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ABSTRACT

This study investigates the frequency-dependence of fluid flow in heterogeneous porous
media using the theory of dynamic penneability and a finite-difference method. Given
a penneability distribution, the dynamic penneability is applied locally to calculate
the frequency-dependence of fluid flow at each local point. An iterative Alternating
Direction Implicit finite-difference technique is applied to calculate the flow field in the
frequency domain. We compare the flow through a 2-D heterogeneous porous medium
and that through an equivalent homogeneous medium and find that the two media
do not behave equivalently as a function of frequency. At very low-frequencies, the
heterogeneous medium is less conductive than the homogeneous medium, However, in
the transition region from quasi-static to dynamic regimes, the fonner medium becomes
more conductive than the latter medium, with the ratio of the fonner flow over the latter
flow reaching a maximum in this region. The larger the scale, or the higher the degree
of the heterogeneity, the higher this maximum is. This finding is important for studying
the interaction of a borehole stoneley wave with a heterogeneous porous fonnation.

The finite-difference technique is also applied to simulate frequency-dependent flow
through a single fracture with rough surfaces. It is shown that the fiow exhibits strong
frequency-dependence even for small fractures with contacting surfaces. The amount of
flow through the fracture is reduced by the surface roughness .
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INTRODUCTION

Fluid flow in porous media is an important topic in the study of flow of oil or gas in
petroleum reservoirs. In many applications where the fluid driven (pressure) source is
time invariant, steady-state (time-independent) flow is assumed and the flow can be
modeled for any distribution of heterogeneous porous media using a finite-difference
technique (Zhao and Toksoz, 1991). When the fluid driven source changes moderately
with time, such as the pressure transient tests in a borehole (Melville et aI, 1991) and
in laboratory measurements (Brace et al, 1968; Kamath et al., 1990; Bernabe, 1991),
fluid flow can be modeled as a diffusion process in which the fluid transport properties
such as permeability are still regarded as independent of time (or frequency) (Zhao and
Toksoz, this volume). Moreover, in applications related to wave propagation, such as
vertical seismic profiling and acoustic logging, fluid flow associated with the pressure
disturbance set up by seismic wave propagation is dynamic in nature and may strongly
depend on frequency. In fact, in these situations, the frequency-dependent flow becomes
the Biot's slow wave (Biot, 1956a,b) in a porous medium.

To characterize the frequency-dependent fluid transport property, Johnson et al.
(1987) developed the theory of dynamic permeability. Applying the concept of dynamic
permeability to the problem of acoustic logging in permeable porous formations, Tang
et al. (1991) showed that the dynamic permeability captures the frequency-dependent
behavior of Biot's slow wave and correctly predicts the effects of formation permeability
on borehole Stoneley waves. The theory of dynamic permeability is formuiated assum­
ing the homogeneity of the porous medium. The natural geological medium, however,
contains heterogeneities of various scales. It would be interesting to apply the dynamic
permeability to the heterogeneous porous media to study the overall behavior of fluid
flow through the media. In this study, we will model the dynamic fluid flow in the het­
erogeneous porous media using the theory of dynamic permeability. A finite-difference
method will be developed to model the effects of heterogeneities.

A problem that has attracted much research interest is fluid flow through a rough­
walled fracture or joint. Brown (1987, 1989) and Zimmerman et al. (1991) have modeled
the steady-state fluid flow through the fracture and showed that the roughness of the
fracture surfaces significantly affects the fluid flow when the surfaces are in contact. In
the characterization of borehole fractures using acoustic logging (Paillet et aI., 1989;
Hornby et aI., 1989), the response of the fracture to the dynamic pressure set up by the
logging waves is important for characterizing the fracture permeability. In this situation,
fluid flow in fractures is dynamic in nature. Tang and Cheng (1989) have studied the
dynamic flow through a plane fracture bounded by two parallel walls. Natural fracture
surfaces, however, exhibit roughness (Brown, 1987). It is important to understand the
effects of surface roughness on the dynamic fluid flow in order to correctly model the
dynamic response of natural fractures to borehole acoustic waves. Tang et al. (1991)

(
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have shown that the theory of dynamic penneability, when applied to the parallel-wall
fracture, is equivalent to the theory of fracture dynamic conductivity. Therefore, if
we assume that the dynamic penneability for a parallel-wall fracture holds locally in a
fracture, then we can use the finite-difference code developed for heterogeneous porous
media to model the dynamic flow in a rough-walled fracture.

