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Abstract

This thesis addresses the problem of real-time epileptic seizure detection from in-
tracranial EEG (IEEG). One difficulty in creating an approach that can be used for
many patients is the heterogeneity of seizure IEEG patterns across different patients
and even within a patient. In addition, simultaneously maximizing sensitivity and
minimizing latency and false detection rates has been challenging as these are com-
peting objectives. Automated machine learning systems provide a mechanism for
dealing with these hurdles. Here we present and evaluate an algorithm for real-time
seizure onset detection from IEEG using a machine-learning approach that permits
a patient-specific solution. We extract temporal and spectral features across all in-
tracranial EEG channels. A pattern recognition component is trained using these
feature vectors and tested against unseen continuous data from the same patient.
When tested on more than 875 hours of IEEG data from 10 patients, the algorithm
detected 97% of 67 test seizures of several types with a median detection delay of 5
seconds and a median false alarm rate of 0.6 false alarms per 24-hour period. The
sensitivity was 100% for 8 out of 10 patients. These results indicate that a sensitive,
specific and relatively short-latency detection system based on machine learning can
be employed for seizure detection tailored to individual patients.

In addition, we describe and evaluate an algorithm for the detection of the ces-
sation of seizure activity within IEEG. Seizure end detection algorithms can enable
important clinical applications such as the delivery of therapy to ameliorate post-ictal
symptoms, the detection of status epilepticus, and the estimation of seizure duration.
Our machine-learning-based approach is patient-specific. The algorithm is designed
to search for the termination of electrographic seizure activity once a seizure has been
discovered by a seizure onset detector. When tested on 65 seizures, 88% of all seizure
ends were detected within 15 seconds of the time determined by a clinical expert to
represent the electrographic end of a seizure.

We explore the effects of channel pre-selection on seizure onset detection. We
evaluate and present the results from a seizure detector that has been restricted
to use only a small subset of the channels available. These channels are manually
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chosen to be those that show the earliest ictal activity. The results indicate that
performance can suffer in many cases when the algorithm uses a small set of selected
channels, often in the form of an increase in false alarm rate. This suggests that
the inclusion of a full channel set allows the system to leverage information that
is not readily apparent to a clinical reader (from regions seemingly not involved in
the onset) to better differentiate ictal and inter-ictal patterns. Finally, we present
and evaluate an algorithm for patient-specific feature extraction, where the feature
extraction process for a given patient leverages the training data available for that
patient. The results from an evaluation of a detector that supplemented the original
spectral energy features with features computed in a patient-specific manner show
a significant improvement in 3 out of 5 patients. The results suggest that this is a
promising avenue for further improvement in the performance of the seizure onset
detector.

Thesis Supervisor: John V. Guttag
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a neurological disorder that is characterized by the recurrence of seizures.

The clinical symptoms of seizures can include convulsive movements, as well as alter-

ations in behavior, sensation and consciousness. It is estimated that approximately

1% of the general population suffers from epilepsy, including more than 2.5 million

people in the United States. For more than 20% of epilepsy patients, neither medica-

tions (which may be associated with negative side-effects) nor resective surgery (which

requires intensive and invasive investigation), result in the elimination of seizures or

constitute a sufficient treatment [32, 14, 21]. One of the most disruptive and disabling

aspects of epilepsy is the uncertainty as to when the next seizure will strike.

Electrical activity in various areas of the brain can be measured through the place-

ment of electrodes on the scalp, on the surface of the brain or within its depths. This

neurophysiological data is broadly referred to as EEG (intracranial EEG is abbrevi-

ated as IEEG), and is often recorded for diagnostic purposes. The beginning of the

measured electrical activity associated with the seizure is referred to as the electro-

graphic onset. When the seizure is associated with clinical symptoms, the clinical

onset is the point in time when clinical symptoms are first observed. The end of

the electrographic activity associated with a seizure marks the seizure end, or seizure

termination. While most seizures are self-terminating, and usually last less than 5

minutes, the serious state of persistent (and seemingly indefinite) seizure activity,

known as status epilepticus, is associated with a significant risk of mortality. The
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seizure itself is referred to as the ictal period (and seizure-related electrical activity

as ictal activity), the period that immediately follows the end of a seizure is known as

the post-ictal period. The post-ictal period itself is sometimes associated with clinical

symptoms.

1.2 Seizure Onset Detection

Epilepsy is a disease characterized by recurrent episodes of dysfunctional brain activ-

ity. Yet, current approved therapies do not take into account the episodic nature of

epileptic seizures. Therefore, a goal of current research is to develop seizure-triggered

diagnostic, therapeutic and alerting systems. Central to these systems is an algorithm

that can detect seizure activity early and accurately. In this thesis, we describe the

architecture and performance of a real-time intracranial EEG (IEEG) seizure onset

detector. Throughout this thesis, a seizure onset is considered to be the earliest point

of unequivocal change in the IEEG waveforms leading up to a seizure, as judged by

an expert electroencephalographer.

