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ABSTRACT

Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed depend­
ing on the angle between the fracture normal vectors and the direction of the applied
stress. If the prestress fracture orientation distribution is isotropic, the effective elas­
tic properties of such a material after application of the stress are then transversely
isotropic due to the overall alignment of the cracks still open. Velocity measurements
in multiple directions are used to invert for the probability density function describing
orientations of crack normals in such a rock. This is accomplished by expanding the
crack orientation distribution function into generalized spherical harmonics. The coef­
ficients in this expansion are functions of the crack density and the crack aspect ratio
distribution. The information on fracture distribution obtained from the velocity inver­
sion allows an estimation of the anisotropic permeability of the fractured rock system.
Permeability estimates are based on the number of cracks open of each aspect ratio, and
the contribution of a given crack is weighted by the cosine of the angle between the crack
and the direction of the applied pressure gradient. This approach yields a prediction of
permeability as a function of the angle from the uniaxial stress axis. The inversion for
crack orientation is applied to ultrasonic velocity measurements on Barre granite, and
permeability predictions for this sample are presented. The inversion results are good
and reproduce velocity measurements well, and the permeability predictions show some
of the expected trends. Initial comparisons of the predictions with available permeabil­
ity data, however, show deviations suggesting that further information on partial crack
closure and connectivity of cracks should be included in the permeability model.
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INTRODUCTION

A common goal of seismic field experiments is to estimate rock properties such as per­
meability from the information contained in the seismic waveforms. Fri'ctured media
provide a particularly interesting example of a permeable medium, since a material
containing an aligned system of cracks will be effectively anisotropic for elastic wave­
lengths much greater than the crack dimensions (Hudson, 1980, 1981; Crampin, 1984).
While a particular rock may have a randomly oriented distribution of cracks, applica,­
tion of a uniaxial stress will preferentially close fractures depending on orientation with
respect to the stress axis (Walsh, 1965; Nur, 1971). It has been suggested that the pre­
vailing tectonic stress regimes in the earth frequently include a maximum compressive
stress which is horizontal, resulting in such an alignment of vertically oriented cracks
(Crampin, 1981). A uniaxial stress is easily produced in laboratory experiments as well
(Nur and Simmons, 1969).

Analysis of the elastic anisotropy produced by crack alignment can be used to in­
vestigate fracture properties. Sayers (1988a,b) suggested a means of inverting for the
orientations of crack normals using these velocity measurements. This method involves
an expansion of the fracture orientation distribution function in terms of harmonics
related to the system of Euler angles describing the orientations. The coefficients i"
the expansion are subsequently related to perturbations in elastic moduli predicted by
the Hudson (1981) theory for the properties of a cracked medium, and an inversion was
performed based on an approximate expression for elastic wave velocity derived from a
variational.approach (Sayers, 1988a,b).

In this paper, we apply an alternative form of an inversion for crack orientations.
A nonlinear inversion is performed by linearizing the phase velocity expressions about
an initial estimate of crack density and a parameter describing the distribution of crack
aspect ratios. The resulting estimate of crack orientations and the distribution of aspect
ratios with respect to direction is used to predict permeability as a function of direction
with respect to the uniaxial stress axis. These permeability predictions are calculated
based on a model for permeability in the fractured medium which accounts for crack
closure effects by multiplication by the fraction of cracks open in a given direction. The
method is applied to ultrasonic velocity data for Barre granite (Nur and Simmons, 1969)
and the implications of the results for permeability prediction are discussed.
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THEORY

Inversion for crack orientations

237

The rock medium is assumed to contain an isotropic distribution of cracks in the un­
stressed state so that the effective elastic parameters of the material are also isotropic
in this case. When a uniaxial stress is applied to such a material, some of the cracks
will close depending on the angle of the crack normal with respect to the stress axis
(Walsh, 1965) (Figure 1). This angle ,0 is given by

cos'O = )0'.:0, (1)

where 0'. is the crack aspect ratio, Eo is the Young's modulus of the uncracked mate­
rial, and a is the applied uniaxial stress. The initially isotropic material will become
anisotropic after application of the stress with rotational symmetry about the stress
axis (Nur, 1971). The effective elastic properties of the stressed, cracked material will
then have a transversely isotropic symmetry.

The effective elastic moduli of the medium can be estimated by averaging the elas­
tic constants of the fractured material over a crack orientation distribution function
N(8,1/;,¢) , where 8, 1/;, and ¢ are Euler angles of rotation specified in Figure 2. These
angles define the set of rotations necessary to obtain the orientation of the crack Carte­
sian coordinate system x, y, z for each crack with respect to the composite medium
reference Cartesian coordinate system denoted by X, Y, Z. We specify the initial ori­
entation of the fracture prior to rotation such that the crack normal (parallel to z) is
parallel to Z, and the other two axes x and yare therefore in the plane of the fracture.
Note that for a circular crack, only 8 and 1/; are necessary to fully specify crack orienta­
tions, and ¢ can freely range from 0 to 21r. The crack orientation distribution function
N (8, 1/;, ¢) is defined so that integration over the full domain is one:

rZ
" rZ

" f"Jo Jo Jo N(8,1/;,¢)d8d1/;d¢= l.

This function can be expanded in generalized spherical harmonics

00 I I

N(8,1/;,¢) =L L L WlmnZlmn(()e-im>pe-in¢.
[=0 m=-l n=-l

(2)

(3)

Here (= cos 8. The derivation of the generalized Legendre functions Zlmn(() and some
of their properties are described by Ben-Menahem and Singh (1981). Each coefficient
Wlmn in the expansion of the orientation distribution function N( (, 1/;, ¢) is obtained by
integrations of the following form:

(4)
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With this expansion, the orientation distribution function can be decomposed into har­
monic components.

