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Abstract

We propose a single evolutionary explanation for the origin of several behaviors that have
been observed in organisms ranging from ants to human subjects, including risk-sensitive
foraging, risk aversion, loss aversion, probability matching, randomization, and diversifica-
tion. Given an initial population of individuals, each assigned a purely arbitrary behavior
with respect to a binary choice problem, and assuming that offspring behave identically
to their parents, only those behaviors linked to reproductive success will survive, and less
reproductively successful behaviors will disappear at exponential rates. When the uncer-
tainty in reproductive success is systematic, natural selection yields behaviors that may be
individually sub-optimal but are optimal from the population perspective; when reproduc-
tive uncertainty is idiosyncratic, the individual and population perspectives coincide. This
framework generates a surprisingly rich set of behaviors, and the simplicity and generality
of our model suggest that these derived behaviors are primitive and nearly universal within
and across species.

Keywords: Probability Matching; Loss Aversion; Risk Aversion; Risk Preferences; Behav-
ioral Finance; Evolution, Adaptive Markets Hypothesis.

JEL Classification: G00, D81, D01, D03, C73

∗The views and opinions expressed in this article are those of the authors only, and do not necessarily
represent the views and opinions of AlphaSimplex Group, MIT, Northwestern University, or any of their
affiliates and employees. The authors make no representations or warranty, either expressed or implied, as
to the accuracy or completeness of the information contained in this article, nor are they recommending
that this article serve as the basis for any investment decision—this article is for information purposes
only. Research support from AlphaSimplex Group, the MIT Laboratory for Financial Engineering, and the
Northwestern University School of Law Faculty Research Program is gratefully acknowledged. We thank
Elena Asparouhova, Nittai Bergman, Henry Cohn, Jayna Cummings, Arnout Eikeboom, Doyne Farmer,
Nobu Kiyotaki, Simon Levin, Cecilia Lo, Arthur Robson, Jon Wilkins, Fernando Zapatero, and participants
at the MIT Sloan Finance Lunch Seminar, the American Philosophical Society’s Fall 2010 meeting, the JOIM
2010 Spring Conference, the Q Group Fall 2010 Conference, and the 2010 Western Finance Association
Conference for helpful comments and discussion.

†Assistant Professor, School of Law, Northwestern University, 375 East Chicago Avenue, Chicago, IL
60611–3069, t-brennan@law.northwestern.edu (email).

‡Harris & Harris Group Professor, MIT Sloan School of Management, and Chief Investment Strategist,
AlphaSimplex Group, LLC. Please direct all correspondence to: Andrew Lo, MIT Sloan School, 100 Main
Street, E62–618, Cambridge, MA 02142–1347, (617) 253–0920 (voice), alo@mit.edu (email).



Contents

1 Introduction 1

2 Literature Review 5

3 The Binary Choice Model 9
3.1 The Role of Φ(xa, xb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Individual Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Probability Matching 17
4.1 Exact Probability Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Individually Optimal vs. Growth-Optimal Behavior . . . . . . . . . . . . . . 21

5 Risk Preferences 21
5.1 Growth-Optimal Risk Preferences . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Loss Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Idiosyncratic vs. Systematic Risk 32
6.1 Idiosyncratic Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Qualifications and Extensions 39

8 Conclusion 41

A Appendix 43
A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.5 Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.6 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.7 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.8 Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.9 Proof of Corollary 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



1 Introduction

One of the most influential ideas in all the social sciences is the efficient markets hypothesis of

Samuelson (1965) and Fama (1970), the notion that market prices “fully reflect all available

information”. This disarmingly simple but profound theory has been an object of intense

study and debate, launching literally thousands of empirical investigations of its many specific

implications for human behavior. These implications have been confirmed so often across so

many contexts that Jensen (1978) concluded that “there is no other proposition in economics

which has more solid empirical evidence supporting it than the Efficient Market Hypothesis”.

However, in recent years, accumulating evidence from psychology, behavioral economics

and finance, the cognitive neurosciences, and biology have highlighted significant and abiding

inconsistencies between Homo economicus and Homo sapiens.1 These inconsistencies have

called into question the predicates of expected utility theory, rational expectations, equilib-

rium, and even the Law of One Price, which are the very foundations of efficient markets, and

much of the rest of neoclassical economics and finance. The Financial Crisis of 2007–2009

has only added more fuel to the many fires now threatening the efficient markets edifice.

The juxtaposition of compelling empirical evidence in support of market efficiency with

equally compelling empirical and experimental evidence of apparent irrationality and behav-

ioral anomalies suggests that human behavior may not be solely determined by economic

considerations, but is, instead, the amalgam of multiple decision-making faculties—including

instinct, emotion, and logic—that yield observed actions. And because the relative impor-

tance of these faculties varies across time and circumstances, even for a given individual, it

is no wonder that despite centuries of intense analysis and debate, there is still remarkably

little consensus among economists, psychologists, and biologists as to how to model human

behavior.

In this paper, we propose an evolutionary explanation for the origin of behavior that

is simple enough to solve analytically, but general enough to explain commonly observed

behaviors in animal species ranging from ants to human subjects. Specifically, we show

that risk aversion, risk-sensitive foraging, loss aversion, probability matching, and more

general and previously inexplicable forms of randomizing behavior can all be derived from

evolutionary forces acting on an arbitrary set of behaviors over an extended period of time.

1See, for example, Kahneman, Slovic, and Tversky (1982) and Thaler (1993).
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Some of these behaviors have been the subject of significant controversy, and these so-

called “behavioral biases” are especially pronounced when elements of risk and probability

are involved. Two of the most ubiquitous biases are loss aversion (Tversky and Kahne-

man, 1974; Kahneman and Tversky, 1979)—the tendency to take greater risk when choosing

between two potential losses, and less risk when choosing between two potential gains—

and probability matching, also known as the “matching law” or “Herrnstein’s Law” (Grant,

Hake, and Hornseth, 1951; Hake and Hyman, 1953; Herrnstein, 1997; Vulcan, 2000)—the

tendency to choose randomly between heads and tails when asked to guess the outcomes of

a series of biased-coin tosses, where the randomization matches the probability of the biased

coin. The idea of randomizing behavior is especially difficult to reconcile with the standard

economic paradigm of expected utility theory in which individual behavior is non-stochastic

and completely determined by utility functions, budget constraints, and the probability laws

governing the environment. Both types of biases clearly imply irrationality, i.e., individually

sub-optimal choices, yet these behaviors have been observed in thousands of geographically

diverse human subjects over several decades, as well as in other animal species.

Our model consists of an initial population of individuals (not necessarily human) that

live for one period of unspecified length, and engage in a single binary decision that has

implications for the random number of offspring they will generate. To the extent that their

behavior is linked to fecundity, only the most reproductively successful behaviors will flourish

due to the forces of natural selection. Although obvious from an evolutionary biologist’s

perspective, this observation yields surprisingly specific implications for the types of behavior

that are sustainable over time, behaviors that are likely to be innate to most living organisms.

A simple numerical example of one of our results will illustrate our approach. Consider a

population of individuals, each facing a binary choice between one of two possible actions, a

and b. 60% of the time, environmental conditions are positive, and action a leads to repro-

ductive success, generating 3 offspring for the individual. 40% of the time, environmental

conditions are negative, and action a leads to 0 offspring. Suppose action b has exactly

the opposite outcomes—whenever a yields 3 offspring, b yields 0, and whenever a yields

0, b yields 3. From the individual’s perspective, always choosing a, which has the higher

probability of reproductive success, will lead to more offspring on average. However, if all

individuals in the population behaved in this “rational” manner, the first time that a neg-

ative environmental condition occurs, the entire population will become extinct. Assuming
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that offspring behave identically to their parents, the behavior “always choose a” cannot

survive over time. For the same reason, “always choose b” is also unsustainable. In fact, we

show below that in this special case, the behavior with the highest reproductive success over

time is for each individual to choose a 60% of the time and b 40% of the time, matching the

probabilities of reproductive success and failure. Eventually, this behavior will dominate the

entire population.

Probability matching has long puzzled economists and psychologists because of its ap-

parent inconsistency with basic self interest.2 However, probability matching is perfectly

consistent with evolution, arising purely from the forces of natural selection and population

growth. Moreover, for more general environmental conditions, i.e., more general assumptions

for reproductive success, we derive more general types of behavior that involve randomiza-

tion but not necessarily probability matching. These results may explain the inconsistency

with which such behavior is observed: whether or not randomizing behavior matches envi-

ronmental probabilities depends on the relative reproductive success of the outcomes, and

our framework yields a simple and specific condition for such behavior. Our results do not

depend on how individuals arrive at their choices, whether they learn over time, or whether

individuals possess a theory of mind or a self-awareness of the consequences of their actions.

In fact, our results do not even require individuals to possess central nervous systems.

We also show that the concepts of risk aversion and risk-sensitive foraging behavior

emerge from the same framework. Because populations grow geometrically, a sequence of

50/50 gambles yielding 2 or 4 offspring each generation will yield a slower average growth

rate than sure bets of 3 offspring (the product of 2 and 4 is smaller than the product of 3

and 3). While this principle of “geometric mean fitness” is well known among population

biologists, its implications for risk-bearing activity in economic settings has not been fully

explored. For example, the fact that the preferences most likely to survive over time are

those that require a higher expected fecundity in return for taking risk implies the existence

of a positive evolutionary “risk premium”, which we are able to derive explicitly and quantify

as a function of environmental conditions.

Our model also generates asymmetric risk preferences for gains and losses, i.e., loss aver-

2One of the earliest papers to document this phenomenon is Grant, Hake, and Hornseth (1951), and as
recently as 2007, Kogler and Kühberger (2007) report that: “Experimental research in simple repeated risky
choices shows a striking violation of rational choice theory: the tendency to match probabilities by allocating
the frequency of response in proportion to their relative probabilities”.
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sion, resolving a longstanding debate among disciples of von Neumann and Morgenstern

expected-utility theory (von Neumann and Morgenstern, 1944; Schoemaker, 1982) and propo-

nents of behavioral alternatives such as prospect theory (Kahneman and Tversky, 1979; Tver-

sky and Kahneman, 1981). Each perspective is capturing somewhat different aspects of the

same behavior shaped by natural selection and population growth. Moreover, our framework

provides an explanation for the apparent variability in the experimental evidence regarding

loss aversion, and the nature of the “reference point” that demarcates risk-seeking and risk-

averse behavior: evolution shapes an individual’s decision-making mechanism or preferences

to enhance reproductive success which, in turn, is determined by total wealth, not incremen-

tal wealth. Accordingly, two individuals with the same decision-making process but different

levels of net worth may behave differently when offered the same incremental prospects.

Finally, and perhaps most significantly, our framework illustrates the role of the environ-

ment in shaping behavior, and why certain populations appear to exhibit irrational behavior

while others do not. The difference can be traced to a single feature of the environment’s

impact on individual biology: systematic vs. idiosyncratic sources of randomness in repro-

duction. In populations where environmental factors are largely systematic, i.e., they affect

the reproduction rates of all individuals in the same manner, any form of synchronization in

behavior may lead to extinction, hence such synchrony is unlikely to be perpetuated. In other

words, if environmental risks are systematic, survival depends on the population diversifying

its behavior so that some fraction will survive to reproduce no matter what the environment

is like. In such cases, it may seem as if certain individuals are acting irrationally since they

may not be behaving optimally for a given environment. But such heterogeneous behavior

is, in fact, optimal from the perspective of the population. If, on the other hand, environ-

mental risks are largely idiosyncratic, then individuals engaging in identical behavior, e.g.,

individually optimal behavior, will not expose the population to extinction. Moreover, in

this case, natural selection will favor the individually optimal behavior; hence, a population

of individually rational individuals will emerge. Thus, rationality is not necessarily in the

eyes of the individual beholder, but is sometimes in the hands of systematic environmental

factors.

In Section 2 we provide a review of the literature, and in Section 3, we present our binary

choice framework. Using this framework, in Section 4 we derive necessary and sufficient

conditions under which probability matching emerges and also show how probability match-
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ing breaks down under different environments. By making one of the two binary choices

riskless, in Section 5, we show how risk preferences evolve, derive an evolutionary equity risk

premium, and show how loss aversion arises naturally from these preferences. In Section

6, we develop the implications of systematic and idiosyncratic risk for behavior, and show

that the former yields populations in which individuals do not always act rationally, but not

the latter. We propose several extensions of our binary choice framework in Section 7 and

conclude in Section 8.

