Borehole Acoustics and Logging
and
Reservoir Delineation
Consortia

Annual Report
1997
We would like to express our sincere appreciation to Sue Turbak and Lori Weldon, without whose work the publication of this annual report would not be possible.

Copyright © 1997 Massachusetts Institute of Technology
Earth Resources Laboratory

Copying is permitted only for internal purposes of the sponsors of the M.I.T. Borehole Acoustics and Logging and Reservoir Delineation Consortia

This report was typeset at ERL in Computer Modern Roman using \TeX.
Borehole Acoustics and Logging
and Reservoir Delineation
Consortia

Annual Report
1997

Principal Investigator M. N. Toksöz

Contributors
D. R. Burns
C. Chauvelier
C. H. Cheng
D. Cox
R. L. Gibson, Jr.
M. W. Haartsen
E. Lavely
B. Mandal
O. V. Mikhailov
F. D. Morgan
B. Nolte
M. A. Pérez
J. Queen
R. Rao V. N.
F. Shen
G. Tao
S. Theophanis
M. N. Toksöz
R. M. Turpening
J. Zhang
X. Zhu
Z. Zhu

Report Editors D. R. Burns
E. A. Henderson
Table of Contents

1. EXECUTIVE SUMMARY
 by Daniel R. Burns
 Introduction
 Subsurface Fracture Characterization
 Modeling and Imaging of Complex Structures
 Reservoir Logging Applications
 1-1
 1-1
 1-2
 1-3

2. SHEAR-WAVE TOMOGRAPHIC IMAGES OF AN OIL RESERVOIR AT M.I.T.'s MICHIGAN TEST SITE
 by Jie Zhang, Roger Turpening, Chantal Chauvelier, F. Dale Morgan, and M. Nafi Toksöz, John Queen, and Dale Cox
 Abstract
 Introduction
 Nonlinear Traveltime Tomography Method
 Imaging the Oil Reservoir
 Conclusions
 Acknowledgments
 References
 Figures
 2-1
 2-1
 2-2
 2-3
 2-4
 2-4
 2-5
 2-6

3. RAPID 3-D RAYTRACING FOR OPTIMAL SEISMIC SURVEY DESIGN
 by Jie Zhang, Eugene Lavely, and M. Nafi Toksöz
 Abstract
 Introduction
 Rapid 3-D Raytracing Method
 Optimal Seismic Survey Design
 Conclusions
 Acknowledgments
 References
 Figures
 3-1
 3-2
 3-3
 3-7
 3-12
 3-12
 3-13
 3-14
4. SOURCE RADIATION PATTERNS IN CASED BOREHOLES
by Rama Rao V. N., Roger M. Turpening, and M. Nafi Toksöz

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>4-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>4-1</td>
</tr>
<tr>
<td>Propagation in Cased Boreholes</td>
<td>4-4</td>
</tr>
<tr>
<td>Source Radiation Patterns</td>
<td>4-10</td>
</tr>
<tr>
<td>Conclusions</td>
<td>4-15</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>4-17</td>
</tr>
<tr>
<td>References</td>
<td>4-18</td>
</tr>
<tr>
<td>Appendix</td>
<td>4-20</td>
</tr>
<tr>
<td>Figures</td>
<td>4-22</td>
</tr>
</tbody>
</table>

5. DETECTION OF FRACTURE ORIENTATION USING AZIMUTHAL VARIATION OF P-WAVE AVO RESPONSES
by Maria Auxiliadora Pérez and Richard L. Gibson, Jr.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>5-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>5-1</td>
</tr>
<tr>
<td>Geological Setting</td>
<td>5-4</td>
</tr>
<tr>
<td>Data Acquisition</td>
<td>5-4</td>
</tr>
<tr>
<td>Previous Studies</td>
<td>5-5</td>
</tr>
<tr>
<td>AVO Study</td>
<td>5-5</td>
</tr>
<tr>
<td>Discussion</td>
<td>5-7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>5-8</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>5-8</td>
</tr>
<tr>
<td>References</td>
<td>5-9</td>
</tr>
<tr>
<td>Tables</td>
<td>5-11</td>
</tr>
<tr>
<td>Figures</td>
<td>5-12</td>
</tr>
</tbody>
</table>