In the following, we first discuss the theory of dynamic penneability and governing
equations for the dynamic fluid fiow. Then we develop a finite-difference technique to
solve the flow equation in the frequency domain. Finally, we apply the finite-difference
technique to study the dynamic flow through a single fracture with rough surfaces.

THEORY

The equation that describes the time-dependent pressure disturbance P in a porous
medium is

where a is the fluid diffusivity:

8P
\1·(a \1 P) = 7ft ' (1)

kKf
a = <P/1o (2)

with k = penneability, '"f = fluid incompressibility, <p = porosity, and /10 = fluid viscosity.
We Fourier-transfonn Eq. (1) into the frequency domain and modify the fluid diffusivity
(Eq. 2) by replacing the penneability k with Johnson et a1.'s (1987) dynamic penne­
a:bility and introducing a correction efor solid compressibility (Tang et aI., 1991):

We then have

k(w)"'f
a(w) = <p/1o(1 +e) (3)

(4)

(5)

In the present study, we neglect the effects of solid compressibility by assuming that the
fluid compressibility is much greater than that of the solid, Le., e~ O. The functional
fonn of dynamic penneability is given by (Johnson, et aI., 1987)

ko
k~)= "

( i)"2 .TkoPoW
1 - 73TkoPow/ /1o<P - ~ /1o<P

where ko is the conventional Darcy penneability which is independent of frequency, T is
the tortuosity of the porous medium, Po is fluid density, and w is anguiar frequency, and
f3 = 2 is for a porous medium and f3 = 3 is for a fracture. Based on the frequency depen­
dence of k(w), it can be shown (Tang et aI., 1991) that Eq. (4) describes a diffusive fluid
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motion at low frequencies. At high frequencies, this motion becomes a propagational
wave. Therefore, Eq. (4) describes Biot's (1956a, b) slow wave in a porous medium with
an incompressible solid matrix.

In this study, we will investigate the behavior of flow field over a distribution of
two-dimensional (2-D) heterogeneities. To model the effects of the 2-D heterogeneities
on the fluid flow, we assign a 2-D distribution for the permeability ko, Le.,

ko = ko(x, y) . (6)

In this way, the dynamic permeability (Eq. 5) is not only a function of frequency, but
also a function of the spatial coordinates x and y. Because of the spatial variation (If
ko, flow in the heterogeneous porous medium may exhibit different characteristics at
different locations. For example, in regions where ko is small, the flow is dominated
by viscous diffusion, whereas in regions where ko is high, dynamic effects may become
significant and the flow becomes a propagational wave. Because k(w; x, V), as well as
a(w), change spatially, Eq. (4) is written as

(

o [ OP] 0 [ ap].ax a(w;x,y) ax + ay a(w;x,y) By + tWP = 0 (7)

This equation, together with given boundary conditions, describes the fluid pressure
fields in the 2-D heterogeneous porous medium for the given frequency w. We choose
to model the dynamic flow in the frequency domain because the dynamic permeability
is defined as the function of frequency. This formulation allows us to study the flow
behavior over different frequency ranges.

FINITE-DIFFERENCE MODELING

For the finite-difference modeling, it is convenient to use dimensionless variables. We
introduce the dimensionless permeability k' and spatial variables x' and y' as follows:

(

ko(x, y) = kmazk'(x, y)

x = Lxx'

y = Lyy'

O<k'<l

O<x'<l

O<y'<l

where km= is the maximum permeability over the region of interest, x' and y' are the
dimensionless variables in x and y directions, respectively. For a square 2-D grid, we
assume Lx = L y = L. We also introduce the characteristic frequency of the model

(8)
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The dimensionless frequency n is defined as

n=~
wo

Using the dimensionless variables, Eq. (7) becomes

161

(9)

(10)

(14)

a [A( ") ap] a [( ") ap] .,...,ax' W; x ,y ax' + ay' A W; x ,y ay' + 2"P = 0 ,

where the dimensionless dynamic permeability is

A(w; x', y') = k'(a!'l~'} (11)
(1 - ~rkm=k'(x', Y')~) - irkmaxk'(x', y')e:;

It is interesting to note that, because the spatial variation of k'(x',y') in A(w; x', y') is
coupled with the frequency w, A(w; x', 11) may have different distributions over the 2-D
grids x' and y' at different frequencies.