2 Literature Review

The literature on evolution and behavior is overwhelming, spanning the disciplines of evo-

lutionary biology, ecology, evolutionary and social psychology, and economics, with myriad

branches of relevant citations within each of these broad fields. While a comprehensive sur-

vey is well beyond the scope of this section, we attempt to provide a representative sampling

of the many related strands of this vast body of research.

Evolutionary principles are now routinely used to derive implications for animal behavior.

While each species may have developed unique responses for addressing particular environ-

mental challenges, the most critical of these have been shaped by the forces of mutation,

competition, and natural selection. Although such forces operate at the genetic level, as

described so compellingly by Dawkins (1976), the pathbreaking work of Hamilton (1964),

Trivers (1971, 1985, 2002), Wilson (1975), and Maynard Smith (1982, 1984) show that evo-

lutionary mechanisms may also explain a variety of counter-intuitive behaviors including

altruism, cooperation, kin selection, reciprocity, and other social customs. More recently,

the field of evolutionary psychology (Cosmides and Tooby, 1994; Barkow, Cosmides, and

Tooby, 1992; Tooby and Cosmides, 1995; Pinker, 1979; Pinker, 1991; Pinker, 1994; Gigeren-

zer, 2000; Buss, 2004; Ehrlich and Levin, 2005) has expanded the reach of evolution to even

broader domains such as language, culture, and religion.

Evolutionary ideas have also played an important role in economics. Thomas Malthus

(1826) used a simple biological argument—the fact that populations increase at geometric

rates whereas natural resources increase at only arithmetic rates (at least in the nineteenth

century)—to arrive at the dire economic consequences that earned the field the moniker

“dismal science”. Both Darwin and Wallace were aware of and apparently influenced by

these arguments (see Hirshleifer (1977) for further details). Also, Schumpeter’s (1939) view
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of business cycles, entrepreneurs, and capitalism has an unmistakeable evolutionary flavor

to it; in fact, his ideas of “creative destruction” and “bursts” of entrepreneurial activity

bear a striking resemblance to natural selection and Eldredge and Gould’s (1972) notion of

“punctuated equilibrium”.

More recently, economists and biologists have begun to explore these connections in sev-

eral veins: economic extensions of sociobiology (Becker, 1976; Hirshleifer, 1977); evolution-

ary game theory (Maynard Smith 1982, 1984, Weibull, 1995); an evolutionary interpretation

of economic change (Nelson and Winter, 1982); economies as complex adaptive systems

(Anderson, Arrow, and Pines, 1988); and the impact of uncertainty regarding the number

of offspring on current consumption patterns (Arrow and Levin, 2009).

Evolutionary concepts have also appeared in the finance literature. For example, Luo

(1995) explores the implications of natural selection for futures markets, Hirshleifer and Luo

(2001) consider the long-run prospects of overconfident traders in a competitive securities

market, and Kogan, Ross, Wang, and Westerfield (2006) show that irrational traders can

influence market prices even when their wealth becomes negligible. The literature on agent-

based modeling pioneered by Arthur, Holland, LeBaron, Palmer, and Tayler (1997), in which

interactions among software agents programmed with simple heuristics are simulated, relies

heavily on evolutionary dynamics. And at least two prominent investment professionals

have proposed Darwinian alternatives to explain market behavior. In a chapter titled “The

Ecology of Markets”, Niederhoffer (1997, Ch. 15) likens financial markets to an ecosystem

with dealers as “herbivores”, speculators as “carnivores”, and floor traders and distressed

investors as “decomposers”. And Bernstein (1998) makes a compelling case for active man-

agement by pointing out that the notion of equilibrium is rarely realized in practice and that

market dynamics are better explained by evolutionary processes.

But in our specific context, the two most relevant lines of research—one from biology and

the other from economics—involve direct applications of evolutionary principles to individual

behavior and preferences. In the evolutionary biology literature, Maynard Smith (1982) has

developed the concept of an “evolutionarily stable strategy” (ESS), specific behaviors that

survive over time by conferring reproductive advantages or “fitness”, typically measured by

the rate of population growth. Using this notion of fitness, Fretwell (1972), Cooper and

Kaplan (1982), and Frank and Slatkin (1990) observe that randomizing behavior can be

advantageous (in terms of maximizing geometric growth rates) in the face of stochastic en-

6



vironmental conditions. The impact of variability in reproductive success among individuals

in a population has been shown to yield a kind of risk aversion (which increases average re-

productive success) and “bet-hedging” (which reduces the variance of reproductive success)

(Slatkin, 1974; Caraco, 1980; Real, 1980; Rubenstein, 1972; Seger and Brockmann, 1987).

Frank and Slatkin (1990) propose a framework that highlights the importance of correla-

tions among individual reproductive success in determining the path of evolution. And

similar results have been derived in the behavioral ecology literature, in which the max-

imization of fitness via dynamic programming has been shown to yield several observed

behaviors including risk-sensitive foraging in mammals (Real and Caraco, 1986; Stephens

and Krebs, 1986; Mangel and Clark, 1988), and seed dispersal strategies in plants (Levin,

Cohen, and Hastings, 1984; Levin, Muller-Landau, Nathan, and Chave, 2003).

In the economics literature, evolutionary principles have been used to justify the exis-

tence of utility functions and develop implications for their functional form, as in Hansson

and Stuart (1990) and Robson (1996a, 2001b) (see, Robson, 2001a, and Robson and Samuel-

son, 2010, for comprehensive reviews of this literature). For example, in an equilibrium

model of economic growth, Hansson and Stuart (1990) derive restrictions on individual

preferences for consumption, savings, and labor-supply arising from the forces of natural se-

lection. Robson (1996a) investigates expected and non-expected utility behaviors, and finds

that idiosyncratic-risk-seeking may be optimal from a population perspective even though

it is suboptimal from an individual perspective (see, also, Grafen, 1999, and Curry, 2001).

And Robson (2001b) argues that the kind of predictable behavior capable of being captured

by a utility function emerged naturally as an adaptive mechanism for individuals faced with

repeated choices in a nonstationary environment. Specifically, early exploration in choice-

making (which is the primary focus of our analysis), coupled with a utility-based rule of

thumb for deciding when to cut exploration off and stick with a particular choice, leads to

evolutionarily optimal adaptation to unknown underlying distributions of outcomes. Rob-

son and Samuelson (2007) find that exponential discounting in utility functions is consistent

with evolutionarily optimal growth of a population, and the emergence of time preference

is derived by Rogers (1994), Samuelson (2001), Robson and Samuelson (2007, 2009), and

Robson and Szentes (2008).

However, as Waldman (1994, p. 483) observed, individually optimal behavior predicted by

expected utility—even when utility functions are derived from evolutionary principles—may
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not always coincide with behavior that maximizes fitness:

Another possible outcome is that preferences do not equate utility maximization

with fitness maximization, and correspondingly evolution then does not favor

humans who are efficient utility-maximizers. Instead what happens in this case

is that evolution favors a systematic bias in the decision-making process which

moves behavior away from the maximization of utility and toward the maximiza-

tion of fitness.

Waldman (1994) provides a compelling illustration of this insight through the comparison

between asexual and sexual reproduction in which the latter yields evolutionarily stable

second-best adaptations. In our binary choice framework, we show that even with asexual

reproduction, systematic “errors” such as probability matching can persist and become dom-

inant despite the fact that such behavior is sub-optimal from the individual’s perspective.

Our approach builds on the insights of Fretwell (1972), Maynard Smith (1982), Waldman

(1994), and Robson (1996a, 2001a) in applying the well-known principle of geometric-mean

fitness (Dempster, 1955) to the actions of a heterogeneous population of individuals and

deriving the subset of behaviors that survive.3 However, our framework is considerably

simpler, involving only a single binary choice for each individual during its lifetime, a choice

that has implications for the individual’s reproductive success. One virtue of such parsimony

is the universality with which this framework’s derived behaviors are likely to be found among

living organisms.4 Our model is simple enough to solve analytically, but remarkably rich in

its implications for behavior, yielding risk aversion, probability matching, loss aversion, and

more general forms of randomization. Also, as with most other models in the population

biology literature, the individual behaviors that survive in our framework need not be optimal

from the individual’s perspective, and may appear irrational. In fact, such behavior is merely

3Geometric-mean fitness has also appeared in the financial context as the “Kelly criterion” for maximizing
the geometric growth rate of a portfolio (Kelly, 1956; Cover and Thomas, 1991). However, the motivation for
geometric-mean fitness in population biology is considerably more compelling than in financial investments,
as Samuelson (1971) has argued (maximizing the geometric-mean return of a portfolio is optimal only for
individuals with a very specific risk preference, i.e., those with logarithmic utility functions).

4 For example, the fact that probability matching behavior has been observed in non-human subjects—
including ants (Deneubourg, Aron, Goss, and Pasteels, 1987; Pasteels, Deneubourg, and Goss, 1987; Kir-
man, 1993; Hölldobler and Wilson, 1990), bees (Harder and Real, 1987; Thuijsman, Peleg, Amitai, and
Shmida, 1995; Keasar, Rashkovich, Cohen, and Shmida, 2002), fish (Bitterman, Wodinsky, and Cand-
land, 1958; Behrend and Bitterman, 1961), pigeons (Graf, Bullock, and Bitterman, 1964; Young, 1981),
and primates (Woolverton and Rowlett, 1998)—suggests that they may have a common and ancient origin,
and an evolutionary role that belies their apparent shortcomings.
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adaptive, a product of natural selection that is likely to be more primitive on an evolutionary

timescale than the more sophisticated learned behaviors captured by Rogers (1994), Robson

(1996a, 2001a), and Robson and Samuelson (2007, 2009). In this respect, our analysis

complements those of the existing literature on evolutionary foundations of utility theory,

providing additional evidence for the link between behavior and natural selection at the most

basic level of choice.

3 The Binary Choice Model

We begin with a population of individuals that live for one period, produce a random number

of offspring asexually, and then die (“asexual semelparous” organisms, in the jargon of evolu-

tionary biology). During their lives, individuals make only one decision: they choose one of

two possible courses of action, denoted a and b, and this results in one of two corresponding

random numbers of offspring, xa and xb, described by some well-behaved probability distri-

bution function Φ(xa, xb). We assume that xa and xb are not perfectly correlated, otherwise

for all intents and purposes, individuals have only one action available to them. We also

assume:

(A1) (xa, xb) and log(fxa + (1−f)xb) have finite moments up to order 2 for all f ∈ [0, 1].

(A2) (xa, xb) is independently and identically distributed (IID) over time, and identical for

all individuals in a given generation

(A1) and (A2) are standard assumptions that allow us to derive analytically tractable results,

and are not nearly as implausible in biological contexts as they are when applied to financial

data.5 For the moment, we assume in (A2) that xa and xb are the same two outcomes

for all individuals in the population; in other words, if two individuals choose the same

action a, both will produce the same number of random offspring xa. This implies that the

variation in offspring due to behavior is wholly “systematic”, i.e., the link between action

and reproductive success is the same throughout the entire population. This assumption is

5Both assumptions can be relaxed to some degree and at the expense of analytical simplicity. For example,
(A1) can be relaxed by considering random variables with no finite moments of any order, in which case
we must focus our attention on location and scale parameters. The IID assumption of (A2) can also be
relaxed by imposing stationarity and ergodicity, or by allowing heterogeneity in the marginal distributions
but imposing mixing conditions as in White (1984). We expect qualitatively similar results in these more
general cases.
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significant, and its ramifications can be better understood when we consider the alternate

case of “idiosyncratic” random offspring in Section 6.

3.1 The Role of Φ(xa, xb)

The role of Φ is critical in our framework, as it represents the entirety of the implications of

an individual’s actions for reproductive success. Embedded in Φ is the biological machinery

that is fundamental to evolution, i.e., genetics, but of less direct interest to economists than

the link between behavior and reproductive success. If action a leads to higher fecundity

than action b for individuals in a given population, the particular set of genes that predispose

individuals to select a over b will be favored by natural selection, in which case these genes

will survive and flourish, implying that the behavior “choose a over b” will flourish as well.

