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ABSTRACT

We report new simulations of oscillating flow in porous rock. Our goal is to better un-
derstand the frequency dependence of pore-scale fluid motion, which should ultimately
help us to interpret attenuation and electroseismic measurements.

We use a lattice gas cellular automaton (Rothman and Zaleski, 1997) to perform the
calculations in a pore space geometry measured from Fontainebleau sandstone by X-ray
microtomography (Spanne ef al., 1994; Auzerais et al., 1996). We chose this method
because it is fast and efficient in the complex geometry of the porous rock. We show
that the Biot critical frequency (Biot, 1956) is accessible to simulation, and we perform
simulations at a range of frequencies around the critical frequency. In addition, we show
that the dynamical properties of the lattice gas fluid can be mapped onto reasonable
real fluids.

As the frequency varies through the critical range, we observe qualitative and quan-
titative changes in the amplitude and phase of fluid velocity distributions. We also
report preliminary calculations of the local viscous dissipation, which should provide a
means to compare our simulations with existing theories of attenuation (e.g., Johnston
et al., 1979; Dvorkin and Nur, 1993; Akbar et al., 1994).

INTRODUCTION

Geophysical exploration relies on remote sensing techniques to reveal the structure of
the rock below the surface. Often our goal is to predict the location of some subsurface
fluid of economic importance, either oil, water, or natural gas that we wish to extract as
efficiently as possible, or possibly carbon dioxide or some other waste product that can
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be sequestered safely. Unfortunately, seismic measurements are not usually diagnostic
for fluids. We can sometimes detect pockets of gas, but identifying which layers actually
contain oil or brine, for instance, is beyond our technology.

Electroseismic measurements offer a potential means to detect actual flow in the
subsurface. Seismic attenuation measurements may offer a means to detect the presence
of fluids by observing the extra dissipation of acoustic energy due to viscous flow. In
both cases, we can think of the pore-scale fluid motion as a transducer, coupling an
input energy to an output energy. In the case of electroseismic measurements, electrical
and acoustic energy are interconverted by the moving fluid. In the case of acoustic
dissipation, some of the acoustic energy is transformed into heat by the fluid motion.
In order to extract as much information as possible from the remotely sensed signal,
we need to know as much as possible about how that transduction takes place. This
knowledge is one of the reasons we study frequency dependence of pore-scale fluid motion
in rock.

In addition, there have been experiments in which acoustic signals enhance the
permeability of fluid bearing rock. Whatever mechanism is at work in these experiments,
understanding it will involve examining the motion of fluids at the scale of a few pores
in the rock. For remote sensing needs, to understand these laboratory experiments and
to suggest new kinds of experiments, we need to know more about how fluids move at
the scale of pores in the rock.

Laboratory measurements are irreplaceable, but measurement is limited because
rock is opaque. There are few techniques which can observe the motion of fluid in the
pores of a rock beyond a depth of a few microns. An exception is magnetic resonance
imaging (MRI) (Guilfoyle et al., 1992; Tessier and Packer, 1998}, which promises to be
a highly valuable technique; at the present time, however, its resolution is coarse. Also,
experiments are limited by the fact that the rock is chémically active. As we move fluids
through the rock, we necessarily change the species adsorbed on the pore walls, which
can have a significant effect on transport properties. We turn, therefore, to simulation
because it allows us to observe the flow in great detail under a range of conditions, and
because we can be assured of perfect reproducibility.

Method

The present work is not about reservoir scale simulation, but about simulation at a
much smaller scale. Reservoir simulation has proved to be a valuable part of engineering
practice, but the present work is concerned with simulating fluid motion at the scale
of a few pores in the rock, that is, at a scale of a few tens of microns. At this scale,
the geometry of the rock is complicated and applying sensible boundary conditions
at all the surfaces of the pores becomes the hardest part of the calculation. We use,
therefore, a lattice gas cellular automaton (Rothman and Zaleski, 1997) to compute the
flow in these simulations because this method manages the boundary conditions in a
particularly convenient way. It is also computationally efficient, highly parallelizable,
and compact in memory so that we can look at large volumes of rock. In addition,
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the lattice gas can be generalized to two phases, though the simulations in this paper
will have a single liquid phase. We have considerable confidence in using this method,
because it has been demonstrated to be valid by both theoretical measures (Appert et
al., 1995; Olson and Rothman, 1997) and by comparisen with laboratory measurements
of permeability (Auzerais et al., 96).