6. ULTRASONIC AND NUMERICAL MODELING OF REFLECTIONS FROM SIMULATED FRACTURED RESERVOIRS
by Stephen Theophanis and Xiang Zhu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>6-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>6-2</td>
</tr>
<tr>
<td>Sub-Scale Ultrasonic Experiment</td>
<td>6-2</td>
</tr>
<tr>
<td>Finite Difference Modeling</td>
<td>6-5</td>
</tr>
<tr>
<td>Conclusions</td>
<td>6-7</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>6-7</td>
</tr>
<tr>
<td>References</td>
<td>6-8</td>
</tr>
<tr>
<td>Table</td>
<td>6-10</td>
</tr>
<tr>
<td>Figures</td>
<td>6-11</td>
</tr>
</tbody>
</table>
7. EFFECTS OF FRACTURED RESERVOIR ELASTIC PROPERTIES ON AZIMUTHAL AVO
by Feng Shen, Xiang Zhu, and M. Nafi Toksoz
Abstract ... 7-1
Introduction .. 7-2
Theoretical Background 7-3
Properties of Velocity Anisotropy in Fractured Rocks 7-5
Stochastic Modeling of Fracture Heterogeneity 7-6
Properties of Velocity Heterogeneity in Fractured Rocks 7-7
Effects on Seismic Response of Fractured Reservoirs From 3-D Numerical Modeling 7-8
Conclusions .. 7-10
Acknowledgments 7-11
References ... 7-12
Table ... 7-13
Figures ... 7-14

8. SIMULATION OF ELASTIC WAVE PROPAGATION IN MODELS CONTAINING IRREGULAR INTERFACES PARAMETERIZED ON IRREGULAR GRIDS
by Bertram Nolte
Abstract ... 8-1
Introduction .. 8-1
The Modeling Technique 8-2
Comparison With Finite Difference for a Dipping Interface 8-3
A Free-Surface Example 8-4
Discussion .. 8-4
Conclusions .. 8-5
Acknowledgments 8-6
References ... 8-7
Appendix ... 8-9
Figures ... 8-10

9. CEMENT BOND EVALUATION USING EARLY REFRACTED ARRIVALS
by Rama Rao V. N., Batakrishna Mandal, Arthur C. H. Cheng, and M. Nafi Toksoz
Abstract ... 9-2
Introduction .. 9-2
Model ... 9-3
Parameter Variation 9-3
Conclusions .. 9-6
Acknowledgments 9-6
References ... 9-7
Table .. 9-8
Figures .. 9-9

10. MEASUREMENTS OF SHEAR-WAVE AZIMUTHAL ANISOTROPY
WITH CROSS-DIPOLE LOGS
by Guo Tao, Arthur C.H. Cheng, and M.N. Toksoz
Abstract ... 10-1
Introduction ... 10-1
Brief Description of the Three Methods for Determining Shear-Wave Anisotropy
in VSP Surveys ... 10-3
Cross-Dipole Logging Data Used in This Study 10-8
Results of Applying Processing Techniques to the Data Set 10-8
Discussion ... 10-9
Conclusions ... 10-10
Acknowledgments ... 10-10
References ... 10-11
Figures .. 10-12

11. USING BOREHOLE ELECTROSEISMIC MEASUREMENTS TO
DETECT AND CHARACTERIZE FRACTURED (PERMEABLE)
ZONES
by Oleg V. Mikhailov, John H. Queen, and M. Nafi Toksoz
Abstract ... 11-1
Introduction ... 11-2
Field Measurement Procedure and Noise Reduction Processing 11-3
Preliminary Analysis of the Field Data 11-4
Theoretical Model for the Electrical Field Induced by a Stoneley Wave . 11-5
Comparison of the Field Data and the Theory 11-7
Interpretation of the Field Data Based on the Theoretical Model 11-8
Comparison of Borehole Electroseismic Method with Stoneley Wave
Attenuation Methods .. 11-10
Conclusions ... 11-10
Acknowledgments ... 11-11
References ... 11-12
Appendix .. 11-14
Table .. 11-14
Figures .. 11-15
12. EXPERIMENTAL STUDIES OF ELECTROSEISMIC
CONVERSION IN A FLUID-SATURATED POROUS MEDIUM
by Zhenya Zhu, Matthijs W. Haartsen, and M. Nafi Toksoz

Abstract .. 12-1
Introduction .. 12-2
Experiment in a Cylinder Model 12-2
Experiment in a Layered Model 12-3
Properties of Electroseismic Conversion 12-4
Conclusions .. 12-5
Acknowledgments ... 12-6
References .. 12-7
Figures .. 12-8

13. EXPERIMENTAL STUDIES OF SEISMOELECTRIC MEASUREMENTS IN A BOREHOLE
by Zhenya Zhu, Matthijs W. Haartsen, and M. Nafi Toksoz

Abstract .. 13-1
Introduction .. 13-2
Borehole Models and Measurement System 13-3
Seismoelectric Conversion 13-3
Seismoelectric Field 13-4
Electroseismic Conversion 13-5
Conclusions .. 13-6
Acknowledgments ... 13-6
References .. 13-7
Tables .. 13-9
Figures .. 13-10

14. BOREHOLE RESISTIVITY INVERSION
by Yulia Garipova

15. DISPERSION ANALYSIS OF SPLIT FLEXURAL WAVES
by Bertram Nolte, Rama Rao and Xiaojun Huang

16. P AND S WAVES 3-D NUMERICAL MODELING OF AVOA FROM HETEROGENEOUS FRACTURED RESERVOIRS
by Xiang Zhu, Feng Shen and M. Nafi Toksoz
EXECUTIVE SUMMARY

Daniel R. Burns
Earth Resources Laboratory
Department of Earth, Atmospheric, and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

INTRODUCTION

Research activity in the Borehole Acoustics and Logging/Reservoir Delineation Consortia continue to focus on the development of geophysical methods to detect and characterize geological conditions which control fluid flow in a reservoir. This report presents a summary of our results from the past year. Three major areas of research are presented: subsurface fracture characterization, modeling and imaging of complex structures, and reservoir logging applications.