On the other hand, if a and b have identical implications for success, i.e., xa≡xb, then Φ is

a degenerate distribution. By asserting that Φ is a non-degenerate bivariate distribution, we

have essentially defined two equivalence classes of actions that have different implications for

reproduction, i.e., all actions yielding the same reproductive fitness are considered equivalent

in our framework.

The specification of Φ also captures the fundamental distinction between traditional mod-

els of population genetics (Levins, 1969; Wright, 1968; Wilson and Bossert, 1990; Dawkins,

1976) and more recent applications of evolution to behavior (Hamilton, 1964; Trivers, 1971;

Wilson, 1975; Maynard Smith, 1982); the former focuses on the natural selection of traits

(determined by genetics), whereas the latter focuses on the natural selection of behavior.

Although behavior is obviously linked to genetics, the specific genes involved, their loci, and

the mechanisms by which they are transmitted from one generation to the next are of less

relevance to economic analysis than the ultimate implications of behavior for reproduction,

which is captured by Φ. In the jargon of econometrics, Φ may be viewed as a “reduced

form” representation of an individual’s biology, whereas the molecular biology of genetics

corresponds to the “structural form”.6 This terminology is more than a simple analogy—it

accurately summarizes the difference between our framework and the emerging field of be-

havioral genomics (Plomin, 1990; Plomin, Owen, and McGuffin, 1994; McGuffin, Riley, and

Plomin, 2001) which attempts to map traits and behaviors to specific genes.

6Waldman (1994) uses the same terminology in his framework in which individual traits are directly
linked to reproductive success rather than specific genes.
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3.2 Individual Behavior

Now suppose that each individual i chooses a with some probability f ∈ [0, 1] and b with

probability 1−f , denoted by the Bernoulli variable Ifi , hence i’s offspring xf
i is given by:

xf
i = Ifi xa + (1− Ifi ) xb , Ifi ≡

{

1 with probability f

0 with probability 1−f
. (1)

We shall henceforth refer to f as the individual’s “behavior” since it completely determines

how the individual chooses between a and b. Note that f can be 0 or 1, hence we are not

requiring individuals to randomize—this will be derived as a population-wide consequence of

natural selection under certain conditions. Also, we ascribe no intelligence or volition to this

behavior; we are simply providing a formal representation for it, and then investigating its

evolutionary prospects. To that end, we assume that offspring behave in a manner identical

to their parents, i.e., they choose between a and b according to the same f , hence the

population may be viewed as being comprised of “types” of individuals indexed by f that

range continuously from 0 to 1, including the endpoints. In this manner, we are able to

study the evolutionary dynamics of each type of individual over many generations.

3.3 Population Dynamics

Because our analysis involves individuals making binary decisions over time and across mul-

tiple generations, the number and type of subscripts used are sometimes excessive and con-

fusing. Therefore, before considering the dynamics of the population we have proposed, a

few clarifying comments regarding our notation may be useful.

Individuals in a given generation t are indexed by i, and generations are indexed by

t = 1, . . . , T . Because in all cases, we assume independently and identically distributed

randomness over time or, equivalently, generations, on occasion we will omit the t subscript

unless we wish to emphasize the temporal ordering of the variables (such as a recursive rela-

tion between two successive generations). Finally, a superscript f will denote the particular

type of individual as defined by the decision rule Ifi in (1).

With these notational conventions in mind, denote by nf
t the total number of offspring of

type f in generation t, which is simply the sum of all the offspring from the type-f individuals

11



of the previous generation:

nf
t =

nf
t−1
∑

i=1

xf
i,t =

(nf
t−1
∑

i=1

Ifi,t

)

xa,t +

(nf
t−1
∑

i=1

(1− Ifi,t)

)

xb,t (2)

nf
t

p
= nf

t−1

(

fxa,t + (1−f)xb,t

)

(3)

where we have added time subscripts to the relevant variables to clarify their temporal

ordering, and “
p
=” in (3) denotes equality in probability as nf

t−1 increases without bound

(see Definition A.1 in the Appendix), which follows from the Law of Large Numbers applied

to the sum
∑

i I
f
i,t/n

f
t−1 (recall that Ifi,t is IID across i).7

Through backward recursion, the population size from (3) of type-f individuals in gen-

eration T is given by:

nf
T

p
=

T
∏

t=1

(fxa,t + (1−f)xb,t) = exp

(

T
∑

t=1

log(fxa,t + (1−f)xb,t)

)

(4)

1

T
log nf

T

p
=

1

T

T
∑

t=1

log(fxa,t + (1−f)xb,t)
p→ E[log(fxa + (1−f)xb)] (5)

where “
p→” in (5) denotes convergence in probability (see Definition A.1 in the Appendix),

and follows from the Kolmogorov Law of Large Numbers applied to the sum
∑

t log(fxa,t +

(1−f)xb,t)/T as T increases without bound (Lewontin and Cohen, 1969) (recall that (xa,t, xb,t)

is assumed to be IID over time, hence we have dropped the t subscripts in the expectation

in (5)), and we have assumed that nf
0 =1 without loss of generality.

Since the value of f that maximizes the population size nf
T is also the value of f that

maximizes T−1 log nf
T ,

8 (5) implies that this value converges in probability to the maximum

of the following the expectation:9

µ(f) ≡ E[log(fxa + (1−f)xb)] . (6)

7In particular, the Kolmogorov Law of Large Numbers asserts that
∑

i I
f
i,t/n

f
t−1

converges almost surely

to E[Ifi,t]=f (see, for example, Serfling (1980, Ch. 1.8)).
8This follows from the fact that T−1 log(nf

T ) is a monotone transformation nf
T .

9More precisely, the value f∗ that maximizes µ(f) corresponds to a population size nf∗

t that is asymp-

totically larger than any other population nf
t , f 6= f∗, in the sense that plimt→∞ nf

t /n
f∗

t = 0. See Section
3.4 for a more detailed exposition of these asymptotic properties.
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This expression is simply the expectation of the log-geometric-average growth rate of the

population, and the value f ∗ that maximizes it—which we shall call the “growth-optimal”

behavior to distinguish it from behavior that may be optimal for the individual—is given by

(all proofs are relegated to the Appendix):

Proposition 1 Under Assumptions (A1)–(A2), the growth-optimal behavior f ∗ is:

f ∗ =























1 if E[xa/xb] > 1 and E[xb/xa] < 1

solution to (8) if E[xa/xb] ≥ 1 and E[xb/xa] ≥ 1

0 if E[xa/xb] < 1 and E[xb/xa] > 1

(7)

where f ∗ is defined implicitly in the second case of (7) by:

0 = E

[

xa − xb

f ∗xa + (1− f ∗)xb

]

(8)

and the expectations in (5)–(8) are with respect to the joint distribution Φ(xa, xb).

The three possible behaviors in (7) reflect the relative reproductive success of the two

choices, and is a generalization of the “adaptive coin-flipping” strategies of Cooper and Ka-

plan (1982). Choosing a deterministically will be optimal if choice a exhibits unambiguously

higher expected relative fecundity; choosing b deterministically will be optimal if the oppo-

site is true; and randomizing between a and b will be optimal if neither choice has a clear-cut

reproductive advantage. This last outcome is perhaps the most counter-intuitive because it

is sub-optimal from an individual’s perspective, but the population perspective implies that

in such cases, the individuals that have the most reproductive success over time will be those

that choose randomly according to probability f ∗.10 If, however, one choice is significantly

better than the other in terms of the expected ratio of offspring, then over time, the behavior

that will survive is deterministic choice, not randomization. In these extreme cases, because

of the unambiguous implications for fecundity, the deterministic choice that leads to higher

reproductive success will quickly dominate the population.

10Cooper and Kaplan (1982) interpret this behavior as a form of altruism because individuals seem to be
acting in the interest of the population at the expense of their own fitness. However, Grafen (1999) provides
a different interpretation by proposing an alternate measure of fitness, one that reflects the growth rate of
survivors.
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The behavior f ∗ that emerges through the forces of natural selection is quite distinct from

the neoclassical economic framework of expected utility in one important respect: expected

utility theory implies deterministic behavior.11 Given the same environmental conditions

and preference parameters, the action that maximizes expected utility will be the same. In

our framework, there are many circumstances in which f ∗ is strictly greater than 0 and less

than 1, hence even if an individual’s circumstances are identical, the behavior shaped by

natural selection will not be.12

The deterministic choices f ∗ = 0, 1 in Proposition 1 may be viewed as a primitive form

of herding behavior—where all individuals in the population choose to act in the identi-

cal manner—especially if the relative fecundities E[xa/xb] and E[xb/xa] shift suddenly from

the intermediate state in (7) to one of the deterministic states due to rapid environmen-

tal changes, and if there is sufficient diversity of behavior left in the population after the

change occurs.13 To an outside observer, behaviors among individuals in this population

may seem heterogenous before the shift (because individuals are randomizing), but will be-

come increasingly similar after the shift—as selective pressures begin to favor deterministic

behavior over randomization—creating the appearance (but not the reality) of intentional

coordination, communication, and synchronization. If the reproductive cycle is sufficiently

short, this change in population-wide behavior may seem highly responsive to environmental

changes, giving the impression that individuals are learning about their environment. This

is indeed a form of learning, but it occurs at the population level, not at the individual

level, and not within an individual’s lifespan. Considerably more sophisticated adaptations

are necessary to generate true herding and synchronization behavior as in Hamilton (1971),

Mirollo and Strogatz (1990), and Strogatz and Stewart (1993), including sensory inputs,

11Although random utility models have been proposed by Thurstone (1927), McFadden (1973), Man-
ski (1975), and others in the discrete-choice literature (see Manski and McFadden (1981)), the source of
randomness in these models is assumed to be measurement error, not behavior itself.

12In this respect, our framework differs in a fundamental way from the evolutionary models of Robson
(1996a, 2001b), Robson (1996a) Robson (2001b), Robson and Samuelson (2007), and Robson and Szentes
(2008) in which evolutionary arguments are used to derive specific utility functions that individuals optimize
to yield particular behaviors. Although Robson (2001b) proposes the emergence of utility functions as
an adaptation to repeated choices in a nonstationary environment, our framework shows that the concept
of utility is not necessarily primitive to behavior or natural selection, and there is at least one type of
behavior—randomization—that cannot be captured by standard expected utility theory.

13This last qualification is critical due to our assumption that offspring behave exactly as their parents,
hence if individuals with behavior f=1 no longer exist in the population, such behavior cannot emerge even if
it becomes optimal from the population perspective. This observation underscores the importance of random
mutations and the evolutionary advantages of sexual reproduction in the face of stochastic environmental
conditions.
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conditional behavior (conditioned on additional state variables), and neuroplasticity.

Proposition 1 may also be interpreted as a primitive form of group selection, in which

natural selection appears to operate at the group level instead of, or in addition to, the level

of individuals, traits, or genes (Wynne-Edwards, 1962; Sober and Wilson, 1998). However,

in this case, the notion of a “group” is determined by the interaction between behavior and

the environment—those individuals with behavior f ∗ will appear to be favored, and those

with other behaviors f 6= f ∗ will be disadvantaged.

3.4 Asymptotic Properties

The growth-optimal behavior described in (7) is simple, but a direct corollary is that f ∗

leads to a “winner-take-all” outcome in which individuals of all other sub-optimal types f ′

will be rapidly overrun by individuals of type f ∗, since the ratio of the population sizes of

f ′ and f ∗ converges exponentially fast to 0 (due to the optimality of f ∗):

Corollary 1 Under Assumptions (A1)–(A2), as T increases without bound, the geometric

average growth rate (nf
T )

1/T of the population of individuals with behavior f converges in

probability to exp(µ(f)), and the growth-optimal behavior f ∗ will dominate the population

exponentially fast since:

(

nf ′

T

nf∗

T

)1/T
p
= exp

([

µ(f ′)− µ(f ∗)
]) p→ 0 (9)

which implies that nf ′

T /n
f∗

T

p→ 0 at an exponential rate.

This corollary confirms that the behavior produced by the forces of natural selection is

indeed given by (7), and the exponential rate of convergence underlies the winner-take-all

phenomenon that seems to characterize so many competitive situations (see, for example,

Frank and Cook (1995)). Whether such behavior is deterministic or random depends entirely

on the implications of such behavior for reproductive success.