Two important considerations when assessing the performance of an automatic

seizure onset detector are the delay between the seizure onset and the detection

time, referred to as the detection latency, and the frequency of the occurrence of

false detections, referred to as the false alarm rate. The reduction of latency and

the lowering of false alarm rates are competing objectives, and the extent to which

one is favored over the other is dictated by the application. Consider the example

of a device that can detect a seizure's onset and deliver an electrical stimulation in

response, which is designed to reduce the length or intensity of seizures. Low latencies

are crucial for triggered neurostimulation applications, since the effectiveness of the

therapy is delay-sensitive. In the case of an alerting application in a hospital setting,

a low false alarm rate decreases the likelihood that alarms raised during seizures will

be ignored by caregivers (or have the response to them delayed). If automated seizure

detection is used to initiate the delivery of a drug (e.g. an anticonvulsant), then in

most cases a very low false alarm rate would be crucial.
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Rapid and reliable seizure onset detection from IEEG is challenging for a num-

ber of reasons. First, IEEG varies greatly across individuals with epilepsy [7]. The

intracranial EEG associated with seizure onset in one patient can closely resemble

a benign pattern within the IEEG of another patient. Furthermore, for individ-

ual patients there exists significant overlap in the IEEG associated with seizure and

non-seizure states. In addition to inter-patient variability, there is also intra-patient

variability. The identity of the IEEG channels involved and the evolution of the ear-

liest seizure activity can differ within an individual, particularly when seizures arise

from different brain regions. Moreover, the IEEG of epilepsy patients transitions

between regimes within both the seizure and non-seizure states, and is therefore a

non-stationary process.

Previous work has introduced a wide variety of techniques for seizure detection

using IEEG. Results from these studies show that many of the techniques struggle

with high latencies or high false alarm rates or both. Furthermore, some aspects

of these studies remain to be addressed. First, most IEEG detection studies use

relatively short records; past studies have used no more than 30 hours per patient,

and considerably less than 24 hours for many patients [23, 17, 12, 1]. This may lead

to an inaccurate estimate of the false alarm rate and may not faithfully represent

long-term performance in a clinical application.

In addition, previous work in the area of intracranial EEG seizure detection has

focused on datasets with a small number of pre-selected electrodes[23, 1, 24, 28]. This

may ignore useful information that is not obvious on visual examination, and in some

cases necessitates additional assessment and culling of the dataset by an expert.

We treat seizure detection as a binary classification problem that involves sep-

arating seizure activity from non-seizure activity, and employ a machine-learning

approach that is patient-specific, i.e., the classifier for each patient is trained using

seizure and non-seizure examples (labeled as such) which have been extracted from

the same patient's IEEG data. The division of a record of the brain's electrical activ-

ity by an expert into two encompassing classes, seizure and non-seizure, is consistent

with standard clinical practice. We extract from each epoch features that correspond
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to the log-energy in several frequency bands for every channel. A Support Vector Ma-

chine is trained using these feature vectors, and this constitutes the classifier which is

tested against unseen continuous data from the same patient. This is similar to the

approach to scalp EEG seizure detection of Shoeb et al [30, 29]. Our evaluation uses

more than 875 hours of intracranial EEG in total, averaging more than 87 hours of

continuous IEEG data per patient. We also present results from a study that uses

the full set of intracranial electrodes of sufficient recording quality. The algorithm

detects seizures by examining the short-term evolution of spectral properties of the

intracranial EEG across many channels and comparing time periods between seizures

with seizure activity itself. Relative to previously published methods, ours exhibits

high sensitivity, short latencies, and low false alarm rates.

We also explore the effects of channel pre-selection on seizure onset detection. We

evaluate and present the results from a seizure detector that has been restricted to

use only a small subset of the channels available. These channels are manually chosen

to be those that show the earliest ictal activity. In this context, we also present and

evaluate an algorithm for patient-specific feature extraction. With this approach, the

process for computing features from each channel for a given patient leverages the

training data available for that patient. This approach is designed to yield additional

salient features that can be combined with the original feature set to lead to improved

detection performance. The feature extraction process involves the representation of

an epoch of IEEG on a channel as a linear combination of prototype components,

which we refer to as dictionary elements. To learn a dictionary, the method generally

seeks signal components that have a large presence in one class (e.g., seizure onsets),

but are largely absent from another class. The discriminative value of a direction

is quantified as the difference in the total power in that direction between the two

classes. We compare the results using this approach for feature extraction against

those obtained for the seizure detection with channel pre-selection using the generic

spatio-spectral features only.
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1.3 Seizure End Detection

Much effort has been dedicated to the detection of seizure events or seizure onsets.