If a polycrystalline aggregate were considered, an estimate of the elastic properties
of the aggregate could be obtained by simply averaging the elastic constants of the
individual crystals with respect to the orientation distribution. This method, the Voigt
approach, is known to yield an upper bound on the elastic constants (Hearmon, 1961).
The same procedure can be applied to the fractured medium by averaging the effective
elastic constants of fractured material over all sets of fracture orientations in the rock
(Sayers, 1988a). Since this is an upper bound, and it is not clear how far removed from
the true solution this bound is, there will be some limitations on the accuracy of the
results which is not well defined. Application of similar techniques to other problems
involving cracks has shown that resulting errors are generally not too large for smaller
crack concentrations, however (Walsh, 1965). The averaged constants can be written
(Morris, 1969)

Cijkl = cmnpq rh
{2"jl Tijklmnpq((,,p,¢)N(B,,p,¢)d(d,pd¢ (5)

)0 )0 -1

=Tijklmnpq

= CmnpqTijklmnpq

&Xi &Xj &Xk &XI
&Xm &Xn &Xp &Xq •

The Einstein summation convention is applied. The matrix Tijklmnpq essentially defines
an average rotation of the elastic constants of the individual components cmnpq , which for
the polycrystalline case are the elastic constants of a single crystal and for the fractured
material case are the constants corresponding to a single set of parallel fractures. Morris
(1969) has calculated a table of values for the matrix elements Tijklmnpq in terms of the
coefficients of the expansion of the distribution function up to order I = m = n = 4
for composites of materials with orthorhombic symmetry which can also be applied
to material with hexagonal symmetry. The orthogonality properties of the harmonics
cause terms for indices greater than 4 to disappear since the fourth order elastic tensor
cmnpq will only have coefficients for 1= m = n = 4. The Morris (1969) table can easily
be used in Eq. (5) to find the overall properties.

The theory of Hudson (1980, 1981) for the stiffness constants of a fractured medium
can be used to obtain values for Cijkl to use on the right hand side ofEq. (5). This theory
provides an expression for the effective elastic tensor Cijkl of a homogeneous medium
containing a single set of parallel penny shaped cracks with dimensions much less than
a wavelength. This expression is in terms of a first order correction clj kl to the elastic

tensor of the unfractured material C?jkl'

Cijkl = C?jkl + € c!jkl' (6)

Here € is the crack density defined by € = net3 , n is the number of cracks per unit volume,
and a is the crack radius. Hudson (1980) also derived a second order term which results
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in values of the stiffnesses which are quadratic functions of the concentration of cracks,
and hence the second order theory actually displays divergent behavior for large crack
concentrations. In order to match the observed data discussed below, the second order
correction was therefore not applied.

If we apply a stress along the z-axis, the only nonzero coefficients in the expansion
of the resulting crack distribution will be Wooo , W200 , and W400 due to the symmetry
around the z-axis and the circular symmetry of the cracks. For purposes of the inver­
sion, we follow Nur (1971) and Sayers (I988b) and take as a model for the crack aspect
ratio distribution in the unstressed state a simple linear function

o< a < am' (7a)

The parameter am sets the maximum aspect ratio present in the rock sample and is
given by am =<70/ Eo, where <70 is the hydrostatic pressure required to close all cracks.
To serve as a density function Eq. (7a) is normalized by the total number of cracks
presen t n~ at stress 0-:

I I [amn. =No 2" + (8a)

Given this distribution of cracks, the crack orientation distribution function after appli­
cation of a uniaxial stress can be obtained using the closure model given by Eq. (1). At
any given angle e from the stress axis, all fractures with aspect ratio a > a cos2e/Eo
are open. The resulting coefficients in the expansion of the orientation distribution
function are:

WOOO
1

= 8".2'

W 200 1 jfaC 1 a)= 5n~2".2 '2 Eo '3 + '7 EDam '

W 400
1 1 J'{ 17

2

315 n/l".2 '2 E2a '• 0 m

nil nl
(9a)= •• N I '

0

One important aspect of this particular distribution model is that the expansion up to
terms I = 4 is exact, and there is therefore no truncation error from termination of
the series. If, however, only a single crack aspect ratio were considered, the post-stress
distribution of cracks resulting from the closure model governed by Eq. (1) would be
a box car function with respect to the e (or 1)) variable, and strong Gibbs phenomena
effects would result since accurate representation of this discontinuous function will
require a large number of terms in the expansion. Truncation of the expansion series
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in this case would yield unrealistic results due to strong oscillations of the predicted
distribution function.

The choice of aspect ratio in Eq. (7a) is rather arbitrary and may not be truly
representative of the cracks within a rock sample, though accuracy of results using the
distribution will give some indication of its validity. For purposes of comparison in
applications, we also consider a flat aspect ratio distribution

0< a < am' (7b)

For this aspect ratio distribution, the normalization constant is

n! =No! [a - L_~...]
(l m 3Eo '

and the coefficients in the generalized spherical harmonic representation are

WOOO
1

= 87l'2 '

W 200 1 ~q
- nt/307l'2 2' Eo '

W400 = 0,

n!1
n!

= q
q J'No

(8b)

(9b)

(

2 - 2 - 2
pvSH = C 44 cos f3 +C66 sin f3

The results for this hypothetical distribution of cracks may be compared to those
obtained using the distribution given in Eq. (7a).

Given the values of the elastic constants resulting from the averaging process, veloc­
ities can be computed for the stressed, cracked material. The quasi-compressional wave
phase velocity vqP, vertically polarized quasi-shear wave velocity VqSV, and horizontally
polarized shear wave velocity VSH in a general transversely isotropic medium are given
by (Musgrave, 1970)

_ 1{[ ] 1/2}pv;p = C44+2' h cos2 f3 + a sin2 f3 + (h cos2 f3 + a sin2 f3)2 - 4(ah - d2) cos2 f3 sin2 f3

(10)
_ 1{[ ] 1/2}pv;sv = C44+2 hcos2 f3 +asin2 f3 - (hcos 2 f3 +asin2 f3)2 - 4(ah - d2) cos2 f3sin 2 f3

(11)
(12)

a Cll - C44

h = C33 - C44

d = C13 +C44 .
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Here 13 is the angle measured from the symmetry axis, in this case the z-axis, and
the standard 6 by 6 form for the tensor of elastic constants has been utilized. This
expression uses the averaged elastic constants to predict the phase velocity value in a
given direction.