Note that our asymptotic approach to studying the evolutionary properties of behavior

is different from the typical biologist’s perspective in that the main object of interest for

us is f ∗, not the population itself. In particular, the actual size of the population of type-

f individuals is of less concern to us than the fact that selection will favor one particular

f ∗. In fact, in contrast to standard models in population dynamics that are formulated to
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have stable equilibria, the population size in our framework approaches 0 or infinity in the

limit, depending on the parameters of Φ(xa, xb).
14 Nevertheless, we can fully characterize

the statistical properties of the population via the Central Limit Theorem. Specifically, as

T grows without bound, it can be shown that the suitably normalized population size nf
T

approaches a lognormal distribution:

Proposition 2 Under Assumptions (A1)–(A2), as T increases without bound, the geometric

average (nf
T )

1/T of the population size of individuals with behavior f converges in distribution

to a lognormal random variable:

√
T

(

T−1 log nf
T − µ(f)

)

a∼ N
(

0, σ2(f)

)

, σ2(f) ≡ Var[log(fxa + (1−f)xb)] (10)

where ‘
a∼’ denotes asymptotic equivalence in distribution.

This evolutionary basis of behavior is the same as Seger and Brockmann’s (1987) geometric-

mean fitness criterion, but which is applied directly to reproductive success x, not to specific

genes. The basic logic of (7) is similar to the ESS of Maynard Smith (1982) in which mixed

strategies are shown to be evolutionarily stable, but our approach is more parsimonious and,

by design, yields broader implications for behavior as represented by Φ. Our derived be-

haviors are also distinct from those of Hansson and Stuart (1990), Robson (1996a, 1996b,

2001a,b), Grafen (1999), Curry (2001), Samuelson (2001), and Robson and Samuelson (2007)

in which evolutionary arguments are used to justify specific types of utility functions and risk

preferences—in the latter cases, two individuals with identical utility functions will behave

identically, whereas in our case, two individuals with identical f ∗ ∈ (0, 1) may make different

choices at any point in time (see, also, Waldman (1994)).

In the sections to follow, we show that this simple binary choice framework and growth-

optimal behavior can explain a surprisingly rich set of behavioral anomalies that have been

a source of controversy in economics, psychology, and evolutionary biology, including more

general forms of probability matching, loss aversion, and risk aversion.

14To see why, observe that the Kolmogorov Law of Large Numbers implies that T−1 lognf
T converges

almost surely to µ(f)≡E[log(fxa +(1−f)xb)]. If µ(f) is positive, the population grows without bound, and
if µ(f) is negative, the population becomes extinct.
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4 Probability Matching

Using the binary choice framework, we can easily derive probability matching behavior as

emerging solely through the forces of natural selection. In Section 4.1, we derive conditions

that yield exact probability matching. In Section 4.2, we generalize this result considerably,

deriving conditions for approximate probability matching, as well as conditions under which

probability matching does not arise.

4.1 Exact Probability Matching

To develop further intuition for the binary choice model, consider the special case in which

the number of offspring (xa, xb) are simply Bernoulli random variables that are perfectly out

of phase in each of two possible environmental states:

State 1 State 2
Action (prob. p) (prob. 1−p)

a xa = m xa = 0

b xb = 0 xb = m

(11)

With probability p, one environmental state is realized in which choice a yieldsm>0 offspring

and choice b yields none, and with probability 1−p the other environmental state is realized

in which the reverse is the case. Without loss of generality, assume that p ∈ (1
2
, 1] so that

the environmental state in which choice a produces offspring is more likely.

In this simple case of 0 or m offspring, the expectation in (6) can be evaluated explicitly

as:

µ(f) = logm + p log f + (1− p) log(1− f) (12)

and the value of f that maximizes this expression is p. Despite the fact that setting f =1

maximizes the likelihood that an individual is able to reproduce, such “selfish” behavior is

not sustainable from a population perspective because if all individuals were to behave in this

way, the entire population would be wiped out the first time xa=0. Since such an extinction

is almost sure to occur eventually,15 the behavior f=1 will ultimately be eliminated from the

15If all individuals always choose a, and if (xa, xb) is independently and identically distributed over time,
the probability of extinction by time t is 1−pt, which approaches 1 as t increases without bound.
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population. In contrast, the randomizing behavior f ∗=p yields the highest possible growth

rate I(p)= log(mpp(1−p)(1−p)). This is classic probability matching, first documented over

half a century ago (Grant, Hake, and Hornseth, 1951). Since then, this behavior has become

so well-established among both human and non-human subjects that it is now referred to

as the “matching law” or “Herrnstein’s law”.16 However, there have been several notable

departures from this behavioral pattern (Baum, 1974; Horne and Lowe, 1993; Kogler and

Kühberger, 2007), hence this “law” may not be as consistent as its moniker suggests. In the

next section, we provide a general explanation for both matching behavior and departures

from it.

4.2 The General Case

The Bernoulli example above can be easily generalized to any arbitrary number of offspring

for both choices:

Prob(xa = ca1, xb = cb1) = p ∈ [0, 1]

Prob(xa = ca2, xb = cb2) = 1− p ≡ q
(13)

where we assume that cij ≥ 0 and caj + cbj 6= 0, i = a, b and j = 1, 2. The condition

caj+cbj 6=0 rules out the case where both caj and cbj are 0, in which case the binary choice

problem becomes degenerate because both actions lead to extinction hence the only choice

that has any impact on fecundity is in the non-extinction state, and the only behavior that

is sustainable is to select the action with the higher number of offspring.

The growth-optimal behavior in this case will depend on the relation between the prob-

ability p and the relative-fecundity variables rj ≡ caj/cbj for each of the two possible states

of the world j = 1, 2.17 Specifically, we have:

Proposition 3 Under Assumptions (A1)–(A2), and if (xa, xb) satisfies (13), then the growth-

16See Herrnstein (1961, 1970, 1997), Bradshaw, Szabadi, and Bevan (1976), Davison and McCarthy (1988),
Herrnstein and Prelec (1991), and the references cited in footnote 4.

17Since cij may be 0, the ratios rj may be infinite if a finite numerator is divided by 0, which poses no
issues for any of the results in this paper as long as the usual conventions involving infinity are followed.
The ambiguous case of rj=0/0 is ruled out by the condition caj+cbj 6=0.
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optimal behavior f ∗ is given by:

f ∗ =











































1 if r2 ∈ [ q + pq
r1−p

, ∞) and r1 > p

p
1−r2

+ q
1−r1

if







r2 ∈
(

1
q
− p

q
r1 , q +

pq
r1−p

)

and r1 > p , or

r2 ∈
(

1
q
− p

q
r1 , ∞

)

and r1 ≤ p

0 if r2 ∈ [ 0 , 1
q
− p

q
r1 ]

(14)

Figure 1 illustrates the values of r1 and r2 that yield each of the three types of behaviors

in (14). If r1 and r2 are not too different—implying that the ratio of fecundities of choices a

and b is not that different between the two states of the world—then random behavior yields

no evolutionary advantage over deterministic choice. In this case, the individually optimal

behavior (f ∗ = 0 or 1) will prevail in the population. If, on the other hand, one of the r

variables is large while the other is small, then random behavior will be more advantageous

from the population perspective than a deterministic one. In such cases, there are times

in which each choice performs substantially better than the other, hence it is evolutionarily

optimal for a population to diversify between the two choices rather than to always choose

the outcome with the highest probability of progeny in a single generation. This case is

summarized in:

Corollary 2 Suppose there exists a large difference between r1 and r2; without loss of gen-

erality, let r1 � 0, r2 � 1, and p > 1
2
. Then under Assumptions (A1)–(A2), and if (xa, xb)

satisfies (13), the growth-optimal behavior is given by:

f ∗ = p (1 + O (1/r1) + O (r2)) ≈ p . (15)

Equation (15) shows that if one choice is much worse than the other choice p-percent of the

time, and if the other choice is much worse than the first (1−p)-percent of the time, then

the first choice should be chosen with probability p and the second choice should be chosen

with probability 1−p. The definition of “much worse” is made precise by specifying that the

values of 1/r1 and r2 are both close to zero—over time, the individuals that flourish in such

a world are precisely those that engage in approximate probability matching behavior.
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When r1 and r2 satisfy the condition:

0 = p
r2

1− r2
+ q

1

1− r1
, (16)

exact probability matching behavior arises, and the solid black curve in Figure 1 illustrates

the locus of values for which this condition holds. The horizontal asymptote of the curve

occurs at r2 = 0, so as r2 tends toward zero and r1 becomes relatively large, exact prob-

ability matching will be optimal (note that the asymmetry between r1 and r2 is due en-

tirely to our requirement that f ∗ = p and p 6= 1
2
). However, values of (r1, r2) off this curve

but still within the shaded region imply random behavior that is approximately—but not

exactly—probability matching, providing a potential explanation for more complex but non-

deterministic foraging patterns observed in various species (Deneubourg, Aron, Goss, and

Pasteels, 1987; Pasteels, Deneubourg, and Goss, 1987; Kirman, 1993; Thuijsman, Peleg,

Amitai, and Shmida, 1995; Keasar, Rashkovich, Cohen, and Shmida, 2002).

Figure 1: Regions of the (r1, r2)-plane that imply deterministic (f ∗ = 0 or 1) or randomizing
(0<f ∗<1) behavior, where rj=caj/cbj measures the relative fecundities of action a to action
b in the two states j = 1, 2. The asymptotes of the curved boundary line occur at r1=p and
r2= q. Values of r1 and r2 for which exact probability matching is optimal is given by the
solid black curve.
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4.3 Individually Optimal vs. Growth-Optimal Behavior

It is instructive to compare the growth-optimal behavior of (14) with the behavior that

maximizes an individual’s reproductive success, denoted by f̂ :

Proposition 4 Under Assumptions (A1)–(A2), and if (xa, xb) satisfies (13), then the indi-

vidually optimal behavior f̂ is deterministic and given by:

f̂ =

{

1 if r2 > 1 + p
q
(1− r1)r3

0 if r2 < 1 + p
q
(1− r1)r3

, r3 ≡
cb1
cb2

. (17)

For a fixed value of r3, the threshold in (17) that determines the optimal individual behavior

is a line that divides the (r1, r2)-plane into two regions. For values of (r1, r2) above this

line, f̂ = 1, and for values below this line, f̂ = 0. When r3 = 1, this implies that any

time the growth-optimal behavior involves randomization, it will always be at odds with the

individually optimal behavior f̂ =1. We shall return to this important special case below.

Of course, from a population perspective, the growth-optimal behavior f ∗ is independent of

r3, and depends only on the relative performance of the two possible choices as measured by

the relative fecundities r1 and r2.

We shall revisit this distinction between growth-optimal and individually optimal behav-

ior in Section 6 when we consider the case where the randomness in offspring is idiosyncratic,

i.e., (xa, xb) is independently and identically distributed across individuals, as well as across

time. Under this alternate environment, we will show that the growth-optimal and individ-

ually optimal behaviors are identical.

5 Risk Preferences

Our binary choice model can also be used to study the evolution of risk preferences by making

one of the two choices riskless. In particular, in the Bernoulli case (13), suppose that choice

b yields a non-random outcome cb1 = cb2 = cb (or r3 = 1). In this case, each individual is

choosing between a random outcome and a certain one, where we maintain the assumption

that:

Prob(xa = ca1, xb = cb) = p ∈ [0, 1]

Prob(xa = ca2, xb = cb) = 1− p ≡ q .
(18)
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Without loss of generality, assume that ca1<ca2. To ensure that the choice between a and

b is not trivial, we require that ca1 < cb < ca2, otherwise one choice will always dominate

the other trivially. For convenience, we shall parametrize cb as a convex combination of the

risky outcomes ca1 and ca2:

cb ≡ θca1 + (1−θ)ca2 , θ ∈ (0, 1) . (19)

When θ=0, the riskless outcome is ca2, which dominates the risky choice, and when θ=1,

the riskless outcome is ca1 which is dominated by the risky choice, hence θ ∈ (0, 1) covers

the entire spectrum of possible risk/reward trade-offs in which neither choice dominates the

other.