To do stmulation on the pore scale, we need to know the geometry of the rock at a
resolution high enough to see individual pores, which is difficult. People have digitized
thin sections and used them to obtain statistical properties, and then generated synthetic
geometries with the same statistical properties (e.g., Lindquist ef al, 1996), but it is
unclear what statistical properties one needs to measure and even whether they could
be measured from a thin section. We use instead a rock geometry measured in three
dimensions by X-ray microtomography (Spanne et al., 1994) with a resolution of 7.5.m,
which is fine enough to resolve much of the pore structure but still much too coarse to
compute electroseismic results directly. We have begun to work on obtaining rock
geometry at high resolution through MRI measurements; in addition, MRI may give us
the means to test our simulations directly against measurement. So far, the resolution
remains coarse.

Figure 1 shows a simple, three-dimensional rendering of a portion of the tomograph-
ically measured rock geometry. This is the pore space in which the simulations below
were carried out. It has a volume of 600pum(80 x 7.5um) on a side; we marked each of
the 53,000 locations that are at the interface between rock and void with small, brown
dots. We also marked the front edges of the simulation volume with a fine, gray line
to guide the eye. In Figures la-c, we superimpose slices through the rock at different
depths to show the complexity of the pore space. In Figure 1d, we show the rock alone
in the orientation that will be used for all the other figures in the paper.

In our simulations, the rock geometry is present solely as a constraint on the fluid
motion; the rock is absolutely rigid. In the real world, the rock is an elastic medium
which responds 1o the same acoustic wave as the fluid and attenuates the signal separate
from the fluid. The fluid motion is thus determined not only by the external pressure
field, but by the motion of the rock as well. We hope to simulate this coupled physics
at some point, but for the moment we will neglect the rock motion and compute only
the motion of the fluid due to an externally imposed, oscillating pressure field.

Accessible Dynamical Regime

In the lattice gas method, we fill the pore space with a large number of particles that
interact with each other only in collisions, which conserves mass and momentum. Fluid
dynamics emerges as the average behavior of the particles, just as fluid dynamics is
the average behavior of the molecules which compose a real fluid. As a consequence,
we do not have complete freedom to choose such macroscopic fluid properties as speed
of sound or viscosity. However, we have freedom to choose a time and a length scale,
corresponding to the time between collisions and the distance between collision sites.
For the present case, we identify the distance between collisions with the resolution of
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the geometry data, 7.5pm, and we choose the time scale so that the speed of sound
in the fluid is a physically reasonable 1500ms™!. Then, the kinematic viscosity turns
out to be high (4.3x107%m2s™!, or 430 times that of water) but within the range of
viscosities observed in heavy oil. If we wished to simulate a fluid with the viscosity
of water and the same speed of sound, we would need a spatial resolution 100 times
higher and a time scale a thousand times smaller, which would make our calculations a
billion times more demanding than the ones carried out so far. It is not unreasonable
to suppose that such calculations could be carried out with more advanced computing
facilities.

Given these dynamical parameters, what kinds of physics can we hope to observe?
It turns out that the Biot critical frequency (Biot, 1956) is easily accessible to our
simulations, so we can observe a variety of phenomena. Given a channel of diameter
d filled with a fluid with kinematic viscosity 1, the Biot critical frequency is f. = 43’%
This is the frequency below which flow in the channel is expected to resemble Poiseuille
flow. In the convoluted pore geometry of a rock, it is difficult to pick out any kind of
“typical” diameter, but we can pick out a range that seems interesting. In the present
case, pores range from 15 to 75um, so we expect to see the dynamics in the medium
change as the frequency varies from 60kHz to 1.5MHz. This range of frequencies is
readily accessible in the simulation.

Simulations

We perform all our simulations in the same 600um sample of pore space. The pore space
is surrounded with an impermeable wall, and a buffer is created at each end of the rock.
To drive fluid motion in the rock, we remove particles of fiuid from the buffer on one
end of the rock and replace them at the other end. This creates a pressure gradient
and, consequently, fiuid motion through the rock. The rate at which we move particles
from one buffer to the other varies sinusoidally with time. In this way, we can create a
pressure gradient which varies sinusoidally in time at a range of frequencies.