For a given uniaxial stress 17 and intrinsic Young's modulus Eo, the only unknown
parameters necessary to compute velocity from Eq. (10) are crack density" and max­
imum crack size am' Therefore, these are the natural quantities to determine through
inversion procedures. Since Eq. (10) is a nonlinear function of" and am (through the de­
pendence of the elastic constants on the orientation function), an inversion is performed
by linearizing the problem about an initial estimate of model parameters (Tarantola,
1987; Hatton et al., 1986):

d 3'! Gmo +A.0.m. (13)

Here d is the data vector containing observed velocity values, G is the forward model op­
erator yielding veloci ty predictions for a given set of model parameters in starting model
vector mo, A is a matrix of partial derivatives of velocity with respect to model param­
eters, and .0.m is a perturbation to the starting estimate of model values. The partial
derivatives are somewhat complicated algebraically, but can be computed analytically
with no approximations. We then perform an iterative least squares inversion for the
model parameters am and ", which allows an estimate of the crack normal orientation
distribution.

The forward modeling part of this inversion procedure is similar to that proposed
by Sayers (1988a,b), but there are several significant differences. For example, Sayers
(1988b) considers a stress applied along the x-axis, which results in a more complicated
expansion of the crack orientation distribution function since the orientation is in that
case a function of angle t/J as well as 8. The approach described in this paper uses
the exact expression for phase velocity, while Sayers (1988b, see also 1986) uses an
approximate expression derived from a variational method.

More important than these considerations, however, are the differences in inversion
algorithms. Sayers (1988b) proposes what is essentially a curve fitting methodology
where vqsv is approximated by a constant and vqP and VSH are approximated as the
sum of a constant and a cos 28 term. The coefficients of these functions are then deter­
mined using a least squares procedure, and crack density is obtained from the values
of the coefficients. Since there are at most two coefficients in anyone of the veloc­
ity expressions, only two parameter values can be obtained in this way, though Sayers
(1988b) chooses only to attempt to estimate crack density t. In contrast, the procedure
suggested here uses the complete expressions for the velocities and for the partial deriva­
tives in the inversion. As many parameters as there are data points can be estimated
by this approach, and data types from different experiments can easily be combined in
a single inversion. For example, velocity measurements from different stress values can
-be used to invert for crack density at each stress and for a single value of am, which
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should remain constant for a given rock sample. On the other hand, the curve fitting
approach will only allow a determination of the coefficients for each data curve at each
stress, and does not truly allow a combination of the data sets.

Perhaps the most important advantage of the more complex inversion scheme in
seeking to understand the properties of the physical model and of the effects of the
cracks on the propagation of elastic waves is that consideration of the partial derivatives
allows insights into the sensitivity of the inversion to each of the various parameters. In
turn, this gives more information on the validity of inversion results and on the factors
which are important in controlling velocity variations within the fractured medium. A
disadvantage of this more complicated inversion algorithm is that it is potentially more
susceptible to problems such as nonuniqueness and local minima, whereas the curve
fitting approach will tend to be more robust.

Permeability prediction

The crack orientation distribution function resulting from the inversion can be used
to predict permeability values. The permeability of a single fracture of aperture Lo is
simply

(

(

(14)

This cubic law permeability results from the analysis of flow through a single parallel
plane walled fracture (Snow, 1969), and gives the flow rate per unit length along the
fracture. Conventional permeability values are defined from Darcy's law relative to flow
across a unit surface element area. To make this conversion, consider as a model a
block volume containing a set of cracks which extend through the length of the block.
The permeability of the volume relative to the surface area of the block is obtained by
simply adding the contribution of each fracture, which amounts to multiplying Eq. (14)
by the number of cracks in the volume. The number of cracks of interest is the number
with normals perpendicular to the direction in which permeability is to be estimated,
which reqnires a knowledge of the crack normal distribution function pl(X, 1]), X = cos 6
(Figure 3). The superscript I refers to the linear aspect ratio distribution in Eq. (7a) and
a superscript J would refer to the flat distribution. Due to the circular symmetry of the
cracks, this function is equal to 21rN I ((,..p,<I» so that X = (and 1] =..p. Remembering
that E = na3 , a set of cracks of density EO with aspect ratio a yields a permeability ka

I

3k _ EOa

0- 12' (15)

where the product in the numerator gives nLg. Since the model considers a unit volume,
the dimensions of k a in Eq. (15) are length squared, where the length unit will be the
same as that of the unit volume under consideration.
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In tegrating over the range of crack aspect ratios for cracks still open in a given
direction, from "d = cos2 ,oa / Eo to "m, using the linear aspect ratio distribu tion from
Eq. (ia) gives permeability as a function of angle 0 measured from the stress axis for
all of the cracks in this direction:

I ([a~ Q m 0-
4 8 1 (75 10]k (0 -1f/2) = ----;---c;-~---~ - - --cos 0+ --cos 0 .