In contrast, little effort has been devoted to developing algorithms that can detect

the termination of a seizure, even though such algorithms can enable important ap-

plications. They can facilitate the estimation of seizure duration, which could help

physicians assess the efficacy of anti-epileptic drugs when combined with estimates of

seizure frequency. A seizure end detector could also be used to control the delivery of

therapies to control postictal symptoms, which can persist for anywhere from minutes

to days. Finally, a seizure end detector can be used to detect the presence of status

epilepticus. This can be accomplished, for example, by activating an alert when a

seizure's end has not been detected within a certain period of time (e.g. 5 minutes)

from its onset.

1.4 Intracranial EEG

Several types of neurophysiological data reflecting electrical activity are in use for di-

agnostics and research. Perhaps the most familiar is the scalp EEG (electroencephalo-

gram), which is obtained by recording electrical activity measured by electrodes placed

on the scalp. However, in this thesis we will focus on a dataset containing another

form of EEG called intracranial EEG (IEEG), where the electrodes are placed inside

the skull, and is thus categorized as an invasive form of EEG. The electrodes can be

placed on the outer surface of the brain or cortex (these are known as grid or strip

electrodes), or within brain matter (these are referred to as depth electrodes). In

comparison to scalp EEG, IEEG signals reflect the activity of a smaller number of

neurons, and therefore have a higher spatial resolution. IEEG recordings also have a

higher bandwidth, and are thus sampled at higher rates. In addition, IEEG signals

often show the signs of the start of seizure activity several seconds before scalp EEG

recorded from the same patient [25]. Figures 1-1, 1-2, 1-3 show examples of IEEG

from inter-ictal(non-seizure), ictal and post-ictal periods respectively.
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Figure 1-1. A 14-second window of intracranial EEG during an inter-ictal (i.e. non-seizure) period.

20



1.5 Previous work

This project builds on the work of Shoeb et al. [30, 29]. Several other methods have

been published on seizure detection on noninvasive scalp EEG, including some which

also incorporate a support vector machine as a component [11, 19, 33]. Our algorithm

is designed to work with a different type of neurophysiological data (IEEG), and there

are some differences in the methodology, which is described in Chapter 2.

The median patient false alarm rate (0.6/day) and the median/mean latency

across all seizures (5 sec/6.9 sec) obtained using our algorithms are lower than those

reported in previous work on seizure detection using IEEG, and the sensitivity was

comparable (97%). It should be noted that the various studies mentioned in this sec-

tion t ested methods on different IEEG databases. There can also be some differences

in evaluation methodology, and other aspects such as patient selection criteria.

Algorithms such as those described by Chan et al. [4] and Chua et al. [6] were

designed for offline IEEG analysis, and cannot be implemented as part of a real-time

warning system. Zhang et al. [35] report a sensitivity of 98.8%, a mean latency of

10.8 seconds, and a combined false alarm rate of 11.8/day for their patient-specific

method when tested on IEEG from 21 patients. The authors report separate figures

for false alarms dichotomized into "interesting" and "uninteresting" groups. Grewal

and Gotman [12] describe an algorithm with tunable parameters that can be set for

a given patient using data from that patient. Using tuned parameters they report

a sensitivity of 89.7%, a median latency of 17.1 seconds, and a false alarm rate of

5.3/day. Aarabi et al. [1] report a sensitivity of 98.7%, an average latency of 11

seconds, and a false alarm rate of 6.5 per 24 hours for their method when tested on

data from 6 contacts per patient in the Freiburg public database [18].

Gardner et al. [10] used a one-class support vector machine requiring only non-

seizure data for training, and reported a false alarm rate of 37.4/day for their method

when tested on 200 hours of data from 5 patients. That study allowed for negative

latencies in cases where an alarm began up to 3 minutes before a seizure, and negative

average latencies were reported for several patients (although the median latencies for
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these patients were positive). Shoeb et al. [28] evaluated their two-channel patient-

specific IEEG detector, which was constrained to compute the energy in two bands,

on 81 hours of data from 17 subjects. A mean latency of 9.3 seconds and a false alarm

rate of 11/day were obtained in that study.

Osorio et al. [24] report impressive results. However, important differences dis-

tinguish their study from ours, including the automatic pre-selection of a subset

of channels using patient data in their study. They also use a different evaluation

methodology that includes the designation of some events that do not fall under the

category of true positives as epileptiform discharges rather than false alarms. Visual

review of all automated detections and a sample of interictal segments were used to

determine sensitivity and specificity, and the IEEG record had not been reviewed in

its entirety to locate all instances of seizures. Thus, no clear comparison can be made.