In Section 5.1, we derive the growth-optimal risk preferences by applying the results

of Section 3 to (18). Using these preferences, in Section 5.2 we show how risk aversion

emerges purely through the forces of natural selection, and derive an implied evolutionary

“risk premium” that is completely independent of any notion of economic equilibria. And

in Section 5.3, we show how growth-optimal behavior f ∗ can explain loss aversion.

5.1 Growth-Optimal Risk Preferences

Applying Proposition 3 to (18) yields:

Corollary 3 Under Assumptions (A1)–(A2), and if (xa, xb) satisfies (18), then the growth-

optimal behavior f ∗ is given by:

f ∗ =















1 if θ ∈ [θo, 1)
(

1− p
θ

)

(

1 + 1
(1−θ)(σ−1)

)

if θ ∈ (p, θo)

0 if θ ∈ (0, p]

(20)

where θo≡pσ/(pσ + q), and σ≡ca2/ca1>1.

Note that σ can be viewed as a crude measure of a’s risk, hence our choice to use the

symbol typically reserved for standard deviation. As θ increases from 0 to 1, the number of

offspring produced by the riskless choice b decreases from ca2 to ca1, making the risky choice

a relatively more attractive. However, for values of θ from 0 to p, the risky choice is not

sufficiently attractive and the optimal behavior is to select the sure thing (f ∗ = 0). As θ
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increases from p to θo, the optimal behavior f ∗ from the population perspective is to select

choice a with increasingly higher probability, and when θ exceeds the threshold θo, the risky

choice becomes so attractive relative to the sure thing that individuals always choose the

risky alternative (f ∗=1). Figure 2 graphs this relation between f ∗ and θ for three values of

σ, and shows that it is close to piece-wise linear for σ=2 but nonlinear for σ=100. Figure

3 provides a more complete depiction of the trade-off between σ and θ in determining the

growth-optimal behavior f ∗.

Figure 2: The growth-optimal behavior f ∗ as a function of θ for p=1/3 and various levels
of the ratio σ = ca2/ca1 of the two outcomes of the risky alternative a. The parameter θ
determines the magnitude of the payoff cb=θ ca1 + (1− θ) ca2, of the riskless alternative b.

A more transparent version of the growth-optimal behavior in Corollary 3 can be derived

by restating (20) in terms of the outcomes of each of the two choices a and b. As before, let

cp and co denote the arithmetic and harmonic means of the a outcomes, respectively, so that

cp ≡ pca1 + qca2 and co =
1

p
ca1

+ q
ca2

. (21)

The values co and cp correspond to the values θ = θ0 and θ = p in Corollary 3, hence

the growth-optimal behavior of an individual depends entirely on where the sure thing cb

lies in the range (ca1, ca2): if cb ∈ [ca1, co], then the risky choice is always growth-optimal; if

cb ∈ (co, cp), randomizing between the risky choice and the safe choice is growth-optimal; and
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Figure 3: Radial plot of the growth-optimal behavior f ∗ for p=1/3 as a function of θ, which
varies from 0 to 1 clockwise around the semi-circle, and σ= ca2/ca1, which varies from 1 to
infinity from the center of the semi-circle to its perimeter. The parameter θ determines the
magnitude of the payoff cb=θ ca1 + (1− θ) ca2, of the riskless alternative b.

if cb ∈ [cp, ca2), the safe choice is always growth-optimal.18 These outcomes are illustrated

in Figure 4, in which the green range for cb yields the safe choice as the growth-optimal

behavior, the red range yields the risky choice, and the gray range yields randomization.

Of course, the growth-optimal behavior depends also on p, the probability of the higher-

yielding outcome in a, and this dependence is implicit in the relative widths of the three

ranges in Figure 4. In particular, the relative width of the interval in which the riskless

choice is always growth-optimal is given by p—the more likely is the lower risky outcome

ca1, the greater the range of values for which the certain outcome cb dominates the risky

outcome ca. The relative width of the interval in which the risky choice is always growth-

optimal is given by 1/(1+σp/(1− p)), which is decreasing in both σ and p—as the riskiness

of a or the likelihood of the lower outcome increases, the region in which the risky choice is

always growth-optimal becomes smaller. And for a fixed probability p, the risk parameter

σ determines the relative magnitude of the randomization interval as compared to the risky

choice interval. Not surprisingly, for larger σ, the randomization interval is wider, implying

a greater range of values of cb for which randomizing between the risky and riskless choices

is growth-optimal. We shall see another manifestation of this behavior toward risk in the

next section.

18Note that the ordering ca1 < co < cp < ca2 always holds, since the harmonic mean is less than the
arithmetic mean.
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If cb is in this interval, randomize 
with probability f*

If cb is in this interval, always 
choose the riskless option (f*=0)

c

ca2

cp

with probability f*

If cb is in this interval, always 
choose the risky option (f*=1)

ca1

co

Figure 4: Growth-optimal behavior of risky/riskless choice as a function of the magnitude of
the riskless outcome cb. The green range for cb indicates that the riskless choice is growth-
optimal, the red range indicates that the risky choice is growth-optimal, and the gray region
indicates that randomizing between the risky and riskless choices is growth-optimal. The
relative widths of the three regions, relative to the total range ca2−ca1, are displayed to the
right of each region.
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5.2 Risk Aversion

Our binary choice model also shows that the property of risk aversion—the need to com-

pensate individuals with a positive payment, i.e., a “risk premium”, to induce them to

accept a fair gamble—arises quite naturally from natural selection. To see how, consider

the risky/riskless case of (18) in Section 5, but now let the payoffs for the risky option a be

defined relative to the riskless payoff cb of b:

ca1 ≡ cb − d , ca2 ≡ cb + u , u, d > 0 (22)

and consider the case in which the optimal behavior f ∗ is exactly 1
2
, so that neither choice is

selected more frequently than the other. This value implies that the growth-optimal behavior

is indifferent between the riskless payoff of b and the risky payoff of a, which, in turn, implies

that the two choices must have the same implications for population growth. In this respect,

b’s sure payoff may be viewed as the “certainty equivalent” of a, an economic concept used

to measure the dollar value of random payoffs.

Assuming that p= q= 1
2
so that u and d are equally likely outcomes, we then derive the

implications of these parameter settings for u and d:

u = d +
d2

cb − d
. (23)

When u=d, behavior is said to be “risk neutral” because the expected value of a is identical

to the sure payoff of b. However, equation (23) shows that u must exceed d by a positive

amount d2/(cb−d) to be consistent with the behavior f ∗ = 1
2
. The difference between the

expected values of a and b is:

π ≡ d2

2(cb − d)
(24)

which can be considered an “evolutionary risk premium”. However, unlike the risk premia of

economic models of rational markets (Merton, 1980; Mehra and Prescott, 1985), which de-

pend on the equalization of supply and demand, π arises from the fact that populations grow

geometrically (see equation 6), and the factor by which the population grows, exp(E[log(x)]),

is always less than or equal to the expected number of offspring in a single generation, E[x],
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due to Jensen’s Inequality.19 Therefore, risky choices will always yield lower population

growth than the corresponding riskless choices with identical expected values. From an evo-

lutionary perspective, the only sustainable behavior in which a and b are equally likely to be

chosen is if the risky choice a yields a larger expected number of offspring than the riskless

choice b, i.e., u must always be larger than d.

This result may also explain risk aversion in non-human animal species, often called “risk-

sensitive foraging behavior” by ecologists, who have observed this behavior in organisms

from bacteria to primates (Deneubourg, Aron, Goss, and Pasteels, 1987; Harder and Real,

1987; Pasteels, Deneubourg, and Goss, 1987; Hölldobler and Wilson, 1990; Kirman, 1993;

Thuijsman, Peleg, Amitai, and Shmida, 1995; Smallwood, 1996; Keasar, Rashkovich, Cohen,

and Shmida, 2002; Ben-Jacob, 2008). Regardless of the species, (23) shows that when cb is

very large relative to d, the evolutionary risk premium π becomes negligible since a bad

outcome for a has very little impact on growth rates given the magnitude of cb. However,

when d is close to cb, a bad outcome for a implies near sterility for that individual, hence a

substantial risk premium is required to maintain the individual’s indifference between a and

b.

5.3 Loss Aversion

The growth-optimal behavior can also generate loss aversion, the tendency of human sub-

jects to take less risk when choosing between two potential gains, and to take more risk

when choosing between two potential losses (Tversky and Kahneman, 1974; Kahneman and

Tversky, 1979). For example, when offered the choice between investment opportunities A

and B, where A is a lottery ticket paying $1 million with a 25% probability and $0 with 75%

probability and B generates a sure profit of $240,000, the vast majority of MIT Sloan School

of Management MBA students have chosen B in many trials over the past two decades.20

19 Jensen’s Inequality states that the expected value of a convex function g(·) of a random variable x
is greater than or equal to the function of the expected value of x, or E[g(x)] ≥ g(E[x]). The opposite
inequality holds for concave functions. In a study on risk-sensitive foraging behavior, Smallwood (1996)
applies Jensen’s Inequality to derive risk aversive behavior by first assuming that an animal’s fitness is an
increasing but concave function of its energy level, and then applying Jensen’s Inequality to foraging behavior
that yields random energy levels.

20 This example is a modification of original experiments conducted by Tversky and Kahneman (1974)
with Stanford undergraduate students using actual cash payoffs.The MIT Sloan MBA versions were based
exclusively on hypothetical classroom surveys, and the primary modification was an increase in the dollar
values of the outcomes, a very telling change that was necessitated by the fact that MBA students did
not exhibit loss aversion with smaller payoffs. See the discussion in the remainder of Section 5.3 for an
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However, when these same subjects were offered the choice between investment opportuni-

ties A′ and B′, where A′ is a lottery ticket yielding a loss of $1,000,000 with 75% probability

and $0 with 25% probability and B′ generates a sure loss of $750,000, virtually all of them

chose A′, the more risky alternative. Such inconsistent risk attitudes have material adverse

implications: the most popular choices of B and A′ yield a combined outcome that is $10,000

less than A and B′, no matter how the lotteries turn out.21

To see how loss aversion arises in our framework, we must first consider the relation be-

tween monetary payoffs and reproductive success, i.e., we must link an individual’s financial

wealth to the number of offspring such wealth affords. Only when this relation is specified

can we deduce the impact of natural selection on decisions involving financial gain or loss.

Therefore, denote by c(w) a “reproduction function” that yields the number of offspring pro-

duced by an individual with total wealth w. Basic biological and economic considerations

suggest the following three properties for c(w):

(A3) c(w) is a continuous non-decreasing function of wealth w.

(A4) c(w)=0 for all levels of wealth w below a subsistence level wo.

(A5) c(w) is bounded above by some finite number c > 0.

Assumption (A3) states that more wealth leads to more offspring, Assumption (A4)

acknowledges the existence of a subsistence level of wealth below which an individual cannot

produce any offspring, and Assumption (A5) reflects environmental resource constraints that

place an upper limit on the number of offspring any individual can generate, irrespective of

wealth.

These assumptions seem obvious and almost trivially true,22 yet they have surprisingly

sharp implications for the properties of c(w): they imply that c(w) necessarily resembles the

explanation of this interesting difference.
21The combined outcome of choices B and A′ is −$760,000 with probability 75% and $240,000 with

probability 25%, while in contrast the combined outcome of choices A and B′ is −$750,000 with probability
75% and $250,000 with probability 25%. Thus, a subject choosing B and A′ expects to have an outcome
that is $10,000 worse than that corresponding to the choice of A and B′. Moreover, if the results of the two
lotteries are perfectly correlated, then a subject choosing B and A′ obtains a combined payoff that is $10,000
lower in each possible state of the outcomes.

22Perhaps the least obvious of the three is the continuity assumption in (A3), which depends, of course,
on the numeraire with which wealth is measured, and how wealth interacts with the biology of reproduction.
With the advent of fiat money, and given current in vitro fertilization technologies, we believe that continuity
is a reasonable approximation to human reproduction.
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S-shaped utility functions documented experimentally by Kahneman, Slovic, and Tversky

(1982) and other behavioral economists in a sense made precise by the following proposition.23

Proposition 5 If c(w) satisfies (A3)–(A5) and is twice continuously differentiable, then

c(w) is concave for sufficiently large values of w and convex for sufficiently small values of

w. If c(w) satisfies (A3)–(A5) but is not continuously differentiable, then a slightly weaker

result holds: there exist values w1 < w2 such that

c (λw + (1− λ)w1) ≥ λc(w) + (1− λ)c(w1), for w � w1, and (25)

c (λw + (1− λ)w2) ≤ λc(w) + (1− λ)c(w2), for w � w2, (26)

where λ ∈ [0, 1].