To obtain meaningful fluid dynamics, we need to average particle momenta and
populations over many time steps. However, if we did that naively with sinusoidal
forcing, we would expect to see no net motion. Instead, the appropriate way to average
the flow is through its Fourier transform. At each node, we define the Fourier transform
of density,

Fo(Z,w) =D e“p(d,t) (1)
t

and similarly for each component of momentum. Thus, at each time step we measure
the density and momentum at each node, and sum them into their Fourier components
as shown. We do not, in fact, calculate full Fourier transforms at every location, because
that would require too much memory; we have observed that there is little energy at
frequencies other than the driving frequency. Instead, we simply calculated the Fourier
components at the driving frequency. (We also computed the components at half and
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double the driving frequency, but as mentioned the energy at these frequencies was
negligible.) After half a million time steps {25 to 2500 periods, depending on the
frequency), we compute the average phase and amplitude at each location and write
these data to a file. In what follows, we will see plots of the data and of the viscous
dissipation, which can be computed from the data.

Computing Viscous Dissipation

To compute the viscous dissipation, we make use of a formula from Lamb (article 329)
(Lamb, 1945):

Bu\? v\ ? dw\?
¢ = 2| — 2| =— 2 +
’u{ (83:) N (By) " (83)
(8_w+8_v)2+(@+8w)2+(§2+6_u)2 (2)
Oy Oz 8z Oz 8z By '

Since our simulation results are Fourier components of the velocity field, we cannot
apply this formula directly. We find that there is practically no energy at frequencies
different from the driving frequency, so we will approximate the flow by a simple sinusoid
at each location, ie., ua(Z) = An(F)cos(wt + 6,(Z)) with w the driving frequency, «
the index of the Cartesian components of the velocity, and A, and 6, the amplitude

and phase of the velocity component at each location in space. With this velocity field,
then, the viscous dissipation integrated over one period of the driving is
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This formula requires 18 distinct derivatives of the velocity field, which makes it
difficult to apply to the simulation data. The lattice gas method generates a velocity field
which is necessarily noisy and which is defined only on a grid in space. Consequently,
the derivatives must be replaced with finite differences, and the relative error due to the
noise gets larger when we take these differences. In order to compute the approximate
local viscous dissipation, then, we take considerable care with the simulations. In each
case, data was accumulated over half a million time steps after an initial 50,000 time
steps to let transient behavior decay. Such long simulations were needed to achieve
low enough noise levels. To further reduce the noise before computing differences, we
smoothed the velocity fleld by averaging over cubes of side length 3. {To be precise,
at each fluid node, i.e., each lattice node which was not designated solid, we replaced
the velocity with the mean value over all those fluid nodes within the cube of size 3
centered at the node. If some of those nodes were solid, they were omitted from the
mean.) Finally, when we report our results, we coarse grain all the quantities—density,
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Frequency (kHz) | Phase | Max. Speed {m/s) | Location
14 7 /6 222 - Main
28 7 /4 180 Main
56 7/3 134 Main
141 /2 70 Main
282 177/24 34 Main
565 /3 19 Secondary
1410 /3 11 Buffer

Table 1: Velocity field properties as a function of driving frequency. The “Phase” is
how far the maximum velocity lags behind the maximum driving flux. Biot critical
phenomena are expected in the range 60kHz to 1.5MHz.

velocity, and dissipation rate—onto a grid three times larger than the simulation grid
before reporting our results. By these means, we arrive at results which should be
representative of real systems.

OBSERVATIONS

All of the simulations in this paper were performed in the same sample of pore space,
shown in Figure 1. We omitted the forcing buffers, which are at the far left and right
faces. Where we look tangent to an internal boundary in the rock, the dots line up,
and we see a denser pattern. With a little imagination, one can begin to pick out some
of the structure of the rock, but in the end a two-dimensional picture can only give a
flavor of the structure. This particular view was chosen because there are two important
channels through the rock which are closer to this face; these channels will become more
apparent later on. Each subsequent image will have some fluid data superimposed upon
the pore structure shown in Figure 1. In each case, the pressure gradient is applied
along the x axis, which is from left to right.