Forward difference solution of Eq. (10) (which is a Helmholtz type equation) is
unstable, especially for large n values where the dynamic effects become significant.
This can be shown by analyzing a 1-D Helmholtz equation

d2p
dx2 + >..2 P = 0 (12)

Substituting P = Poei.>.mx (where x = ml:l.x, m = 0, 1,2,"', M) into Eq. (12) and using

the forward difference ~~~ = Pm±l -:'2 + Pm 1, we have the following stability

equation:

(13)

This equation holds only when >..l:I.x is small. In Eq. (13), however, >.. = v'iIT is big when
n is big, Eq. (12) cannot have a solution unless l:I.x is exceedingly small. We therefore
use an iterative procedure to solve Eq. (10). We write Eq. (10) as

a [A( ") ap] a [( ")ap] .,..., apax' w;x,y ax' + By' Aw;x,y ay' +2"P= at' ,

where t' is a dimensionless time. The steady-state solution of Eq. (14) will be the
solution of Eq. (10), and the solution of Eq. (14) will be unconditionally stable if we
solve it using the Alternating Direction Implicit (ADI) scheme (Ferziger, 1981; Zhao
and Toksiiz, this volume). Using the ADI method, the finite-difference form of Eq. (14)
is

(15)
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where,

t:>.t'
JL1 = 2 t:>.X,2

t:>.t'
JL2 = 2t:>.y,2

and

Bi,; = VAi,; * A;+l,;

Ci,j = VAi,; * Ai,;+!

Here we use the geometric average for the mid-point between two adjacent grids because
it gives a better approximation for the point when the values on the two adjacent grids
differ by orders. The boundary conditions are specified by assigning no-flow conditions
for y' = 0 and 11 = 1, I.e.,

(

8P' =0
811

at 11 = 0 and y' = 1 . (17)

The pressure spectrum Po(w) is assigned to the x' = 0 boundary. At x' = 1, the
pressure is set to zero. With the algorithm, the solution is iterated with increasing
n. The solution to Eq. (10) is obtained when the difference between p n+1 and pn is
sufficiently small.

TESTING THE FINITE-DIFFERENCE ALGORITHM

As a test of the numerical algorithm, we compare the finite-difference results with the
results from the analytical solution for a simple I-D case Eq. (12). For the I-D case, if
we assign P!x=o = Po and P!x=L = 0, then the solution is

(

P(
. ) _ R sin['\(L - x)]

w,x - a . 'L '
sm"

(18)

where ,\ now equals ki(~J~f for the dynamic flow problem. Figure 1 shows the com­

parison between the results of the finite-difference algorithm and Eq. (18), where the
amplitude, the real and imaginary parts of the pressure spectrum P(w; x) are plotted.
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(19)

The parameters are ko = 1 Darcy, ¢ = 0.2, " = 2.25 X 109 Pa, and M= 1.14 X 103 Pa-s.
For the finite-difference scheme, the pressure along the middle line y' = L /2 is used.
The two results are in almost exact agreement (the no-flow boundary condltion at y' = 0
and y' = 1 makes the 2-D solution very close to the 1-D solution). The behavior of the
dynamic flow pressure versus distance is also demonstrated in Figures 1 (a) through (c)
for frequency = 100 Hz, 5000 Hz, and 20000 Hz cases. At low frequencies, the pres­
sure ~ x relation is a linear function. As frequency increases the pressure decreases and
becomes oscillatory, showing that the flow becomes a propagational wave and decays
rapidly with distance.