With our assumptions and Proposition 5 in place, we can now translate monetary payoffs

into number of offspring through c(w) and consider the impact of evolution on the behav-

ior of individuals choosing between dollar-denominated choices in the experimental setting

described above.

Consider an experiment along the lines of Kahneman and Tversky (1979) in which an

individual is asked to choose between a risky investment A yielding one of two final wealth

levels wa1 and wa2 which imply reproductive outcomes ca1 ≡ c(wa1) and ca2 ≡ c(wa2), and

riskless investment B yielding a guaranteed final wealth level wb which translates into re-

productive outcome cb ≡ c(wb). Suppose that the initial wealth of the individual is modest

relative to the incremental payoffs of A, so that the total wealth obtained in either outcome

of A is large. Then we have:

Corollary 4 Under Assumptions (A1)–(A5), and if wa1 is sufficiently large so that c(·) is

concave throughout the interval [wa1, wa2], we have c−1(cp) < wp = pwa1 + qwa2, and the

growth-optimal behavior is to take the safe bet whenever wb is in the region [c−1(cp), wa2],

23An even more fundamental implication of our model of behavior is that an individual’s relative wealth—
relative to others—should be more important than absolute wealth, as suggested by Duesenberry (1949) and
Frank (2000). This follows trivially from Corollary 1 and the existence of a mapping c(w) between wealth and
fecundity. Because evolutionary success is determined solely by relative growth rates, a monotonic relation
between wealth and fecundity implies that, ceteris paribus, and assuming reasonably similar functions c(w)
across individuals (i.e., similar biological specifications and constraints), natural selection will favor those
individuals with higher relative wealth. Note that Duesenberry’s (1949) “relative income hypothesis” refers
to income, not wealth. However, because wealth is highly correlated with cumulative income flows, empirical
phenomena associated with relative wealth should also manifest themselves in relative income, ceteris paribus.
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which is strictly larger than [wp, wa2] by the incremental interval [c−1(cp), wp] that depends on

the concavity of c(w). For values of wb below c−1(cp), the growth optimal behavior is either to

randomize or to take the risky bet according to whether wb is larger or smaller than c−1(c0),

respectively, where c0 is defined in (21).

Corollary 4 shows that if an individual is confronted with a risky investment A that

involves sufficiently large gains—so large that the relevant portion of c(w) is concave—and

the riskless investment B is not too small relative to the payoffs from A, but possibly smaller

than the expected payoff, wp, from A, then the growth-optimal behavior will be to select

the sure thing. These results show that an individual is risk averse when it comes to gains,

preferring sure bets that pay less than the expected value of risky bets, if the individual

begins with a modest level of wealth, if A and B both move the individual’s total wealth

into the concave region of c(w), and if wb is in the non-empty range [c−1(cp), wp].

Now consider two investment alternatives A′ and B′, where A′ is a risky investment

yielding one of two final wealth levels w′

a1 and w′

a2 which translate into reproductive outcomes

c′a1 ≡ c (w′

a1) and c′a2 ≡ c (w′

a2), and B′ is a riskless investment with guaranteed final wealth

level w′

b which translates into reproductive outcome c′b ≡ c (w′

b), and suppose that w′

a2 is

small, implying incremental losses relative to initial wealth. Then we have:

Corollary 5 Under Assumptions (A1)–(A5), and if c(·) is convex throughout the interval

[w′

a1, w
′

a2], we have c−1(c′p) > w′

p = pw′

a1 + qw′

a2, and the growth-optimal behavior is either to

randomize or always to take the risky bet whenever w′

b is in the region
[

w′

a1, c
−1(c′p)

]

, which

is strictly larger than
[

w′

a1, w
′

p

]

. Moreover, the region in which the growth-optimal behavior is

always to take the risky bet, namely [w′

a1, c
−1(c′0)], may also be strictly larger than

[

w′

a1, w
′

p

]

.

A sufficient condition for this to occur is that the function c(w) is invertible in [w′

a1, w
′

a2] and

also sufficiently convex so that the function 1/c(w) is concave in this region.

Corollary 5 shows that for a sufficiently extreme sure loss w′

b, individuals will always

choose the risky option A′, despite the fact that this choice may lead to an even greater

loss w′

a1 with probability p. In addition, individuals will always choose the risky option with

some positive probability even though the expected payoff of the risky option is less than

that of the safe bet, provided that the safe payoff w′

b is in the nonempty region
[

w′

p, c
−1(c′p)

]

.

Moreover, they will choose the risky option with 100% probability even if the expected payoff

of the risky option is less than that of the safe bet, provided that c(w) is sufficiently convex so
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that 1/c(w) is concave and w′

b is in the nonempty region
[

w′

p, c
−1(c′o)

]

. This type of behavior

for c(w) will occur, for example, whenever c(w) follows a power law of the form α(β−w)−γ,

for 0 < γ < 1.

Loss aversion arises when more risk is taken when choosing between a sure and risky

loss, and less risk is taken when choosing between a sure and risky gain. Corollaries 4 and 5

show that such behavior is clearly growth-optimal under Assumptions (A3)–(A5). However,

our results go beyond this basic pattern, and imply that individuals will not simply choose

always to take the safe bet or always to take the risky choice. Rather, there is also a

region of wb values, namely [c−1(co), c
−1(cp)] or

[

c−1 (c′o) , c
−1
(

c′p
)]

, where randomization is

optimal. In addition, for suitably constructed extreme losses, i.e., tail risk, taking the risky

bet deterministically is rarely optimal, and instead some degree of randomization is generally

best. These results are illustrated graphically in Figure 5.

(a) Kinked Subsistence Threshold (b) Smooth Subsistence Threshold

Figure 5: Kinked (a) and smooth (b) subsistence thresholds in reproduction functions c(w)
(in blue) relating the number of offspring c to monetary wealth w. In both graphs, if wb is in
the green region, then always choosing the riskless choice b is growth-optimal (f ∗=0); if wb

is in the red region, then always choosing the risky choice a is growth-optimal (f ∗=1); and
if wb is in the gray region between red and green, randomization is growth-optimal. Wealth
values with primes are equal to those without primes less a common fixed amount, and the
color coding is identical.

Our framework may also explain some of the inconsistencies and instabilities in the

experimental evidence for loss aversion. One potential source of instability is the fact that

the typical experimental design offers the same fixed set of choices to all subjects in a given

experiment, a standard protocol that maintains identical “treatments” across subjects so as
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to render the outcomes comparable across individuals. However, if subjects make decisions

based on reproductive success, then the proper method for controlled experimentation is

to offer all subjects the same choices denominated in reproductive success, not the same

incremental dollar wagers. Of course, without knowledge of each subject’s net worth and

reproduction function, it is impossible to construct such a controlled experiment even if

it were economically viable. But by offering the same fixed-dollar wagers, two sources of

variation across subjects are injected into the experimental outcomes: variation in wealth

levels and variation in the reproduction function c(w). These factors may explain some of

the variability in the findings of loss aversion studies across venues and subject pools.

Of course, the fact that loss aversion emerges from an evolutionary process does not imply

that it is optimal from an individual investor’s perspective. In fact, loss-aversive behavior is

routinely singled out by professional traders as counter-productive to their objectives. For

example, the phenomenon of “doubling down” in the face of mounting losses is a common

behavioral pattern among inexperienced traders, and the adage to “cut your losses and ride

your gains” is time-honored Wall Street wisdom that is meant to correct for loss aversion.

In this respect, loss aversion is yet another example of the evolutionary principle that indi-

vidually optimal behavior need not coincide with the growth-optimal behavior, a distinction

we address explicitly in Section 6.

6 Idiosyncratic vs. Systematic Risk

So far we have assumed that the number of offspring from actions a and b are given by

the same two random variables xa and xb, respectively, for all individuals, i.e., fecundity is

systematic, implying differences between growth-optimal and individually optimal behavior

under certain conditions. In this section, we show that if uncertainty in reproduction is,

instead, idiosyncratic to each individual, the growth-optimal behavior always coincides with

individually optimal behavior. This distinction points to the central role that aggregate

uncertainty plays in shaping the evolution of behavior and preferences.24 In Section 6.1, we

consider the case where fecundity is purely idiosyncratic, so that (xa,i, xb,i) are independently

24We thank Arthur Robson for encouraging us to explore the distinction between systematic and idiosyn-
cratic risk in our framework. In Robson and Samuelson (2009), they show that evolution selects for agents
who maximize discounted expected utility, discounting at the sum of the population growth rate and mor-
tality rate, when risk is idiosyncratic, but in the face of aggregate risk, the growth-optimal set of preferences
involve higher discount rates that imply non-exponential discounting.
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and identically distributed across individuals in a given generation. The general case of both

idiosyncratic and systematic fecundity is developed in Section 6.2.

6.1 Idiosyncratic Risk

As before, denote by xf
i the random number of offspring produced by individual i, but now

suppose that:

xf
i = Ifi xa,i + (1− Ifi ) xb,i , Ifi ≡

{

1 with probability f

0 with probability 1−f
. (27)

where

(A2′) (xa,i, xb,i) is independently and identically distributed over time and across individuals

i in a given generation

In contrast to the systematic case (1) and Assumption (A2), (xa,i, xb,i) are now assumed to

be independently and identically distributed across individuals as well as across time, and

Ifi are the same Bernoulli 0/1 random variables summarizing the behavior of individual i as

defined in Section 3.2.

Assumption (A2′) is a seemingly small change, but it has dramatic consequences for

the evolutionary dynamics of the population and growth-optimal behavior. In this case,

the randomness in the number of offspring is strictly idiosyncratic in the sense that the

correlation between the number of offspring for two individuals i and j is 0, even if both

individuals choose the same course of action. Recall from (1) that in the systematic case,

if two individuals choose the same action a, both will generate the same number of random

offspring xa, i.e., their reproductive success is perfectly correlated. Idiosyncratic fecundity

implies that even if all individuals in a given population choose the same action, there will still

be considerable cross-sectional variability in the number of offspring produced. This more

diversified outcome has a very different set of implications for growth-optimal behavior.
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In particular, in this case the total number of offspring nf
t across all type-f individuals

in generation t is:

nf
t =

nf
t−1
∑

i=1

xf
i,t =

nf
t−1
∑

i=1

Ifi,txa,i,t +

nf
t−1
∑

i=1

(1− Ifi,t)xb,i,t (28)

nf
t

p
= nf

t−1( fµa + (1− f)µb ) , µa ≡ E[xa,i] , µb ≡ E[xb,i] (29)

where (29) follows from the Law of Large Numbers applied to the sums
∑

i I
f
i xa,i/n

f and
∑

i I
f
i xb,i/n

f .25 The key difference between (3) and (29) is that in the latter case, both the

individual’s choice and the number of offspring are idiosyncratic, hence both are subject to

the Law of Large Numbers. This implies that in a large population of nf individuals, even

if all individuals choose the same action a, the outcomes will vary across individuals (xa,i)

whereas in the systematic case, all individuals will receive the identical number of offspring

xa. Alternatively, in the systematic case, the number of offspring of individuals i and j are

perfectly correlated, but in the idiosyncratic case, they are perfectly uncorrelated.

This difference has significant consequences when we consider the behavior of this group

of type-f individuals over time. Adding a time subscript t as before to denote the population

size of this group nf
t at time t, we have:

nf
t

p
= nf

t−1( fµa + (1− f)µb ) . (30)

Without loss of generality, we normalize nf = 1 at t = 1, hence the total population size in

generation T is:

nf
T

p
=

T
∏

t=1

nf
t = (fµa + (1−f)µb)

T (31)

(

nf
T

)1/T p
= exp

(

log(fµa + (1−f)µb)

)

(32)

where (32) differs from (5) in that there is no expectation over xa and xb because the

idiosyncratic nature of the cross section of individuals has eliminated the randomness in the

25By construction Ifi and xk,i are independent, k = a, b, hence their expected product is the product of
their expectations, and the Kolmogorov Law of Large Numbers guarantees almost sure convergence as long
as they are IID and their first moments are finite.
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population. This simple expression attains its optimum at the extremes of f , hence we have:

Proposition 6 Under Assumptions (A1) and (A2′), the growth-optimal behavior f ∗ is given

by:

f ∗ =

{

1 if µa > µb

0 if µa ≤ µb

(33)

which coincides with individually-optimal behavior f̂ .