Figure 1-2. A 14-second window of intracranial EEG during a seizure
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1.6 Contributions

Automated seizure onset detection enables multiple alerting and therapeutic applica-

tions, but existing approaches have been plagued with difficulties in either sensitivity,

specificity, latency or some combination of these. In this thesis we present and eval-

uate an algorithm for real-time seizure onset detection from IEEG using a machine-

learning approach that permits a patient-specific solution. The proposed algorithm

performance compares favorably to existing methods, as determined by well-defined

performance metrics. The median patient false alarm rate (0.6/day) and the me-

dian/mean latency across all seizures (5 sec/6.9 sec) obtained using our algorithm are

lower than those reported in previous work on seizure detection using IEEG.

We analyzed more than 875 hours of continuous intracranial EEG recorded from

10 patients to evaluate our algorithm. The more than 87 hours of data per patient

significantly exceeds the amount of data used in most previous studies. This allows

for more realistic estimates of long-term performance. We provide some evidence for

this with the finding that false alarms tend to temporally cluster, and are unevenly

distributed in time (including across days).

Furthermore, the algorithm does not require the manual pre-selection of a small

subset of channels by a clinician, as is the case with several previously published meth-

ods and studies. We present results from a study that uses the full set of intracranial

electrodes of sufficient recording quality.

In addition, we describe and evaluate an algorithm for the detection of the cessa-

tion of seizure activity within IEEG. Seizure end detection algorithms can enable

important clinical applications. Our machine-learning-based approach is patient-

specific. When tested on 65 seizures, 88% of all seizure ends were detected within 15

seconds of the time determined by a clinical expert to represent the electrographic

end of a seizure. For 5 out of 10 patients, 100% of seizure ends were detected within

a 15-second margin of the expert-marked end.

We explore the effects of manual channel pre-selection on seizure onset detection

for some patient datasets. We evaluate and present the results from a seizure detector
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that has been restricted to use only a small subset of the channels available.

Finally, we propose an alternative feature extraction method that is tailored to a

patient using the training data, and is designed to work with datasets limited to a

few pre-selected channels. The feature extraction process involves the representation

of an epoch of IEEG on a channel as a linear combination of vectors that we refer

to as dictionary elements. To learn a dictionary, the method searches for directions

in which the power in the two classes shows a large difference. The results from an

evaluation of a detector that supplemented the original spectral energy features with

features computed in a patient-specific manner show a significant improvement in 3

out of 5 patients. While not conclusive, the results suggest that this avenue is worthy

of further exploration.

1.7 Thesis Outline

In Chapter 2 we describe and evaluate an algorithm for automatic seizure onset

detection from intracranial EEG. We define some performance metrics, and evaluate

the algorithm using a database containing continuous IEEG from ten patients. In

Chapter 3 we describe and evaluate an algorithm for seizure end detection using

IEEG. The algorithm is designed to search for the cessation of electrographic seizure

activity once a seizure has been discovered by a seizure onset detector. We present

the results from an evaluation of the algorithm using seizures from the same database

used to test the seizure onset detector. In Chapter 4, we present the results when

the seizure detector is restricted to the use of a small number of channels (2-4). The

channels are manually selected based on visual examination for each patient, and

correspond to the channels that show the earliest ictal activity. We also present and

evaluate an algorithm for patient-specific feature extraction, an approach where the

feature extraction process for a given patient leverages the training data available. A

summary and some discussion and conclusions are included in Chapter 5.
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Figure 1-3. A 14-second window of intracranial EEG during a post-ictal period, beginning less
than 90 seconds after the expert-marked electrographic end of a seizure.
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Chapter 2

Algorithm for Seizure Onset

Detection

In this chapter we describe and evaluate an algorithm for automatic seizure onset

detection from intracranial EEG. Our machine-learning approach is patient-specific.

We define some performance metrics, and evaluate the algorithm using a database

containing continuous IEEG from ten patients.

2.1 Feature Vector Extraction and Classification

We treat seizure detection as a binary classification problem that involves separating

seizure activity from non-seizure activity. We adopt a patient-specific approach to

seizure detection to overcome the cross-patient variability in ictal and interictal IEEG

patterns, and to exploit the consistency within ictal patterns emerging from the same

brain region. The key to our detector's high accuracy is a feature vector that unifies in

a single feature space the time-evolution of spectral properties of the brain's electrical

activity as recorded by several IEEG electrodes. The algorithm presented is based in

part on the algorithm in [27, 30], with some essential changes also described in this

section.

Our goal is to construct a function f(X) that maps a feature vector X derived from

an epoch of IEEG onto the labels Y =+/-1 depending on whether X is representative

of seizure or non-seizure IEEG. The function is derived using training sets of seizure

and non-seizure feature vectors specific to an individual patient. In this section we

discuss how we construct the feature vector X, the discriminant function f(X), and
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the training sets.

Features important for characterizing IEEG activity include its spectral distribu-

tion, the channels on which it manifests, and its short-term temporal evolution. The

following subsections illustrate how these features are extracted and encoded. We use

spectral energy features similar to those that have been shown to be effective in the

seizure detection scheme of Shoeb [27]. Each spectral feature represents the logarithm

of the total energy in a specific frequency band on a single channel.