RESULTS FOR HETEROGENEOUS MEDIA

In Figure 2, we show two heterogeneous distributions generated by Gaussian (a) and
von-Karman (b) correlation functions and the finite-difference modeling results for the
two distributions. The von-Karman dlstribution has a fractal dimension of D = 2.5
at small wavelengths (Frankel and Clayton, 1986), and thus it is much rougher than
the Gaussian distribution. In spite of the roughness, the fluid pressures for the two
distributions are almost the same (Figure 2c and d for frequency = 1000 and 30000
Hz, respectively), showing that the dynamic flow is not sensitive to the roughness of
the heterogeneities as long as the wavelength is greater than the small scale roughness.
This is also true for the steady-state flow (Zhao and Toksoz, 1991) and transient flow
(Zhao and Toksoz, this volume) cases.

To study the behavior of the heterogeneous porous medlum in conducting the dy­
namic flow, we compute the flow rate q", into the medium at the x = 0 boundary,
as

q", = ~ {Lv {k(X,y) ap}1 dy.
LyJo M ax ",=0

In the logging situation, this flow corresponds to the dynamic flow into a formation due
to the pressure disturbance of the borehole waves. In the effective medium approach,
a heterogeneous medium having random variations is often treated as an equlvalent
homogeneous medium whose property (Le., permeability in the present study) is the
average property of the heterogeneous medium. We have calculated the flow rate for
the heterogeneous medium (generated by Gaussian correlation function) and the homo­
geneous medium as a function of frequency using the same parameters as those used
in Figure 1. In Figure 3, we plot the ratio qhete/qhomo versus frequency for different
correlation lengths (a = 3, 5, and 10, the model length is 64). Here q is the amplitude
of the complex flow rate of Eq. (19). If the behavior of the heterogeneous medium is the
same as that of the equivalent homogeneous medium, the ratio qhete/qhomo would plot
as a horizontal line of height 1. However, this ratio demonstrates a strong frequency­
dependent behavior. At very low frequencies, qhete/qhomo is always less than 1. As
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frequency increases, this ratio increases to reach a maximum. At very high frequen­
cies, this ratio approachs a constant. The maximum lies within the transition region
between the quasi-static and dynamic regimes and reflects the complexity of dynamic
flow in heterogeneous media. The variation of qhete/q/wmo is also a function of the scale
of the heterogeneities. This scale is governed by the correlation length a of the medium.
As a increases the range of variation also increases. For example, the curve in Figure 3
for the a = 10 case varies by more than 30% from zero frequency to the maximum, while
for a = 3, this range is reduced about 10%. It can be concluded that when the cor­
relation length is very small, the heterogeneous medium will behave like an equivalent
homogeneous medium.

Th above results may have important implications to Stoneley wave logging in a
heterogeneous formation. For an average permeability of 1 Darcy, the maximum of the
flow ratio is around 5 kHz, within the frequency of Stoneley wave measurements. In
addition, the borehole diameter is generally on the order of 0.2 m and is in many cases
comparable to the scale of formation heterogeneities. When the qhete/qhomo maximum
lies within the frequency range of the measurements, more flow will be conducted into
a heterogeneous formation than into a homogeneous formation. It is therefore expected
that the flow into the heterogeneous formation may signiflcantly affect the Stoneley
wave propagation in this formation.

DYNAMIC FLUID FLOW THROUGH A SINGLE FRACTURE
WITH ROUGH SURFACES

We now apply the flnite-difference formulation for heterogeneous media to study the
dynamic flow in a single fracture with rough surfaces. The roughness of a natural rock

( )
-<7-2D)

surface has power spectra of the form G(A) ~ :\ (Brown, 1987), where A
is the wavelength, and D is the fractal dimension of the surface and falls in the range
2.0 :s D :s 2.5. For this study, the fractal model is assumed to adequately describe
the character of rock fractal surfaces. To form a fracture, two surfaces with the same
fractal dimension of D = 2.5, but generated with different sets of random numbers, were
placed together (with one of them flipped over) at some fixed distance dm between the
mean planes of the two surfaces. Figure 4 shows the two surfaces. The local distance
between the two surfaces gives the aperture distribution d(x, y). The model surfaces are
generated using Gaussian random distribution with a standard deviation (T and a von­
Karman correlation function having a fractal dimension D = 2.5. When dm = 4.24(T,
the two surfaces begin to contact each other. At the "contact", the local aperture
d(x, y) is set to zero assuming that the deformation of the contact is ignored (Brown,
1987). Figure 5 shows examples of the local aperture distribution generated with the
two surfaces of Figure 4 at various dm values [(a) dm = 1O(T, (b) dm = 3(T, (c) dm = 1(T].
For a rough-walled fracture, a measure of aperture in terms of fluid flow is the mean

(
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aperture defined as (Brown, 1987)

if = L:z:
1
L

y
1oL: 10LY

d(x, y)dxdy

The mean aperture represents the aperture available to flow.
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(20)

(21)

(22)

(23)

If we assume that d(x, y) varies slowly in the plane of the fracture and that the
permeability for a parallel plane fracture holds locally, we then have

k ( ) d
2
(x,y)

o x,y = 12 .