Proposition 6 states that when the randomness in fecundity is purely idiosyncratic, the

growth-optimal behavior coincides with the individually optimal behavior. In contrast to the

case of systematic fecundity, because the outcome of each individual’s decision is independent

of the outcomes of other individuals’ decisions, it is exceedingly improbable for the entire

population to become extinct, even if all individuals engage in identical behavior.26 However,

when the randomness is purely systematic, identical behavior among individuals does lead to

extinction with positive probability, hence growth-optimal behavior differs from individually

optimal behavior. If environmental challenges to reproductive success are systematic, the

only type of behavior that can survive in the long run in our framework is some form of

randomization.

The difference between idiosyncratic and systematic risk affects more than behavior;

populations subjected to idiosyncratic environmental risk grow much more quickly. To see

why, recall from Corollary 1 that in the systematic-risk case, the geometric-average growth

rate of the growth-optimal population f ∗ is given by:

(

nf∗

T

)1/T p
= exp(µ(f ∗)) = exp

(

E[log(f ∗xa + (1−f ∗)xb)]
)

(34)

where f ∗ is given by (7). In the case of idiosyncratic risk, Proposition 6 implies that the

geometric-average growth rate of the growth-optimal population f ∗ is given by the larger of

µa and µb. Without loss of generality, assume that µa > µb. We then have the following

26If we assume two states of nature as in the exact probability matching case of (11), the probability of
extinction is the probability that all individuals acting individually optimally will simultaneously experience
the 0-offspring outcome. Without loss of generality, if we assume p< 1/2, then f̂ = f∗=0 (see Proposition
6), hence the probability of extinction is pn which approaches 0 quickly even for modest population sizes
(for example, 0.4550=4.6× 10−18).
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inequality:

exp
(

E[log(f ∗xa + (1−f ∗)xb)]
)

≤ exp
(

log E[f ∗xa + (1−f ∗)xb]
)

(35)

= f ∗µa + (1−f ∗)µb ≤ µa (36)

where (35) follows from Jensen’s Inequality and (36) is a strict inequality unless f ∗ = 1 in

the systematic-risk case.

In two otherwise identical populations—both of which have the same marginal distribu-

tion for (xa, xb), but where (xa, xb) is systematic in one and idiosyncratic in the other—the

idiosyncratic-risk population will grow at least as fast, and typically faster. This holds de-

spite the fact that the expected number of offspring (µa, µb) is the same in both populations,

and is driven by two distinct factors: Jensen’s Inequality and the possibility of randomizing

behavior in the systematic-risk case. The former is the same mechanism at work in gen-

erating risk aversion (see Section 5.2 and footnote 19); an IID cross-section of individuals

is able to approximate a “riskless” rate of growth for large populations because the Law

of Large Numbers applies within a single generation, which is not the case for a popula-

tion with systematic risk. The latter is simply a consequence of the fact that in populations

where randomizing behavior is growth-optimal, a fraction of the population selects the lower-

expected-value choice, hence this population will, by definition, grow at a slower rate than

the idiosyncratic-risk population in which every individual selects the higher-expected-value

choice.

To develop an appreciation for the magnitude of these effects, consider the case of exact

probability matching in Section 4.1, in which f ∗=p where p is the probability of state 1 in

(11), and without loss of generality, let p > 1
2
. The ratio of the geometric-average growth

rates of the idiosyncratic and systematic cases is given by:

(

nf∗=1
T

nf∗=p
T

)1/T
a
=

mp

mpp(1− p)1−p
=

(

p

1− p

)1−p

. (37)

For p = 0.6, this ratio is 1.176, implying that the geometric-average growth rate of the

idiosyncratic-risk population is 17.6% greater than the systematic-risk population. While this

may seem small, it implies that after 50 generations, the population size in the idiosyncratic-

risk case will be approximately 3,325 times that of the systematic-risk case.
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6.2 The General Case

We now consider the general case in which the random mechanism determining fecundity

contains both systematic and idiosyncratic components. Denote by xf
i the random number

of offspring produced by individual i, and now suppose that:

xf
i = Ifi xa,i + (1− Ifi )xb,i , Ifi ≡

{

1 with probability f

0 with probability 1− f
(38)

xk,i = yk,i + zk , k = a, b (39)

where:

(A2′′) (ya,i, yb,i) is independently and identically distributed across individuals and over time,

and zk is independently and identically distributed over time and identical across in-

dividuals in the same generation

In Assumption (A2′′), the idiosyncratic component (ya,i, yb,i) is independently and identically

distributed across individuals as well as across time, whereas the systematic component zk is

the same across individuals but independently and identically distributed across time, and

Ifi are the same Bernoulli 0/1 random variables summarizing the behavior of individual i as

defined in Section 3.2.

Given that Ifi are independently and identically distributed across the population of

individuals of type f , we have the following expression for the total number of offspring nf
t

across all type-f individuals in generation t:

nf
t =

nf
t−1
∑

i=1

xf
i,t =

nf
t−1
∑

i=1

Ifi (ya,i + za) +

nf
t−1
∑

i=1

(1−Ifi )(yb,i + zb) (40)

p
= nf

t−1

(

f(µa + za) + (1−f)(µb + zb)
)

, µk ≡ E[yk,i] , k = a, b . (41)

Note that (41) is a combination of (3) and (29), containing both stochastic and non-stochastic

components, which reflects the impact of the systematic and idiosyncratic components in

reproduction. This implies that as T increases without bound, the geometric-average growth
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rate of the population of type-f individuals is well-approximated by:

(

nf
T

)1/T p
= exp

(

E log(f(µa + za) + (1−f)(µb + zb))

)

(42)

which follows from the Law of Large Numbers as before. From this expression, we see

that the value of f that maximizes the population size nf
T is the value that maximizes the

expectation:

µ(f) ≡ E[log
(

f(µa + za) + (1−f)(µb + zb)
)

] , (43)

which is virtually identical to the systematic case (6), the only difference coming from the

shift in mean µk from the idiosyncratic component yk,i. We then have:

Proposition 7 Under Assumptions (A1) and (A2′′), the growth-optimal behavior f ∗ is given

by:

f ∗ =























1 if E[wa/wb] > 1 and E[wb/wa] < 1

solution to (45) if E[wa/wb] ≥ 1 and E[wb/wa] ≥ 1

0 if E[wa/wb] < 1 and E[wb/wa] > 1

(44)

where f ∗ is defined implicitly in the second case of (44) by:

0 = E

[

wa − wb

f ∗wa + (1− f ∗)wb

]

(45)

and the expectations in (5)–(8) are with respect to the joint distribution Φ(wa, wb), where

wk ≡ µk + zk , k = a, b . (46)

Proposition 7 shows that the general case in which an individual’s action leads to random

offspring with idiosyncratic and systematic components is mathematically equivalent to the

systematic case with an additional shift in mean from the idiosyncratic component.

Our comparison of systematic and idiosyncratic environmental risk yields an interesting

implication for populations in which the environment is heterogeneous. Consider an envi-
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ronment that consists of several distinct regions, some with idiosyncratic risk and others

with systematic risk, and suppose that these regions are initially populated uniformly, i.e.,

all possible behaviors f ∈ [0, 1] are represented within each region. Over time, the regions

that will reproduce most rapidly are those with the greatest proportion of idiosyncratic risk.

This effect may give the appearance of individuals “seeking out” environmental conditions

and niches in which the risks are more idiosyncratic, but is, of course, merely a consequence

of Jensen’s inequality and requires no self-awareness, volition, or intelligence.

The differences across regions may also be interpreted as yet another form of group selec-

tion (Wynne-Edwards, 1962; Sober and Wilson, 1998), in which groups defined by regions

of idiosyncratic risk are favored. As in the case of Proposition 1, it is the environment—

specifically, the type of reproductive risk—that determines the definition of the group on

which natural selection operates.

This result also provides an intriguing normative implication: to the extent that sur-

vival is the objective and the future environment is uncertain, policies that lead to greater

idiosyncratic fecundity such as bio-diversity may be desirable, leading to improvements in

population growth rates by f ∗µa + (1−f ∗)µb.

7 Qualifications and Extensions

The link between behavior and reproductive success in a binary choice model is the key

to an evolutionary explanation for several commonly observed behaviors in many animal

species. While risk aversion, loss aversion, probability matching, and more general forms

of randomizing behavior may seem sub-optimal for the individual, these behaviors persist

over time and across many species precisely because they are optimal from a population

perspective. Moreover, as environmental conditions change, the growth-optimal behavior

may also change in response to new selective pressures, hence the inexplicably erratic actions

of certain species may well be adaptive rather than simply irrational.

These considerations may seem more relevant for the foraging behavior of ants and bees

than for human challenges such as investing in the stock market. After all, most decisions

we face each day have little to do with our reproductive success, hence the relevance of

f ∗ for economic and social behavior may be questioned. The answer lies in the degree to

which evolutionary pressures have any bearing on behavior, which is summarized by the

specification of Φ(xa, xb). For example, if the choice between a and b has no impact on
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fecundity, e.g., monetary prizes that are small in comparison to an individual’s net worth,

then xa and xb will be statistically identical because either choice leaves the individual with

the same reproductive prospects. In this case, the bivariate distribution Φ(xa, xb) reduces to

a univariate distribution Φ(x), natural selection is indifferent to the choice between a and

b, and f ∗ is indeterminate. Therefore, whether f ∗ is applicable to a given context is fully

captured by the relation between the individuals’ behaviors and their impact on reproductive

success, i.e., Φ.

One concrete illustration of how Φ plays this role is the case of loss aversion. When the

dollar amounts offered to subjects in the standard loss-aversion experiments are too low, loss

aversion is not observed (see footnote 20). This result can be easily understood in the context

of Φ: when the stakes are high, the outcomes have measurable impact on reproductive fitness

(broadly defined), hence one aspect of loss aversion may be observed (f ∗ = 1). But when

the stakes are too low, the implications of both choices for fitness are identical, hence the

growth-optimal behavior has nothing to say about the outcome of the experiment.

It should be emphasized that the behaviors derived in our simple framework are primitive,

both conceptually and from an evolutionary perspective. We have purposefully abstracted

from more realistic aspects of biology and behavior such as sexual reproduction, random

mutations, neuroplasticity, learning, communication, and strategic behavior to focus on those

behaviors that are primordial and common to most living organisms. By definition, those

common behaviors must confer significant advantages in the face of stochastic environmental

conditions, otherwise they would not have survived over time and become so widespread

within and across species.

Of course, more complex behaviors will arise as new species emerge and evolve. Although

the specific biological manifestations of behavior are beyond the scope of our analysis, recent

imaging and neurophysiological studies of decision-making under uncertainty in humans

and primates (Breiter, Aharon, Kahneman, Anders, and Shizgat, 2001; Smith, Dickhaut,

McCabe, and Pardo, 2002; Gold and Shadlen, 2007; Yang and Shadlen, 2007; Fehr and

Camerer, 2007; Spitzer, Fischbacher, Herrnberger, Grön, and Fehr, 2007; Rangel, Camerer,

and Montague, 2008; Bossaerts, 2009; Resulaj, Kiani, Wolpert, and Shadlen, 2009; Wunder-

lich, Rangel, and O’Doherty, 2009; Hare, Camerer, Knoepfle, O’Doherty, and Rangel, 2010),

including studies of loss aversion (Kuhnen and Knutson, 2005; De Martino, Kumaran, Sey-

mour, and Dolan, 2006; Tom, Fox, Trepel, and Poldrack, 2007), are beginning to identify
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the neural mechanisms involved in these adaptations. From these studies, it is not difficult

to see how sensory inputs, memory, and other neural substrates can yield a much greater

variety of behaviors from which Nature selects the most advantageous, including the ability

to avoid probability matching altogether (Shanks, Tunney, and Mccarthy, 2002).