961f2 (~~..L __.;;..) 20 4 Eti 5 E8
2 Eo 10 3.co

(16)

Cracks oriented in directions other than parallel to the applied pressure gradient will
also have a contribution to the permeability. The effects of these cracks can be partially
included by adding their permeability, multiplied by the cosine of the angle between
each fracture set and the direction of the pressure gradient. Restricting attention to
crack normals within a single vertical plane, such as the x - z plane, we can integrate
the result of Eq. (16) multiplied by the appropriate cosine function:

1'+fl-
t

k'(O -1f/2)cos(, - O)dO. (17)

Here, - 1f /2 is the direction of interest for the permeability estimation. In principle,
cracks with normals outside of the vertical plane could be considered, but it turns out
that the resulting integral is very complicated and does not add significant insight to
the resulting permeability model. Carrying out the integration in Eq. (17), we have for
the linear aspect ratio distribution

I ( I
k (, - 1f/2) = (2 2 )X ,4811"2 S!m. q .1. _ 2m. (f2 £510 3 'EO

(18)

Xl = ,,~ _ am a: ~ [cos
2

(128 + 128 sin2 , +48sin4 , +40sin6 , +35 sin6 ,) +sin10 ,]
20 4Eo 9 35

+ .1. a: [cos
2

, (256 + 256 sin2 , +96 sin4 , +80 sin6 , +70sins , + 63sin lO
,) +sin12

,] .
;,;, Eo 63

The same procedure can be performed for the flat aspect ratio case (Eq. (ib)), and the
resulting permeability expression is

( 1 Xi
1921f2" _ 1 a '

m 3 '"EO
(19)

Xi = ,,~_ ~; ~ [C;;2 (128 + 128sin2
, +48sin4

, +40sin6
, +35sin6

,) + sin10
,] .

These two results may be used to provide an estimate to permeability within the frac­
tured rock as uniaxial stress is applied. If the uniaxial stress is sufficiently large to close



244 Gibson and Toksoz

(

off all cracks present in a given direction, then the integration limits in Eq. (17) must
be changed to account for the range of angles where no cracks are present. This results
in expressions very similar to the permeability results in Eqs. (18) and (19).

While this appears to be a simple approach to permeability estimation, it is related
to other studies of fluid flow through crystalline rock. Bernabe (1986) examines in
detail the applicability of the equivalent channel concept to permeability modeling for
several granites and concludes that it is a valid approach. Our case is analogous to
an equivalent channel model in that we replace the complicated fracture network by a
simplified representation of sets of plane walled fractures extending through the medium,
though we do not base our "channel" on some ofthe conventional concepts of the surface
area and volume of the porous structure. However, the model does include the effects of
crack closure as a function of direction. Some of the effects which are neglected are the
diminished aperture of cracks due to asperities and the complicated flow paths within
the rock. The effect of surface roughness of cracks is probably not too important over
relatively low pressure ranges, since fractures with asperities still display a cubic law
permeability behavior with an effective, mean crack width (Tsang and Witherspoon,
1981, 1983). Numerical studies of fluid flow through cracks with asperities confirm this
conclusion (Brown, 1987). Therefore, the tortuosity effect is of much greater concern.
The most direct way to include the tortuosity is to simply normalize the permeability
predictions by some constant so that the values are of the correct order of magnitude.
This can be done easily if permeability for one direction is known or if the permeability
of the unstressed rock is known.

It is important that we have only included a fracture contribution to permeability
in this model. If the medium under consideration has a significant amount of a different
type of interconnected pores and tubular fluid conduits, such as is the case in some
sandstones, the effects of the crack closure must be added to the permeability due
to other porosity types. Since the equidimensional pores of a sandstone will only be
minimally affected by the applied stress, the effects of the cracks may not be so important
for overall permeability values. This crack model is most important for low porosity
rocks such as fractured limestones or granites and other crystalline and metamorphic
rocks which would be essentially impermeable except for the cracks.

The permeability model also essentially assumes a prestress isotropicity of the frac­
ture network creating the permeability of the rock medium. It is conceivable that some
particular arrangements of cracks and their intersections might show strong variations
in effective permeability depending on the direction of the applied stress, but the model
assumes that this effect will not occur and that the behavior of the medium is indepen­
den t of the direction of the stress axis. Therefore the cracks in the medium must on
average have an isotropic distribution in both orientation and in intersection properties.
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APPLICATION TO ULTRASONIC DATA
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The inversion procedure together with the permeability models Eqs. (18) and (19) pro­
vide a method for predicting permeability values given observations of elastic wave
velocities which could be obtained from either laboratory samples or field data. Nur
and Simmons (1969) made velocity measurements on samples of Barre granite as a
function of direction for several magnitudes of applied uniaxial stress. Measurements
were presented for both quasi-compressional wave signals and quasi-transverse waves,
SV and SH. The Barre granite sample used by Nur and Simmons (1969) was dry, so the
Hudson (1981) formulation for dry cracks is appropriate. A value of 2.7 gmjcm3 was
used for density in the equations required for the inversion, and the Lame parameters
used to compute the Young's modulus were Ao = 22.05 GPa and 1'0 = 35.97 GPa (Nur,
1971).

Velocity inversions

Velocity data for qP waves at uniaxial stress values of 0, 10, 20 and 30 MPa were jointly
inverted for the crack density f at each stress value and for a single value of maximum
aspect ratio am. The results for these parameters are given in Table 1 for both the linear
and the fiat aspect ratio distribution function (Eqs. (7a) and (7b)). Corresponding
quasi-compressional wave velocity predictions and observations are compared in Figs. 4
and 5. The theory is able to match the data fairly well, with a fit approximately the
same as that obtained by Sayers (1988b). In general, the linear distribution gives a
slightly better fit to the observed velocity values. The trends in crack density shown by
the inversion results in Table 1 are reasonable. As stress increases, more cracks will close
reducing the overall crack density, as occurs for these results. In addition, the two aspect
ratio distributions give essentially the same f at each pressure (Table 1). However, the
maximum aspect ratio given by the constant distribution function, 3.99x 10-4 , is about
60% of the value resulting from the linear case, 6.34x 10-4 • This occurs because with
the Walsh (1965) crack closure model, many cracks of small aspect ratio are required
to close at low pressures such as 10 or 20 MPa. For example, at 10 MPa, the largest
crack which closes, with a normal in the direction of the applied stress, has an aspect
ratio of approximately 1.17x 10-4 for a material with the Lame parameters used for
this inversion. The fiat distribution will contain proportionately fewer small aspect
ratio cracks for a given total crack density, and so will require a smaller am to achieve
the same degree of predicted velocity increase for a given applied uniaxial stress.