EEG signals generally have a spectral amplitude profile that is inversely propor-

tional to frequency. To remove this frequency-domain trend, a derivative filter is

applied to all channels as an added first step in the feature extraction phase for the

IEEG detector. This introduces more parity in the scaling of spectral content at

different frequencies.

Considering the multiple frequency components that compose the activity asso-

ciated with seizure onset is essential to detecting seizures with high accuracy. The

dominant spectral content of a seizure epoch may overlap the dominant frequency of

an epoch of non-seizure activity, but they can still be distinguished by the presence or

absence of other spectral components. We extract the spectral structure of a sliding

window of length L=1 second by passing it through a filterbank and then measuring

the energy falling within the passband of each filter. This choice of epoch length

provides sufficient time resolution to capture discrete electrographic events, and also

provides sufficient frequency resolution when compared against the bandwidth of the

bandpass filters. The beginnings of consecutive epochs are separated by 1 second.

The filterbank is composed of M filters, and is illustrated in Figure 2-1.

The scalp EEG seizure detector in [27, 30] focuses on the frequency range 0.5-

25Hz. However, the intracranial EEG is a signal of a higher bandwidth and carries

relevant information at higher frequencies. Therefore, the IEEG detector filter bank

considers a wider range of frequencies, although more emphasis is still placed on the

lower frequency range. The 0.5-35Hz range is covered by more filters (12) each with a

bandwidth of 3Hz, whereas the 35-105Hz range is covered by a lower density of filters

(5 filters) each with a bandwidth of 15Hz, for a total of M = 17 filters. The 60 Hz
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Figure 2-1. Feature vector formation steps.

region is neglected so as to remove the 60Hz electrical noise often contaminating the

signals. A slightly different choice of M or the filter bandwidth may lead to similar

(and possibly improved) results.

For channel k, the energy measured by filter i is denoted by the feature Xi,k. To

capture the spectral and spatial information contained within each one-second EEG

epoch at time t=T, we concatenate the M = 17 spectral energies extracted from

each of N IEEG channels. This process forms a feature vector XT with M * N

elements as shown in the middle portion of Figure 2-1. Each feature is multiplied

by a coefficient to normalize the approximate scaling of each feature in the set. The

scaling and normalization coefficients are determined using the training points only.

This is to avoid situations where some features do not play a significant role in the

classifier structure because of the dominance of features with much larger scaling.

The features are mean-centered and then divided by the median absolute value.

The feature vector XT does not capture how an epoch relates to those in the recent

past. Consequently, XT cannot represent how a seizure emerges from the background
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or how it evolves. To capture this information, we form the time-delay embedded

feature vector XT by stacking the vectors XT, XTL...XT(W-i)L from W contiguous,

but non-overlapping L = 1 second epochs as shown on the right side of Figure 2-1.

This approach allows the timing and order of discrete events to be encoded to some

extent, and it is not equivalent to forming a feature vector XT using a longer epoch

length L. We set W = 3.

2.1.1 Training and Classification

The feature vector XT is classified as representative of seizure or non-seizure activity

using a linear support vector machine (SVM). We train the SVM on seizure vectors

computed from the first S=20 seconds of each training seizure, and on non-seizure

vectors computed from non-seizure IEEG. This results in a number of non-seizure

training feature vectors that greatly outnumbers the number of seizure examples.

In the training phase, the non-seizure feature vectors were subsampled such that

only every sixth epoch in the training set was used due to memory limitations. An

exception to this is made for the 20 minute period following any seizure, to ensure

there are enough training examples to describe the post-ictal period, which tends to

be associated with electrographic qualities that distinguish it from the rest of the non-

seizure activity. Within the SVMlight software package [16], the error cost parameter

was set to C = 1 x 10- for all patients in the evaluation database. This parameter

was not increased for the seizure class as that did not appear to lead to an overall

improvement in results in preliminary analysis.

2.1.2 Artifact Rejection

An artifact rejection component works in conjunction with a trained classifier by

checking for large differences between the minimum and maximum value of the signal

for each channel within W * L = 3 seconds to reject high amplitude artifacts. If more

than 20% of the channels are deemed to contain artifact then a seizure detection

alarm is prevented at the corresponding time. More specifically, a seizure detection

alarm is raised when feature vectors corresponding to K = 2 consecutive epochs are
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classified as belonging to the seizure class, and no artifact is detected (on enough

channels) within them by the artifact rejection module. The alarm is turned off if

the classifier does not detect a seizure in any epochs for more than two minutes.