Velocity Components

In these simulations, the flux of fluid was controlled, so fluid velocity is the quantity
most directly related to the driving. For this reason, we begin by examining the flow
field in the rock. At each driving frequency, we find the location where the velocity has
the largest amplitude, and we show the vector field at the time during the oscillation
when the velocity takes its largest value. Table 1 and Figure 2 summarize results from
all the simulations. |

In Table 1, we record the frequency of the driving in each simulation, the maximum
speed of the fluid in the simulation, the phase lag between the maximum of the driving
and this maximum velocity, and the location where the maximum velocity is attained.
As a general observation, the velocities are large; so, too, are the dissipation rates and
pressures, shown below. However, all the observed values are well within the range of
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validity of the simulation method. While a real fluid would flow turbulently at such high
speeds, this lattice gas model computes Stokes flow, so the results are valid for more
physically reasonable laminar flow. The simulations were performed at such extreme
conditions in order to be able to observe significant fluid dynamical phenomena above
the statistical noise of the model. We could have forced the simulation more gently,
and then the velocities and pressures would have been correspondingly smaller—and
correspondingly harder to observe, requiring longer averaging.

At low frequencies, the velocity is nearly in phase with the driving, but as the
frequency increases, the maximum velocity lags further behind the driving. Meanwhile,
the maximum velocity also decreases with increasing frequency. Most interesting is
that the location of the most rapid flow changes. At low frequencies, the velocity field
is clearly dominated by a single channel, as we see in Figures 2a and 2b. When the
frequency gets above 500kHz (Figure 2c¢), flow in a narrower, lower channel becomes
more important than flow in the larger, upper channel. At the highest frequency, there
is no longer any significant flow through the pore space, just oscillation at the forcing
buffers, as shown in Figure 2d.

This is broadiy the behavior that is expected. At low frequencies, the flow should be
dominated by the largest channels available, but as the frequency increases, the largest
channels will be the first to be dominated by inertial forces, stopping the macroscopic
flow. Smaller channels never carry as much flux, but they remain active at higher fre-
quencies. Just so, the main channel is significantly broader than the secondary channel,
so it carries more flux at lower frequencies, but cuts off at higher frequencies, allowing
the secondary channel to become more prominent.

Dissipation

From the velocity fields shown above, we can compute the local rate of viscous dissi-
pation using Eq. (3). We summarize the results in Table 2 and Figure 3. It is curious
that while the total dissipation rate declines with increasing frequency, the maximum
dissipation has an anomalous minimum at 282kHz. In Figure 3, we plot a dot at each
location in the pore space; the area and darkness of the dot correspond to the local
viscous dissipation, normalized to the maximum dissipation in each case. We see that
the dissipation field is strongly localized, even more so than the velocity field. In almost
every case, nearly all the dissipation takes place in the main channel through which the
flow is most rapid. The dissipation is still localized in the main channel even when the
maximum velocity has shifted to the secondary channel at frequency 565kHz, as shown
in Figure 3c, but the dissipation maximum moves to that channel at 1.4MHz in Figure
3d.

Figure 3a reveals another challenge in computing a meaningful viscous dissipation
from the simulation. We see that there is strong dissipation at the edge of the simula-
tion volume where the fluid enters the rock from the forcing buffers. This edge effect
can hardly be considered indicative of the flow in the rock, yet it may be difficult to
disentangle properly from the “real” dissipation. Perhaps a different forcing method, or
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Frequency (kHz) | Max. Dissipation (mW) | Location | Total Diss. (W)
14 40 Main- 43
28 18 Main 26
a6 1 Main 15
141 5.3 Main 5.3
282 0.98 Main 2.6
565 2.8 Main 2.0
1410 0.33 Secondary 0.71

Table 2: Viscous dissipation as a function of driving frequency. The dissipation is
strongly localised, and the maximum dissipation does not necessarily coincide with the
maximum velocity.

performing the simulation in a periodic medium, would eliminate this problem. How-
ever, for the present paper we can make our qualitative observations without difficulty.