Analogous results for the SH data are presented in Table 2, and velocity predictions
are shown in Figs. 6 and 7. While the SH data are similar to those in Figs. 4 and 5
for the quasi-compressional waves, the qSV results are relatively poor and are given in
Table 3 and Figs. 8 and 9. A non-attenuative transversely isotropic medium always has
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equal qSV velocities parallel and perpendicular to the symmetry axis (see Eq. (11)),
but it is clear from the data in Figure 8 that this condition is not quite true for these
observations. It is clear that there is a trend to the qSV velocity with direction that is
not reproduced in the variations predicted by the crack model. It is possible that the
Barre granite has some slight intrinsic anisotropy which would cause the stressed system
to have some overall symmetry other than transversely isotropic. A likely cause of SV
velocity variation is preferred grain orientation in the granite. Lo et al. (1986) clearly
demonstrate such a residual anisotropy after crack closure in measurements of velocity
in Chelmsford granite. If the residual anisotropy is the cause of most of the velocity
variation for the SV data, the inversion results are not significant for inference of crack
orientation since the forward model involved in the inversion includes only anisotropy
due to cracks.

The effects of this residual anisotropy seem to be evident to a smaller degree at
high pressures for the quasi-compressional and SH wave data also (Figs. 4, 5, 6 and
7). Since the total velocity anisotropy is greater for the quasi-compressional and SH
data, however, the fractures have more effect on observed velocities and the inversion
results are more significant for these cases. The values of crack density f obtained from
the two quasi-shear wave data sets are very similar, but the quasi-compressional wave
data consistently yielded a somewhat lower estimate of crack density. The results for all
data sets are also essentially the same as those obtained by Sayers (1988b). In order to
examine these differences in estimated crack density, a joint inversion of both SH and
qP wave data from experiments at a single uniaxial stress was attempted, but it was
found that the value of f obtained was between the values resulting from the individual
inversions and predicted velocities too large to match the qP data well, but too small
for the SH velocity measurements. The cause of the difference in results for quasi­
compressional and quasi-shear wave data is difficult to explain but may be caused by
remnant water within the granite sample. Liquid within the cracks would tend to raise
the qP wave velocity for a given crack density, while having a much more negligible
effect on quasi-shear wave velocities. Therefore, a single value of f would be able to
yield velocity predictions matching both sets of data. It would be desirable to repeat
the velocity experiment with uniaxial stress taking great care to maintain the dryness
of the rock sample in order to confirm this hypothesis.

It is possible that both the qP and SH estimates for crack density are high due to
the use of the Voigt approximation in calculating elastic constants (Eq. (5)). Since the
Voigt approach gives an upper bound, the averaged constants could be "stiffer" than
those of the fractured medium, and a higher density of cracks would then be necessary
to reduce the velocities to the observed values. If, however, the qP estimated crack
density is reduced by the presence of liquids as suggested above, this will offset the
error and the solution will not be too far off. It is likely that the true crack density is
near the values we estimate.

(

(

(
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Unlike the crack density, the estimates for am from qP and SH data are comparable
for each aspect ratio distribution. For the flat distribution, the values differ by about
12%, and the variation is about 6% for the linear function. In both cases, the qP
inversion yields the smaller estimate for am' This difference likely stems from effects
similar to those suggested as causing the decrease in crack density estimates.

Although there is some consistency of these inversion results for crack density and
for the maximum aspect ratio parameter, it remains to establish the validity of the
inversion results and the accuracy of the resulting description of crack geometry within
the rock. Several studies involving direct examination of rock samples for crack geometry
have been conducted. Sprunt and Brace (1974) examined Westerly granite using SEM
techniques, and estimated an aspect ratio distribution which showed a large number
of cracks with aspect r~tio greater than 10-2 . A similar, but more detailed, study
by Hadley (1976) revealed a much larger proportion of aspect ratios on the order of
10-4 but also showed that the distribution depends on the stress history of the rock
sample with prestressed samples containing a larger fraction of small aspect ratio cracks.
Hadley (1976) concluded that a typical mean aspect ratio was of the order of 1 X 10-3 •

Due to resolution limitations of the SEM technique, the smallest aspect ratio which was
observable was estimated to be about 5 X 10-5 , but it is also clear that some limitations
on the validity of the observations will result from the limited, two-dimensional sampling
of three-dimensional cracks. Therefore, many small aspect ratio cracks in the rock could
have been missed using the SEM imaging. Wong et al. (1989) also conclude that SEM
images failed to detect a significant segment of the small aspect ratio population in a
Westerly granite.

Direct observation of crack closure under uniaxial stress reveals other potential dif­
ficulties of the crack closure model used in this study. Batzle et al. (1980) showed that
crack closure in Westerly granite can be incomplete due to the influence of roughness
of the crack surfaces. In addition, the effects of crack intersections can be important
in altering crack behavior as stress is applied. The crack roughness and intersections
combined will clearly result in departures from the simple crack modellocalIy, but it is
not obvious how significant this effect will be on the macroscopic scale.