2.2 Data

The data used to evaluate our detector consists of more than 875 hours of continu-

ous intracranial EEG sampled at 500 Hz. The data was recorded at Massachusetts

General Hospital from 10 patients with focal epilepsy (5 female, mean age at onset

of seizures 15 +/- 5 yrs S.D., mean age at surgery of 40 +/- 9 yrs S.D.). Etiologies

included mesial temporal sclerosis (2), cortical dysplasia (2), post-traumatic epilepsy

(1), and post-infectious epilepsy (1). In 4 patients the etiology was unknown.

The patients were all surgical candidates who required invasive monitoring, and

therefore represent more complicated cases than the general population of patients

with epilepsy. They are also not necessarily representative of the population most

likely to benefit from a seizure detection system. For example, patients for whom

resection would incur too much risk (e.g., because the seizures arise from eloquent

cortex) would be prime candidates for an implanted seizure detection and control

system. The data used for this paper was collected for clinical purposes, and once

enough seizures were observed data collection was halted. If a similar system were

to be deployed, sufficient data would be collected from a patient specifically for the

purpose of training the system, as is the case (albeit with manual tuning) with ex-

isting devices [22]. For the hospitalized patients from whom the data for this study

was recorded, the anti-epileptic drug levels were changed on a daily basis. The med-

ications have a significant effect on both seizure and non-seizure IEEG. The lack of

consistency in the magnitude or nature of these effects at different times complicates

the evaluation of the detector.

While the recordings were being made, the patients experienced a total of 67

seizures (between 3 and 12 seizures for each patient). For each seizure, an expert

indicated the earliest IEEG change associated with the seizure. The patients were
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consecutively chosen, with two patients omitted because the clinicians were unable

to reliably determine seizure onsets. We use a bipolar montage, consistent with the

montage used by clinicians who reviewed each patient's data and authored an accom-

panying IEEG report. In most cases the recording from each electrode is used for one

channel. Analysis of this data was performed retrospectively under the auspices of

the local institutional review board in accordance with the Declaration of Helsinki.

2.3 Evaluation Methodology

Each patient's data was segmented into a number of records, where a record corre-

sponds to a stretch of time in the IEEG recordings. Each record is up to 24 hours long,

and contains at least one seizure (in a very small number of cases where two seizures

are less than 15 minutes apart, they are included in the same record). If there is a

separation of more than 24 hours between the seizure in the record and the preceding

one, the beginning of the record is set to approximately 24 hours before the seizure,

and its end is set to be approximately 20 minutes after (i.e., every seizure's post-ictal

phase is included within the same record). If that distance is less than 24 hours, then

the start of the record is set to the end of the previous record, and the end is set to

be no earlier than 20 minutes after the end of the seizure. In that case the endpoint

of the record may be moved to a later point to maximize record length, as long as it

does not cross the beginning of the next record, and the 24-hour record duration limit

is maintained. Some stretches of time corresponding to disconnects or non-recording

of electrodes were excluded from patient datasets. One artifact-obscured seizure was

omitted from any training sets, but was still used for testing.

A seizure onset is considered to be the earliest point of unequivocal change in the

IEEG waveforms leading up to a seizure, as judged by an expert electroencephalog-

rapher. The seizure detection algorithm is constrained to be causal, i.e., the decision

at a given point in time as to whether a seizure is underway can only be made using

past IEEG data leading up to that point. This is to ensure the algorithm can be

compatible with a real-time application. In contrast, no causality constraint applies
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as a human expert determines the seizure onset point that we use as a reference for

evaluation. In fact, a clinician will often track backwards from more clearly ictal later-

stage activity to determine a time point where the first change in activity leading up

to it occurred. We characterized our detector's performance in terms of sensitivity,

specificity, and latency. Sensitivity refers to the percentage of test seizures detected.

A seizure is considered successfully detected if an alarm is raised anytime between

its (expert-marked) onset and its end. The false alarm rate refers to the average

number of times, per 24 hours, that the detector incorrectly declared the onset of

seizure. Alarms that begin outside intervals between a seizure onset and the end of

the same seizure are considered false alarms. The delay between the onset and the

time a detection algorithm indicates that a seizure has been detected is referred to as

the detection latency.

To estimate our detector's performance on data from a given patient, we used

a leave-one-record-out testing scheme. We avoided an evaluation method based on

leaving out epochs (as done in [20]) rather than records, since that approach leads

to unrepresentative and misleadingly good results by including in the training set

feature vectors in close temporal proximity to those in the test data.

Let NR denote the number of records for a given patient. To estimate the detec-

tor's latency, sensitivity, and false alarm rate we train the detector on NR - 1 records

from the patient. The detector is then tasked with detecting the seizure in the with-

held record. For each round we record whether the test seizure was detected, and

if so, with what latency. Any alarms beginning outside the seizure are also counted

as false alarms. This process is repeated NR times so that each record is tested. In

most cases NR - 1 training seizures are used for each test record since most records

contain a single seizure.