Eq. (21) gives the static (zero-frequency) permeability distribution over the fracture
plane. Applying the dynamic permeability locally, we have

k(w'x y) = d
2
(x,y)/12

" (1 - iWPod2(x, y)/36/1-)l/2 - iwpod2(x, y)/12/1-

where we have used T = 1 [straight flow at (x, y)] and ¢ = 1 (aperture filled with fluid)
in Eq. (5). Tang et al. (1991) showed that Eq. (22) agrees almost exactly with the
theory of dynamic conductivity derived for a parallel wall fracture. With the dynamic
permeability distribution specified for each (x, y) using Eq. (22), the finite-difference
technique of the previous section is applied to calculate the dynamic fluid flow over the
2-D grids for various frequencies and separations dm/a. The results are presented in
the following section.

Numerical Results and Comparison with the Parallel Plate Model

For dynamic fluid flow through a rough-walled fracture, the measurable quantity is the
average flow rate per unit fracture length into the fracture opening:

- 1 10LY {d( )k(w,X,y)OP}1 dq= - x,y y ,
L y 0 /1- ox :z:=o

where k(w,x, y)I:z:=o is the fracture dynamic permeability of Eq. (22) evaluated at x = O.
In the borehole situation, the average flow rate ij represents the dynamic flow into a
borehole fracture due to the acoustic wave excitation in the borehole.

For the finite-difference modeling, we set L:z: = L y = L = 0.2m, the standard
deviation a "" 1.6/1-m. The flow field through the fracture is computed at increasing
frequency with dm / a equal to various values. The dynamic effects of the fluid motion

are controlled by the thickness of viscous skin depth 8 = ff!i compared to the fracture

aperture if (Johnson et al., 1987; Tang and Cheng, 1989). For water (/1- = 1.14 x 10-3
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Pa s), (j is 19.05 /-Lm at 1000 Hz and 3.48 /-Lm at 30000 Hz. The two surfaces will begin
to contact at about 4.26<7 = 6.8 /-Lm. By varying rim/ <7 and frequency, fluid flow in
a rough-walled fracture can be simulated for quasi-static as well as dynamic regimes.
For each simulated pressure fleld, the pressure gradient at x = 0 is calculated and used
in Eq. (23) to compute the flow rate. For comparison with the parallel plate model,
we compute the dynamic flow rate into a plane fracture using the dynamic fracture
conductivity c(w, d) (Tang and Cheng, 1989)

if= c(w, d) \7 P (24)

(25)

Assuming a 1-D flow field along a fracture of length L, the pressure in the fracture
is given in Eq. (18). We then have

8P cos),L
-8 Ix=o = Po(w», . AL .x SIn

In addition, the dynamic conductivity in Eq. (24) is calculated using Eq. (12) of Tang
and Cheng (1989) with d of Eq. (20) as the aperture of the equivalent plane fracture.

Before we compare the results versus frequency, we show the zero-frequency re­
sults calculated using the iterative finite-difference algorithm. The results are shown as
qraugh/qplane vs. rim/<7 in Figure 6, where qraugh is the calculated rough-wall flow rate
and qplane is the cubic law flow rate calculated using Eqs. (24) and (25) with w = 0,
and with the plane fracture thickness equal to dof the rough-walled fracture. The ratio
of the mean plane separation dm over standard deviation of the roughness is the stan­
dardized separation between the mean planes of the two fracture surfaces. As shown
in Figure 6, for small separations, qraugh is significantly reduced compared with qplane

because of the contacting of the rough surfaces. As rim/<7 increases to 10, qraugh/qplane

approaches 1. The overall behavior of qraugh/qplane agrees with the results calculated
by Brown (1987) for the steady flow case.

