fractures are completely sealed and have no effect on log response, whereas
many more apparently sealed fractures have been slightly opened during drilling, and
do provide some log response. High resolution flowmeter meaurements of natural flow
in boreholes and comparison of packer isolation tests with log data indicate that a
relatively few individual fractures often provide a large proportion of fracture zone
transmissivity in the immediate vicinity of the borehole, and that the orientation of
these fractures may not coincide with fracture zone orientation. These results indicate
that the scale problem in relating borehole logs to regional configuration of fracture
flow systems may be the most important consideration in the appplication of geo­
physical well logging to the characterization of ground water flow in crystalline rock
bodies.
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Figure 1: Idealized cross-section of fractured granitic intrusion in the Canadian shield,
illustrating major fracture zones, depth of weathering, contact with country rock,
and xenoliths; individual and isolated fractures not shown.
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Figure 2: Illustration of typical fracture zone showing alteration of granite, infilling
minerals, fracture interconnections, damage to fractures at the borehole wall, and
contribution of fracture zone to geophysical sampling volume.
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Figure 3: Comparison of geophysical logs to incidence of open and sealed fracture in
orientated core for borehole with nearly complete core recovery.
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Figure 4: Differential single point and epithermal neutron (uncompensated) logs com­
pared to fracture incidence indicated on televiewer log.
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Figure 5: Comparison of acoustic televiewer log with orientated core fracture data
(plotted in televiewer log format).
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Figure 6: Estimating fracture permeability using tube-wave attenuation.
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Figure 7: Estimated hydraulic aperture of equivalent single infinite fracture from tube­
wave attenuation compared to frequency of open and closed fractures in core (wave­

forms obtained with 34 kHz source).
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Figure 8: Comparison of fracture permeability given in equivalent single fracture aper­
ture with packer tests and VSP tube wave data (waveform logs obtained with
34 kHz source).
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Figure 9: Geologic cross-section showing variability of fracture zones.
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Figure 10: Acoustic logs indicating the extent of alteration and fractures along three
adjacent boreholes penetrating the same fracture zone; there are approximately
50 m between boreholes in the plane of Figure 9.
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Figure 11: Comparison of the top of the lowermost fracture zone in Figure 9 as inter­
pretted form surface seismic reflections and geophysical logs.
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Figure 12: Televiewer log indicating stress concentration and reorientation wsithin
fracture zone because borehole wall breakouts are limited to a single deep fracture
zone; fracture distribution along the complete borehole is indicated in Figure 7.