Other, indirect, investigations of crack dimensions have been conducted using dif­
ferential strain analysis (DSA) techniques (Siegfried and Simmons, 1978). In principle,
the DSA approach can produce information on crack aspect ratios by monitoring linear
strain of a rock sample subjected to hydrostatic pressure. However, this method is sub­
ject to relatively large error due to numerical differentiation (Cheng and Toksoz, 1979).
It is worth noting that Feves and Simmons (1976) found that the majority of cracks in a
Westerly granite close at hydrostatic pressures of about 20 to 30 MPA, corresponding to
an aspect ratio of about 5. X 10-4 to 7.5 X 10-4 using the Walsh (1965) theory, a range
which includes the results of our inversion. Cheng and Toksoz (1979) applied a veloc­
ity inversion technique for isotropic, hydrostatic pressure cases to Westerly granite and
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find an aspect ratio distribution in general agreement with this result. It seems that our
inversion results are corroborated by other indirect techniques using elastic properties
in finding a significant amount of small aspect ratios for cracks within igneous rocks,
while direct observations using SEM reveals porosity of larger aspect ratio. The larger
aspect ratio porosity is a much less important source of variation in elastic behavior
than the cracks under the pressure changes we consider here.

Permeability predictions

Permeability predictions using the qP and SH results from both aspect ratio distribution
functions are shown in Figure 10, and they all compare favorably, though there is
some variation for uniaxial stresses of 30 and 40 MPa. The curves for 10 MPa were
normalized in the direction perpendicular to the applied stress to match a permeability
measurement for Barre granite under 10 MPa hydrostatic pressure (Bernabe, 1986).
This normalization assumes that the permeability in the direction perpendicular to
the stress shows the same behavior as does isotropic permeability in the hydrostatic
case. The other permeability curves were normalized to have the same permeability
in the stress direction since the physical model for crack behavior includes no change
in the crack distribution in this direction. In principle, the closure of cracks in other
directions is also included in Eqs. (18) and (19), but the arbitrary normalization is still
necessary. Without this scaling, the permeability predictions would actually rise in the
stress direction as stress increases due to the lack of tortuosity effects in the permeability
theory.

Laboratory experiments (Zoback and Byerlee, 1975) show that there is in fact a
decrease in permeability in the direction parallel to the applied uniaxial stress, but this
effect is not very large. Figure 11 compares the permeability measurements by Zoback
and Byerlee (1975) to the constant values we would predict for permeability in the stress
direction. The three data points in Figure 11 were measured by Zoback and Byerlee
(1975) while increasing uniaxial stress on a sample of Westerly graulte under 50 MPa
confining pressure and 11 MPa pore pressure, and the curve between the two data is the
trend inferred for permeability between these points. The Zoback and Byerlee (1975)
data were made at very high uniaxial pressures to investigate dilatancy effects, and our
theory is based on linear behavior which cannot be extrapolated to high stress.

While measurements of anisotropic permeability as a function of direction are not
available to confirm the permeability predictions, the comparison to measurements par­
allel to the stress axis provide one check on the model, and a second check can be made
by comparison with permeability measurements as a function of hydrostatic pressure.
The permeability values perpendicular to the stress axis from both the qP and SH results
are compared to the measurements by Bernabe (1986) for Barre granite in Figure 12.
The predicted permeability decreases are too small, and, in addition, the measurements

(
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show a tendency to decrease the most rapidly at the lower pressures, while the pre­
dictions have the opposite tendency. Within the limitations of the fact that we are
comparing hydrostatic pressure and uniaxial stress cases, this suggests that some effects
of crack closure are missing from our model. Other examples of permeability measure­
ments reported in the literature for granites show a wide variation both in the absolute
value of permeabilities under pressure and in the magnitude of change in isotropic per­
meability with increasing pressure (e.g., Brace et al. (1968) and Bernabe (1986)), so a
perfect correlation would not necessarily be expected.

DISCUSSION AND CONCLUSIONS

The results of the velocity inversion suggest that the physical model for the fracture
behavior under uniaxial stress is capable of describing most of the effects of the cracks
on the elastic properties of the medium and that the model is able to match observations
of velocity in the Barre granite. The aspect ratio of the dry fractures does not affect
the elastic wave velocities in the Hudson formulation. Only the density of cracks € is
important in this case, and so the inversion results suggest that we are modeling this
aspect of the system fairly well. On the other hand, permeability critically depends
on the aspect ratio due to the cubic dependence on crack width in Eq. (14). The
permeability predictions are highly sensitive to this parameter, and it is important to
have an understanding of the aspect ratio distribution obtained by inversion.

Some insight into the roles of am and € in the model of cracks and their effect
on elastic behavior is obtained by independently inverting velocity data from different
uniaxial stresses for crack density and am at each stress. Parameter results for the
independent inversion procedure applied to the SH data are given in Table 4, and the
theoretical velocities are compared to the data in Figure 13. Because am is allowed to
vary at each stress, the velocity data are more accurately reproduced, though the joint
inversion solutions are still preferred, since am should not be a function of pressure. Note
that the velocity at 0 MPa is independent of aspect ratio and am cannot be determined
for this case. The crack density values are almost identical to those obtained by the
joint inversion (Table 2), but the results for am vary around the value 6.75 X 10-4 .