SUBSURFACE FRACTURE CHARACTERIZATION

Fractures are highly permeable pathways in many reservoirs, and their presence often introduces elastic anisotropy which affects both seismic reflection data as well as dipole acoustic logs. The seismic papers will be discussed here, while the dipole logging papers will be discussed as part of the reservoir logging section. Perez et al. show that azimuthal variations in the P-wave AVO response over a fractured reservoir in Venezuela provide a means of estimating the fracture orientation. The results of this analysis are in agreement with the orientation estimates obtained by surface shear wave reflection. Theophanis and Zhu combine physical laboratory modeling and finite difference numerical modeling of fractured reservoirs to study the effects of nonuniform fracture density distributions on the P-wave AVA response. Shen et al. and Zhu et al. present theoretical and modeling studies of the effects of fracture density variations on the elastic properties of a reservoir unit and the seismic signatures of those variations. Their results indicate that if there is a strong velocity contrast at an interface, then the azimuthal AVO effect due to the fracture-induced anisotropy may be difficult to detect, while this effect may be more visible with smaller contrasts. The three-dimensional numerical modeling results of Zhu et al. indicate that heterogeneous fracture density variations in
a reservoir may be detectable if the AVOA response is compared to the Shuey equation fit to the data. These results suggest that 3-D surface seismic data may be used to detect subsurface variations in fracture density in a reliable way.

Laboratory and field electroseismic measurements have also been carried out in an effort to develop methods of estimating the flow properties of fractures and other permeable pathways. Mikhailov et al. carried out field measurements in a borehole containing many permeable fractures. They show that a propagating Stoneley wave induces an electric field due to fluid flow in permeable fractures which they measure with electrodes in the borehole. Their results suggest that electroseismic data can provide an estimate of the interconnected porosity of the permeable zone, and may provide estimates of permeability if the measurements are taken over a range of frequencies. Zhu and Toksöz present laboratory electroseismic measurements in porous materials which also suggest that these data can be used to estimate fluid flow properties.

MODELING AND IMAGING OF COMPLEX STRUCTURES

We continue to develop faster and more efficient methods of forward modeling of elastic wave propagation, not only to understand the effects of heterogeneity on borehole and surface seismic data, but also to improve our ability to invert such data for information about complex geologic structures. De Lilla et al. illustrate the use of a variable grid finite difference method which can reduce the memory requirements and computational time of models by restricting fine grid sizes to areas of complex structure. Their model results show that irregular interfaces can have important effects on the AVO behavior of reflected energy. Nolte uses a triangular grid method which can more accurately handle dipping and irregular interfaces. His results show that this method eliminates unwanted scattering caused by rectangular grid representation of such interfaces. Work is also continuing on the development of the phase screen method which may provide a very fast method for pre-stack depth migration of seismic data.

Zhang et al. present the latest tomographic images of the Michigan reef, including a shear wave image based on the cross well data acquired with the Conoco orbital vibrator in 1995. The shear wave image shows a marked velocity decrease in the producing interval of the reservoir. Zhang and Lavely have developed a fast 3-D ray tracing algorithm which can be used to design optimal seismic surveys.

Single well imaging is another area of particular interest. A number of difficult problems need to be addressed for this application. Rao et al. address one of these by looking at source radiation patterns in cased boreholes. Their results indicate that in unbonded casing several propagating modes exist which influence the source radiation pattern.
Executive Summary

RESERVOIR LOGGING APPLICATIONS

We have continued to work in the area of cross dipole logging for the estimation of in situ anisotropy. Tao et al. present results comparing a number of different rotation methods to separate the fast and slow flexural waves. Their results show that each method produces reasonable results, although the computational needs are quite variable. Nolte et al. develop an efficient processing method to measure the dispersion characteristics of guided modes such as flexural waves. They apply their technique to data obtained from the Powder River Basin. For these data, the dispersion curves of the fast and slow flexural modes exhibit crossover which may be an indicator of stress-induced anisotropy.

Rao et al. show that the attenuation of early arrivals in cement bond logs can be used to quantify the cement bond quality even with variations in the tool standoff distance. Garipova et al. invert borehole resistivity logs for formation properties. They show that a combined inversion of lateral sounding data and lateralog measurements provides improved estimates of the formation resistivity distribution both radially and vertically. Work is beginning on the development of a method for modeling the physics of fluid flow through a matrix of sand grains based on knowledge of the formation mechanical properties, grain size distributions, and fluid flow rates.