Pressure

The pressure fields are less illuminating than one might imagine because the velocity
fields and the pressure fields are essentially complementary, where one is large, the
other is small. We show four examples below (Figure 4), where we plot the amplitude
of the pressure variation by the size of dots, and the phase of that variation (measured
with respect to the phase of the forcing) by the color of the dots. Locations that are
nearly in phase with the forcing are light grey and locations that are nearly opposite
in phase, are black. Locations that are between these extremes are colored blue if their
maximum precedes the maximum of the forcing, and green if their maximum follows
after the maximum forcing. Because the pressure differences are largest where the flow
is least, and vice versa, we see features in the pressure field which were not apparent
in the velocity or dissipation fields. For example, in Figure 4a, at a low frequency
where most of the flow takes place in the main channel, the secondary channel is clearly
visible, whereas this channel is nearly invisible at a higher frequency (Figure 4c) where
the flow in the secondary channel is large. The pressure fleld changes in phase with
increasing frequency as did the velocity field. More interesting is the transition between
pressure-driven viscous flow at low frequencies, indicated by large pressure amplitudes,
to inertial flow at high frequencies where pressure variations (and velocities) remain
small everywhere. Comparing the four cases plotted in Figure 4, note how the typical
pressure amplitude changes from large at low frequency to small at high frequency.
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CONCLUSIONS

We have shown that it is possible to predict flow in porous rock in response to an
oscillating pressure field, and that the results of these simulations are qualitatively con-
sistent with theoretical expectations. To make detailed comparisons with theory will
require more extensive simulation on media which can be more simply characterized.
More detailed comparison with experiments will have to await new techniques for mea-
suring flow properties in three dimensions. However, it is clear that regimes of physical
interest are accessible to simulation and that simulation yields information about flow
fields which is not otherwise available. It is our hope that careful examination of the
flow properties revealed by simulation will help us to better understand the effect of
fluid saturation on seismic waves, and thus to provide a means to sense and characterize
fluids remotely.
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(a) Slice at 150um {b) Slice at 300um
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Figure 1: Views of the simulation pore space. The rock was imaged by X-ray microto-
mography, which resolves the rock into cubes of size 7.5um. Here we show the 600um
sample in which the simulations were computed. Each brown dot represents a cube
which is at the interface between solid and void. In the simulations to follow, the
forcing is applied along the x axis, which is into the page in the first three images,
and to the right in the fourth. In (a) through (c), we highlight all the locations at
a particular z in red. This shows the shape of the channel through which the flnid
moves. Note the three-limbed channel in (a), which has vanished in (b). The right
limb is continuous with the rightmost red arc in (b), and the center of the three-
limbed channe! is continuous with the upper, hourglass-shaped channel in (b). The
hourglass-shaped channel will turn out to be the main channel for fluid flow at low
frequency, and the rightmost arc will become important at high frequency. In (c),
the upper channel has connected into a larger nefwork again, while the righthand
channel has split into two regions. In {d), we show just the pore space itself, in the
orientation which will be used in all subsequent figures, with the 2 axis extending
to the right.
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(2) Frequency = 28kHz (b} Frequency = 282kHz

Figure 2: Velocity fields at different driving frequencies. We show only a subset of the
simulations because figures at other frequencies look similar to the top two cases.
The scale of the velocity vectors is not the same. The scale in {b) is four times that
in (a); in (c), ten times that in (a); and in (d), 20 times.
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(a) Frequency = 28kHz (b) Frequency = 282kHz

(d) Frequency = 1.41MHz
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Figure 3: Dissipation at different driving frequencies. We show only a subset of the
simulations because figures at other frequencies look similar to the first case. The
size and darkness of the dots indicate the local rate of viscous dissipation at each
location, though the scale is different in each case. See Table 2 for the scales.
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(a) Frequency = 28kHz

(b) Frequency = 282kHz
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Figure 4: Pressure at different driving frequencies. We show only a subset of the
simulations because figures at other frequencies look similar to the first case. The
size of the dots indicates the amplitude of pressure variation at each location, and
the color indicates phase as shown. The maximum amplitudes in MPa are (a), 17;
(b), 4.1; (c), 2.4; and (d), 0.97.
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