Independent inversions of the qP data result in similar comparisons. From this and
other properties of the inversion behavior, it is clear that the crack density is uniquely
determined for each data set and serves to provide an overall shift upwards of the
velocity curve as density reduces so that the mean velocity matches the mean of velocity
observations. It can even be determined independently of the aspect ratio distribution.
In contrast, the aspect ratio parameter am gives fine control of the shape of the velocity
curve so that it may match the details of the data trends. It does this by governing the
amount of fine cracks present for a given aspect ratio distribution which close at the
pressure of interest.
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Further understanding of the behavior of the inversion procedure is given by the
similarity of the predictive capability of the flat and linear aspect ratio distributions
in the velocity inversions (Figs. 4, 5, 6, 7, 8 and 9). This indicates a nonuniqueness of
inversion results arising from the fact that enough cracks of aspect ratios which will close
with the appropriate magnitudes of uniaxial stress are present in both distributions.
Some constraints on this type of nonuniqueness can be made based on the accuracy
of the velocity predictions resulting from the aspect ratio distributions. For example,
an inversion based on a parabolic aspect ratio distribution proportional to (a - am?
was attempted. This parabolic distribution will have an even larger proportion of small
aspect ratio cracks than the linear model in Eq. (7a). However, the inversion based on
this distribution failed to converge to parameter values which could reproduce velocity
data. This provides indirect evidence that the parabolic distribution is not realistic and
that more larger aspect ratio cracks are required. On the other hand, the results of
the two distributions presented above both reproduce data fairly well. Although the
differences tend to be subtle in the plots of velocity predictions and data, the linear
model is consistently somewhat better and also gives a smaller root mean square error,
about 30% for the qP inversion and 17% for the SH case. This suggests that the linear
model is in fact a better representation of the real crack distribution and that there
are many fine cracks which cannot be resolved with SEM techniques. In addition, the
larger value of maximum aspect ratio is encouraging since it is closer to the results of
other studies (Feves and Simmons, 1976; Cheng and ToksDz, 1978), though in any case,
the rock may contain porosity of even larger aspect ratio.

Nonuniqueness in the inversion also results from the assumption of noninteractive,
penny-shaped cracks. Mavko and Nur (1978) consider a tapered crack model instead
of ellipsoidal cracks and show that the two crack models can produce the same effects
on elastic behavior, indicating an inherent lack of uniqueness. They also demonstrate
that ellipsoidal crack models achieve these results with smaller values of aspect ratio.
A theory accounting for the interactions of cracks will also give a larger estimate for
aspect ratio than the noninteractive theories such as the Walsh (1965) model (Doyen,
1987). It is clear then that our results are dependent on the crack model, which assumes
penny-shaped, noninteracting cracks. In summary, it seems that our results for crack
density are well defined and reliable, but that the estimation of am must be considered
more carefully in order to confirm its validity. This confirmation can be based on the
accuracy of the inversion and on comparison to observation of aspect ratio distributions
in rocks.

The ambiguity in the aspect ratio does not seem to have too large of an impact on
permeability predictions, hQwever (Figure 10). Instead, the dissimilarity between the
hydrostatic data of Bernabe (1986) and the predictions for the direction perpendicular
to the stress axis (Figure 12), is caused by other effects. There are two likely principal
causes of this failure.
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First, the permeability model fails to include the effects of interconnecting cracks.
It is clear that intersections can affect crack closure (Batzle et aI., 1980). Numerical
studies in two-dimensional models of fractured materials show that connectivity is also
very important for fluid flow (Long and Witherspoon, 1985). It is difficult to model these
effects in the true three-dimensional medium. Snow (1969) presents an approach similar
to our model of continuous planar fractures which is appropriate for several discrete
sets of fractures but also neglects the effects of interconnection. Long et al. (1985)
and Andersson and Dverstorp (1987) p,esent numerical techniques for modeling the
permeability of sets of penny-shaped cracks suspended in a three-dimensional volume.
An application of our inversion technique could be to develop crack aspect ratio and
orientation models for procedures like this.

A second source of error in our permeability calculations is that the present version
of this theory does not include any change in aspect ratio for the cracks which remain
open. In actuality, the aspect ratio of the open cracks will decrease as the uniaxial stress
is applied (Toks6z et al., 1976). This effect will tend to decrease the permeability values
in directions away from the stress axis. This is one major reason that permeability
predictions for 10 MPa show an almost imperceptible drop from the constant 0 MPa
case. The largest crack which will completely close in the Barre granite at this pressure,
the crack with a normal parallel to the stress axis, has an aspect ratio 1.1 x 10-4 • With
the cubic law behavior of the crack permeability, the cracks with aspect ratios smaller
than this value have minimal contribution to fluid flow even in the zero stress case. The
permeability prediction would drop further and be more realistic if the partial closure
of cracks with initial aspect ratios larger than 1.1 x 10-4 was incorporated into the
modeling scheme.

The change in aspect ratio with stress will affect only the permeability predictions
as long as the cracks are dry. If, however, the cracks are assumed to be filled with a
fluid, the aspect ratio also affects the elastic constant values. The forward modeling
of velocities would then have to include the variation of aspect ratio with direction in
order to compute the velocity values. However, a relatively small amount of gas mixed
with the fluid will still cause the effective properties of the medium to be essentially
that of a gas, since the effective bulk modulus k* of a two phase medium is given by

(k*)-l = Vkj' + (1 - V)k;' (20)

where kJ and kg are fluid and gas bulk moduli, respectively, and V is the volume fraction
of fluid (Kuster and Toks6z, 1974). The large compressibility of the gas will tend to
dominate the overall properties of the crack filling material, and it will tend to behave as
though the cracks are filled with a gas. As long as the shear modulus and bulk modulus
of the crack filling material are small, the aspect ratio of the cracks has little impact on
the elastic constants in the Hudson (1981) approach, and the present approach will be
sufficient.
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This approach should at least provide a means of obtaining an initial estimate of
permeabilities for use in modeling of fluid flow in subsurface fractured media. Potential
areas of application include both hydrological studies and petroleum reservoir modeling.
Perhaps the most important aspect of the theory is that it represents an attempt to
extend knowledge of the permeability of a subsurface feature to regions beyond the
borehole using seismic data.
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Aspect Ratio
Distribution Function

Parameter Flat Linear

am 3.99x 10-4 6.34xl0 -4

€O 0.275 0.275
€10 0.253 0.254
€20 0.235 0.235
€30 0.221 0.221

255

Table 1. Inversion results using qP velocity measurements of Nur and Simmons (1969).
The subscript Pan €p indicates the uniaxial stress value for each crack density.