Next, we compare the results for dm /<7 = 1, 3, 6, and 10 and for frequencies ranging
from 0 to 30000 Hz. Figure 7 shows the calculated rough-walled fracture flow rate qraugh

(solid dots) and the parallel plane fracture flow rate qplane (dashed curves) calculated
using Eq. (18) with the plane fracture aperture equal to d. As seen from Figure 7,
the flow rate shows strong frequency dependence (or dynamic effects), increasing with
increasing frequenCies. Even for the very small fracture with contacting surfaces (e.g.,
rim/ <7 = 1 case), the dynamic effect is still significant. The rough-wall fracture flow
rate is smaller than that of the equivalent plane fracture. This difference demonstrates
that the effect of the fracture surface roughness is to reduce the fluid flow in static as
well as dynamic regimes. In the high-frequency dynamic regime, the ratio qraugh/qplane

increases to approach 1 as the fracture aperture increases. For example, at 30000 Hz,
the ratio for rim/<7 = 1, 3, 6, and 10 are 0.66, 0.68, 0.82, and 0.92, respectively. The high­
frequency results are analogous to the results of electrical current through a fracture
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modeled by Brown (1989), because in both cases the local fracture conductivities of
both the high-frequency fluid flow and electrical current are linearly proportional to the
local aperture (see Brown, 1989 and Tang and Cheng, 1989).

CONCLUSIONS

In this study, we have developed a finite-difference algorithm for simuiating dynamic
fluid flow in the frequency domain for an arbitrarily heterogeneous porous media. A
heterogeneous medium behaves differently than a homogeneous medium, especially at
low to medium frequencies. At medium frequencies, the heterogeneous medium conduct
more flow than the homogeneous one, depending on the scale of the heterogeneities.
In the logging situation, since the formation may contain various heterogeneities, the
heterogeneous flow behavior can cause the discrepancy between the fleld observation
and the theoretical prediction from Biot's theory for a homogeneous medium.

Applying the finite-difference technique to study the dynamic fluid flow through a
single fracture with rough surfaces, we have demonstrated the effects of surface rough­
ness on the dynamic flow. For dynamic as well as steady flow cases, the surface roughness
reduces the amount of fluid flow through the fracture in the static and dynamic regimes.
When the separation between the two fracture surfaces is about 10 times the standard
deviation of the roughness, the behavior of the fracture approaches that of a parallel
plane fracture

The flnite-difference technique developed here can find usefui applications to the
study of tube wave propagation in a heterogeneous porous formation. For example,
by "developing the frequency-dependent finite-difference algorithm in cylindrical coordi­
nates, we can study the propagation of borehole Stoneley waves in relation to the dy­
namic fluid flow into a heterogeneous porous formation. We can also model the Stoneley
wave reflection and transmission across a natural fracture zone having a heterogeneous
permeability distribution.
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Figure 1: Comparison of finite-difference pressure decay curves along model length x'
(dashed curves with dots) with 1-D analytic results (solid curves) for a homogeneous
distribution at various frequencies. The frequencies are (a) 100 Hz, (b) 5000 Hz, and
(c) 2'0000 Hz.
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Figure 2: Two heterogeneous distributions generated by (a) Gaussian and (b) von­
Karman correlation functions and the finite-difference modeling results [(c) and (d)]
for the two distributions.
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Figure 2: continued: Pressure decay curves for Gaussian (solid curves) and fractal
(dashed curves) distributions at (c) 1000 Hz and (d) 30000 Hz.
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Figure 3: Fluid flow ratios through a heterogeneous and a homogeneous medium as
functions of frequency.
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Figure 4: Rough surfaces representing the fracture walls. A fracture is formed by placing
the two surfaces together (with one of them flipped over).
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(a)
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Figure 5: Examples of local aperture distribution formed using the two rough surfaces
in Figure 4 with dm/cy = 10 (a), 3 (b), and 1 (e).
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Figure 6: Comparison of fluid flow through a rough-walled fracture and a parallel plane
wall fracture at zero frequency.
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Figure 7: Fluid flow rate (scaled) versus frequency for rough-walled (dashed curves with
dots) and plane (solid curves) fractures at various standard separations (dm / o)
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