2.4 Results

Overall, 97% of the 67 test seizures were detected. As shown in Table 2.1, the sen-

sitivity was 100% for most patients. The median latency with which the detector
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declared the seizure onset (across all seizures) was 5 seconds. Some care is needed in

the interpretation of some results (e.g., aggregates over all seizures in the database

with an inconsistent number of seizures per patient) because of inter-patient differ-

ences or variations, which are discussed in later sections. The median latencies for

each patient are shown in Table 2.1. The average false alarm rates for each patient are

also shown in Table 2.1. The median false alarm rate was 0.6 false detections per 24

hour period. Figure 2-2 shows an example of one of many seizures that were detected

with a short latency. The expert-marked onset is indicated by the dark vertical line,

and the approximate time at which the algorithm detected the seizure is indicated by

the red dotted line.

Patient 1 2 3 4 5

Total time tested(Hr) 52 127 71 29 96
Number of seizures 3 6 6 5 8
# of electrodes 98 56 114 34 68
Electrode types Grid & Depth Grid & Depth Depth

Depth Depth
Sensitivity 100% 100% 100% 100% 100%
Median Latency(sec) 6.5 3.25 3.25 5 5.75
False alarms/ 24Hr 0 0.4 1.7 0 0.8

Patient 6 7 8 9 10

Total time tested(Hr) 68 39 146 148 104
Number of seizures 3 7 12 11 6
# of electrodes 40 54 64 80 85
Electrode types Depth Depth Depth Depth Grid &

Depth
Sensitivity 66% 100% 92% 100% 100%
Median Latency(sec) 4.25 4.5 6 4.5 18.5
False alarms/ 24Hr 0 25.3 2.5 0.3 2.5

Table 2.1. Patient data set information, and sensitivity, median latency, estimated false alarm rate
obtained for each patient data set from evaluation of the seizure onset detector.
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Figure 2-2. Intracranial EEG on a subset of channels in a 8-second epoch containing the onset
of a Patient 5 seizure. The expert-marked onset is indicated by the dark vertical line, and the
approximate time at which the algorithm detected the seizure is indicated by the red dotted line.
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2.4.1 Sensitivity and Latency

A notable phenomenon is that of single seizures that were deemed by a clinician

to be of a distinct seizure type relative to all the other remaining seizures in the

patient dataset. Our detector misses or has a large latency when a test seizure differs

greatly from all the training seizures. One example of this is the seizure from the

Patient 6 dataset that was missed by the algorithm, shown in Figure 2-3. The two

remaining seizures from this patient were grouped together, (by a clinician in the

patient report) and one of them is shown in Figure 2-4. Clear differences between the

seizure types include high amplitude rhythmic spiking activity on the first anterior

temporal channel in the seizure shown in Figure 2-4 that is absent from the same

channel in Figure 2-3. Rhythmic slowing in several anterior and posterior temporal

contacts early in the onset of the seizure in Figure 2-4 also does not match the activity

in the seizure in Figure 2-3.
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awls5 -swFi-
I . r

AnTpl -AUdTOZ

Aiffp3 -Aa1P4
AnTp5 -ARIOp
Alipi -AfMTV&
PSTPI -PaTP2
PSTP3 - PST04
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GWEG -
C4G3 -UNG4
CW4G5 -aNGI
PARI -PAR2V
PAR3 -PAM4-
PAR5 - tV

~zz a
Figure 2-3. Intracranial EEG on a subset of channels in a 12-second epoch containing the onset
of a Patient 6 seizure. The dashed vertical line indicates the expert-marked onset.
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Figure 2-4. Intracranial EEG on a subset of channels in a 12-second epoch containing the onset
of a Patient 6 seizure different from that of Figure 2-3. The dashed vertical line indicates the
expert-marked onset.

The algorithm returned a notably long median detection latency for Patient 10.

The clinician report for Patient 10 indicates at least three classes of IEEG onset

activity patterns across six total seizures, and notes some difference in morphology

on the channels that displayed the earliest noted seizure activity within those classes.

The clinical conclusion from this IEEG was that the patient had multifocal epilepsy,

although the possibility of a single focus with heterogeneous propagation cannot be

entirely excluded. As a result, the onset of nearly every seizure was unique in some

way. The seizures in the training data therefore were different from one another.

For each test seizure, the paucity or absence of sufficiently similar examples of onset

activity from seizures in the training set contributed to the relatively poor detection

latency.