Aspect Ratio
Distribution Function

Parameter Flat Linear

am 4.48xl0 ·4 6.75xl0 ·4

€O 0.315 0.315
€10 0.286 0.285
€20 0.257 0.256
€30 0.235 0.234
€40 0.214 0.215

Table 2. Inversion results using SH velocity measurements of Nur and Simmons (1969).
The subscript Pan €p indicates the uniaxial stress value for each crack density.
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Aspect Ratio
Distribution Function

Parameter Flat Linear

C>m 7.34xl0 4 13.1xI0 4

£0 0.314 0.314
£10 0.286 0.285
£20 0.252 0.252
£30 0.227 0.227
£40 0.206 0.206

(

Table 3. Inversion results using qSV velocity measurements of Nur and Simmons
(1969). The subscript P on £p indicates the uniaxial stress value for each crack density.

I Uniaxial stress (MPa) I £ C>m

0 0.315
10 0.283 4.98 X 10-4

20 0.255 5.94 X 10-4

30 0.234 6.78 X 10-4

40 0.217 5.61 X 10-4

Table 4. Results of independent inversion of SH velocity measurements [N ur and
Simmons, 1969) for crack density £ and maximum aspect ratio C>m at each stress. The
inversion cannot determine information on aspect ratio at 0 MPa.
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Figure 1: Schematic diagram illustrating the behavior of a randomly fractured medium
under an applied uniaxial stress. The upper figure shows a possible random crack
system with no stress applied. The lower portion shows the same system after appli­
cation of the uniaxial stress, where cracks have closed depending on their orientation
with respect to the stress. If the angle 1 indicated on the figure is equal to or smaller
than the angle 10 defined in the text, the crack will close under the applied uniaxial
stress.
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z
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Figure 2: Euler angles of rotation 8, 1jJ, ¢ describing orientation of a given crack coor­
dinate system x, y, z (fine lines) with respect to the composite medium coordinate
system X, Y, Z (heavy lines). The dashed line indicates the intermediate position of
the y axis, and the two disks represent the X - Y planes before and after rotation,
which are also the crack planes. The set of rotations is defined as follows: 1) rotate
by 1jJ about Z (the same as z initially). 2) rotate by 8 about the new y-axis. 3) rotate
by ¢ about the new z-axis. Since the cracks are assumed to have circular symmetry,
the first two rotations actually uniquely specify the orientation of a single crack.
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Figure 3: The angles 8 and TJ necessary to specify the orientation of a crack normal.
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Figure 4: Results of inversion for crack density € and maximum aspect ratio am using
Barre granite quasi-compressional wave velocity data and the linear aspect ratio
distribution function (Eq. (7a)). The points are data collected by Nur and Sim­
mons (1969), and the lines indicate the results of a joint inversion of all of the data
in this figure. The value of the applied uniaxial stress is indicated for each curve.
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Figure .5: Results of inversion for crack density, and maximum aspect ratio am us­
ing Barre granite quasi-compressional wave velocity data and the flat aspect ratio
distribution function (Eq. (7b)). The points are data collected by Nur and Sim­
mons (1969), and the lines indicate the results of a joint inversion of all of the data
in this figure. The value of the applied uniaxial stress is indicated for each curve.
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Figure 6: Results of inversion for crack density € and maximum aspect ratio "m using
Barre granite SH velocity data and the linear aspect ratio distribution (Eq. (7a)).
The points are data collected by Nur and Simmons (1969), and the lines indicate the
results of a joint inversion of all of the data in this figure. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 7: Results of inversion for crack density <' and maximum aspect ratio am using
Barre granite SH velocity data and the flat aspect ratio distribution (Eq. (7b)). The
points are data collected by Nur and Simmons (1969), and the lines indicate the
results of a joint inversion of all of the data in this figure. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 8: Results of inversion for crack density € and maximum aspect ratio am using
Barre granite qSV velocity data and the linear aspect ratio distribution (Eq. (7a)).
The points are data collected by Nur and Simmons (1969), and the lines indicate the
results of a joint inversion of all of the data in this figure. The value of the applied
uniaxial stress is indicated for each curve.
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Figure 9: Results of inversion for crack density € and maximum crack size am using
Barre granite qSV velocity data and the fiat aspect ratio distribution (Eq. (7b)).
The points are data collected by Nur and Simmons (1969), and the lines indicate
the results of a joint inversion of all of the data in this figure. The value of the
applied uniaxial stress is indicated for each curve.
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Figure 10: a) Permeability predictions as a function of angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of qP data and the
flat aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 10: b) Permeability predictions as a function of angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of SH data and the
flat aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 10: c) Permeability predictions as a function of angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of qP data and the
linear aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 10: d) Permeability predictions as a function of angle from the applied uniaxial
stress axis. The predictions use the results from the inversion of SH data and the
linear aspect ratio distribution. The uniaxial stress is indicated for each curve.
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Figure 11: Comparison of permeability predictions parallel to the stress axis with mea­
surements by Zoback and Byerlee (1975) of permeability parallel to the stress axis
in an experiment performed on Westerly granite. The curve inferred by Zoback and
Byerlee (1975) to represent permeability behavior between data points at 0 MPa
and 310 MPa is given by the solid line. The constant permeability which would be
predicted by the theoretical model over the pressure range investigated by Nur and
Simmons (1969) is indicated.
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Figure 12: Comparison of hydrostatic permeability measurements with theoretical per­
meabilities perpendicular to the stress axis. The data, measurements on Barre
granite (Bernabe, 1986), are indicated by the line and the points are calculated from
Eqs. (18) and (19). Since the permeabilities are normalized to have the same value
at 10 MPa, the data and theoretical points overlap at this value of stress. The ve­
locity data types used to calculate the permeability predictions are indicated in the
figure.
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Figure 13: Results of independent inversions for crack density € and maximum crack
size am of Barre granite SH velocity data. The points are data collected by Nur
and Simmons (1969), and the lines indicate the inversion results. The value of the
applied uniaxial stress is indicated for each curve.