To see how such mechanisms might have arisen through the forces of natural selection, our

simple binary-choice model can easily be extended to allow for sexual reproduction, random

mutations, and an arbitrary number n of possible actions, each with its own implications for

the number of offspring, and these actions can, in turn, depend on a vector of auxiliary “state

variables” Z. This more complex framework can generate considerably more sophisticated

types of behavior, including learning, memory and, ultimately, the emergence of intelligence.

We are currently exploring such extensions, however, economists have implicitly incorporated

these more sophisticated decision-making mechanisms through utility theory (Robson, 1996a;

Grafen, 1999; Robson, 2001a; Robson, 2001b; Bernheim and Rangel, 2009) and have argued

convincingly that utility functions are also shaped by the pressures of natural selection

(Hansson and Stuart, 1990; Rogers, 1994; Robson, 1996b; Curry, 2001; Samuelson, 2001;

Robson and Samuelson, 2007; Robson and Samuelson, 2009). Our current framework may

be viewed as a bridge between the higher-level utility-based models of human behavior and

the more primitive decision-making components that we share with other animal species.

8 Conclusion

The evolutionary origin of behavior has important implications for economics, not only in

resolving the efficient-markets/behavioral-finance debate, but in providing a broader frame-

work in which conflicts between rationality and human behavior can be resolved in an in-

tellectually consistent manner. Specifically, much of neoclassical economic theory is devoted

to deriving the aggregate implications of individually optimal behavior, i.e., maximization

of expected utility or profits subject to budget or production constraints. By documenting

departures from individual rationality, behavioral critics argue that rational expectations

models are invalid and irrelevant. Both perspectives make valid points but are incomplete.

Animal behavior is, in fact, the outcome of multiple decision-making faculties—in many

cases involving different neural substrates—that each species has developed through the

course of evolution. What economists consider to be individually rational behavior is likely

to emanate from the prefrontal cortex, a relatively new component of the brain on the evolu-
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tionary timescale, and one that exists only in Homo sapiens and certain great apes. However,

the human brain also contains other components such as the amygdala, a considerably older

structure that is responsible for the “fight-or-flight” response. Faced with life-threatening

circumstances, even the most disciplined individual may not be able to engage in individ-

ually rational behavior thanks to adaptive “hard-wired” neural mechanisms that conferred

survival benefits to the species (and not necessarily to any given individual). Our analysis

of idiosyncratic vs. systematic shocks to the number of offspring provides an explanation

for these apparent contradictions in behavior: in the face of systematic factors in fecundity,

growth-optimal behavior may differ from individually optimal behavior; in the presence of

purely idiosyncratic fecundity, the two types of behavior converge.

Our framework may be useful in differentiating primitive behaviors from more refined

decision-making faculties, providing a clearer map of the boundaries of rational economic

theory versus instinctive behavior. For example, our results show that loss aversion is not

a stable phenomenon, but depends on the relation between incremental risks and total net

worth. As aggregate wealth in the economy declines, loss-aversive behavior is likely to be

more prevalent in the population, but during periods of prosperity, other behaviors will

emerge. A better understanding of this pattern may allow consumers, investors, and policy-

makers to manage their risks more effectively.

While species with more highly developed nervous systems exhibit greater behavioral

variation, even in these cases, primitive behaviors are still likely to be available, if not always

chosen. We conjecture that such behaviors are most readily actuated under conditions similar

to those of our binary choice model, namely, when outcomes are significant enough to impact

reproductive fitness, broadly defined, and the effects of other variables on fitness is relatively

small. These primitive behaviors may also be the basis of more modern adaptations such as

boredom, thrill-seeking behavior, rebellion, innovation, and most recently, financial market

bubbles and crashes.

From an evolutionary perspective, financial markets are neither efficient nor irrational—

they are merely adaptive (Farmer and Lo, 1999; Lo, 2004; Lo, 2005). In short, the behaviors

derived in our evolutionary framework may well be the “animal spirits” that Keynes (Keynes,

1936) singled out seven decades ago, and which is apparently still a force to be reckoned with

today.

42



A Appendix

In this Appendix, we provide proofs for the main results of the paper and the less obvious

corollaries. Before doing so, we present a brief summary of the basic properties of stochastic

convergence that are used throughout our analysis; see Serfling (1980) for further details.

We begin with formal definitions of convergence in probability and distribution:

Definition A.1 A sequence of random variables {Xn} is said to converge in probability to

X if and only if for any ε>0:

lim
n→∞

Prob(|Xn −X| > ε) = 0 (A.1)

and we denote this type of convergence by the expressions:

plim
n→∞

Xn = X or Xn
p→ X . (A.2)

If two sequences of random variables {Xn} and {Yn} satisfy the relation Xn − Yn
p→ 0, they

are said to be “equal in probability” and we denote this relation as Xn
p
= Yn. Under this

definition, we can write plimn→∞
Xn = X as Xn

p
= X.

Definition A.2 A sequence of random variables {Xn} with distribution functions {Fn(x)}
is said to converge in distribution to X with distribution function F (x) if and only if:

lim
n→∞

Fn(x) = F (x) (A.3)

for each continuity point x of F (·), and we denote this type of convergence by the expression:

Xn
d→ X . (A.4)

These notions of convergence satisfy the following properties:
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Proposition A.1 If Xn
p→ X, Yn

p→ Y , and Zn
d→ Z, then:

Xn + Yn
p→ X + Y (A.5)

XnYn
p→ XY (A.6)

g(Xn)
p→ g(X) , for any g(·) continuous at X . (A.7)

If X is a finite constant, then:

Xn + Zn
d→ X + Z (A.8)

XnZn
d→ XZ (A.9)

Zn/Xn
d→ Z/X , if X 6= 0 . (A.10)

A.1 Proof of Proposition 1

This follows from the first and second derivatives of (6). Because the second derivative is

strictly negative, there is exactly one maximum value obtained in the interval [0, 1]. The

values of the first derivative of µ(f) at the endpoints are given by:

µ′(0) = E[xa/xb] − 1 , µ′(1) = 1 − E[xb/xa] . (A.11)

If µ′(0) and µ′(1) are both positive or both negative, then µ(f) increases or decreases,

respectively, throughout the interval and the maximum value is attained at f =1 or f =0,

respectively. Otherwise, f = f ∗ is the unique point in the interval for which µ′(f) = 0,

where f ∗ is defined in (8), and it is at this point that µ(f) attains its maximum value. The

expression (7) summarizes the results of these observations for the various possible values of

E[xa/xb] and E[xb/xa]. Note that the case E[xa/xb] ≤ 1 and E[xb/xa] ≤ 1 is not considered

because this set of inequalities implies that µ′(0) ≤ 0 and µ′(1) ≥ 0, which is impossible

since µ′′(f) is strictly negative.

A.2 Proof of Corollary 1

The Kolmogorov Law of Large Numbers (Serfling, 1980, Ch. 1.8) implies that T−1 log nf
T

converges almost surely to its expectation µ(f), hence the exponential of the former converges

almost surely to the exponential of the latter (see White (1984, Proposition 2.11)). Note that
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almost-sure convergence is stronger than convergence in probability, but we use the latter

concept in this and later results in anticipation of generalizations in which {xa,t, xb,t} are

not necessarily independently and identically distributed over time. As long as {xa,t, xb,t}
is stationary and ergodic, a Weak Law of Large Numbers applies, implying convergence in

probability (White, 1984, Ch. 5).

The second part of the corollary follows from the fact that

(

nf
T

)1/T
= exp

(

T−1
T
∑

t=1

log(fxa,t + (1−f)xb,t)

)

p
= exp(µ(f)) (A.12)

(

nf ′

T

nf∗

T

)1/T
p
= exp

(

(µ(f ′)− µ(f ∗))

)

→ 0 (A.13)

where the equality in probability in (A.12) follows from the Kolmogorov Law of Large Num-

bers and the continuity of the exponential function, and (A.13) follows from applying Propo-

sition A.1 to the ratio (nf ′

T )
1/T /(nf∗

T )1/T and the fact that µ(f ′) < µ(f ∗) for any f ′ 6= f ∗ due

to the optimality of f ∗.

A.3 Proof of Proposition 2

This result follows directly from the Lindeberg-Levy central limit theory applied to T−1 log nf
T

(Serfling, 1980, Ch. 1.9).

A.4 Proof of Proposition 3

This result follows from the fact that the expectation (6) is given by:

µ(f) = p log
(

fca1 + (1− f)cb1
)

+ q log
(

fca2 + (1− f)cb2
)

(A.14)

and taking the derivative of this function and solving for µ′(f)=0 yields the unique solution

f = f ∗, where f ∗ is as defined in the second case of (14). Whenever this value of f ∗ lies in

the interval [0, 1], it is the optimal value of f . Otherwise, analysis of the sign of the first

derivative of µ(f) at each endpoint of the interval [0, 1] shows that the optimal value f ∗ is

either 0 or 1 as described in the first and third cases of (14).
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A.5 Proof of Corollary 2

Observe that the intermediate expression for f ∗ in (14) can be rewritten as:

f ∗ = p + p

(

r2
1− r2

)

+ q

(

1

1− r1

)

.

The second term on the right is O (r2), and the third term on the right is O (1/r1).

A.6 Proof of Proposition 4

In particular, because an individual’s expected number of offspring E[xi]:

E[xi] = p
(

fca1 + (1− f)cb1
)

+ q
(

fca2 + (1− f)cb2
)

(A.15)

is a monotone function of f , an individual seeking to maximize E[xi] will select f to be 0

or 1, depending on which of these two extremes yields a higher expectation, as specified in

(17).

A.7 Proof of Proposition 5

If c(w) is twice continuously differentiable, then the derivative of c(w) is everywhere non-

negative because of assumption (A3), and tends toward zero as w becomes sufficiently large

or sufficiently small because of assumptions (A4) and (A5). It must also be positive in

some region so that c(w) increases from 0 to a positive number. As a result, the derivative

of c(w) is increasing for sufficiently small values of w and decreasing for sufficiently large

values, which, in turn, implies that c̃(w) is concave for sufficiently large w and convex for

sufficiently small w.

If c(w) is not continuously differentiable, then pick any two values w′

1 and w′

2 such that

c(w′

1) < c(w′

2) and such that c(w) is not linear and increasing in a neighborhood of either

point. (It must be possible to pick such points, because if not c(w) would always be linear

and increasing as w becomes small or large without bound, and so either assumption (A4)

or (A5) would necessarily be violated.) Consider the segment connecting the point on the

graph of c(w) at w = w′

1 to the point at w = w′

2, and let w1 be the smallest value of w greater

than w′

1 at which the segment intersects the graph, and let w2 be the largest value of w less

than w′

2 at which the segment intersects the graph. By construction, w′

1 < w1 ≤ w2 < w′

2,
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and w1 satisfies (25) for all w ≤ w′

1, and w2 satisfies (26) for all w ≥ w′

2.

A.8 Proof of Corollary 4

It was shown in Section 5.1 that the growth-optimal behavior is to take the risky bet, to

randomize, or to take the safe bet, according to whether cb is in [ca1, c0], [c0, cp], or [cp, ca2],

respectively. The corollary follows if these c values are transformed into w values via the

function c−1(·), and the fact that c−1(cp) < wp follows because c(w) is concave throughout

the interval [wa1, wa2].

A.9 Proof of Corollary 5

As with the proof of Corollary 4, we note that the growth-optimal behavior is to take the

risky bet, to randomize, or to take the safe bet, according to whether c′b is in [c′a1, c
′

0],
[

c′0, c
′

p

]

, or
[

c′p, c
′

a2

]

, respectively. These values can be transformed into w values via the

function c−1(·), and the fact that c−1(c′p) > w′

p follows because c(w) is concave throughout

the interval [w′

a1, w
′

a2]. If c(w) is invertible in this region, and if 1/c(w) is concave throughout

this region as well, then

1

c′0
=

p

c′a1
+

q

c′a2
≤ 1

c(w′

p)
.

Taking reciprocals of this inequality and applying the function c−1, we have c−1(c′0) ≥ w′

p.

Therefore, the interval [w′

a1, c
−1(c′0)], which is the interval for which the risky choice B′ is

always optimal, contains the point w′

p. As a result, the final assertion of the corollary follows.
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