Not all cases that include multiple distinct seizure types yield poor results. More

favorable results were obtained for Patient 8, for whom the clinician enumerated

several seizure types (divided between left and right hemisphere onsets, and presence

or lack of apparent clinical symptoms). This is possibly explained by the fact that

the patient's dataset includes 12 seizures, and therefore, for most test seizures within

this patient's dataset, the classifier has incorporated more examples of seizures of the

same broad type, and learned some variation in IEEG patterns among them. This

allows for a better performance, particularly in reduced latency in the case of this

patient dataset.
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2.4.2 False Alarms

The largest false alarm rate estimate was obtained for Patient 7. Some false alarms

were due to mimics of seizure onset activity; many had a morphological appearance

similar to ictal manifestations seen in other seizures. These mimics were shorter than

typical clinical seizures or were too variable in length or appearance to have been

judged a seizure by clinicians. Figures 2-5 and 2-6 show examples of activity that

induced an alarm, and the seizure activity they resemble. The high amplitude rhyth-

mic activity on the right subfrontal channel during the seizure in 2-5(A) also appears

in the inter-ictal epoch where false detection occurred in testing, shown in 2-5(B).

The type of activity highlighted in 2-5(B) lasted for approximately 8 seconds. Figure

2-6(A) shows the high-frequency activity on the right posterior temporal channel in

a different seizure, and Figure 2-6(B) shows the similar activity on the same channels

from an inter-ictal epoch where a false alarm was raised. Other false alarms appear to

have been caused by non-physiological artifact that was not detected by the artifact

rejection module.
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Figure 2-5. Patient 7 intracranial EEG on a subset of electrodes in two epochs showing similar
activity, particularly on the right subfrontal channel 'RSbF 5 - RSbF 6'. (A) Seizure activity in a
4-second epoch beginning approximately 10 seconds after the expert-marked onset. (B) An interictal
4-second epoch during which false detection occurred. This activity was not judged to constitute a
seizure by the clinicians.
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Figure 2-6. Patient 7 intracranial EEG on a subset of electrodes in two epochs showing similar
activity, particularly on the right posterior temporal channels 'RPT 3- RPT 4' and 'RPT 5- RPT
6'. (A) Seizure activity in a 4-second epoch beginning approximately 7 seconds after the expert-
marked onset. (B) An interictal 4-second epoch during which false detection occurred. As before,
this activity was not judged to constitute ictal activity by clinical reviewers.
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In many cases, the false alarm events are unevenly concentrated in different regions

in time, i.e., they temporally cluster. In the case of Patient 3, 60% of false alarms

(3 out of 5) occur within a 15 minute block of time (out of a total of approximately

71 hours). Another contiguous 2-hour block contains the two remaining false alarms.

Figure 2-7 contains a false alarm event plot for Patient 8. It is formed using a

timeline that combines all the records in correct temporal order. An event shown on

the patient false alarm plot timeline indicates the occurrence of a false alarm in a

leave-one-out test on the record in which the time point fell. For this patient 66%

of false alarms fall within a single contiguous block less than 12 hours long (out of

a total of 146 hours). These false alarms seem to have been triggered by types of

interictal electrical activity that do not appear with significant frequency outside the

record that contains this period. The lack of prior examples of similar activity in

interictal periods in the training set may explain the large number of false alarms for

this record. Interestingly, this cluster of false alarms begins in close proximity to the

point of lowest drug concentrations during the admission period for this patient.

2.4.3 Reduction of K parameter

We explored the possibility of reducing the latencies by adjusting the K parameter.

The setting of K = 2 forces the algorithm to wait for 2 consecutive windows that the

classifier has deemed to be part of a seizure onset before an alarm is raised. Setting

K = 1 has the effect of reducing latencies (by a minimum of L = 1 second for every

seizure for this choice of epoch length), at the expense of an increase in the false alarm

rate. The results obtained by setting K = 1 are shown in Table 2.2. The median la-

tency across all detected seizures falls to 3.5 seconds. Although the latencies decrease,

the median patient false alarm rate rises to 2.7 false alarms/24hrs. This alternative

trade-off point may be useful for certain applications where the consequences of false

alarms are less severe or lower latencies are more crucial.
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Sensitivity 100% 100% 100% 100% 100% 66% 100% 92% 100% 100%

Median
Latency(sec) 5.5 2.25 2.25 4 4.75 3.25 3.5 4 2.5 16.5

False alarms
/24Hr 0 1.3 3.7 1.7 5 1.4 45.1 13.5 1 6.2

Table 2.2. Sensitivities, median latencies and false alarm rates for the particular case where K=1.
The latencies decrease at the expense of higher false alarm rate.

2.5 Discussion

We presented a patient-specific algorithm that detects seizures by examining the

short-term evolution of spectral properties across several intracranial EEG channels.

The results of this evaluation, using an average of more than 3 days of data per patient

and a full IEEG electrode set, show the efficacy of using a patient specific algorithm for

automatic seizure detection as determined by clinically-relevant performance metrics.

2.5.1 False Alarm Generation and Evaluation

In addition to recording the false alarm rate, we examined the nature and distribution

of false alarms. False alarms were often caused by electrical artifacts as well as events

that had features of seizure activity. Moreover, false alarms were non-homogenously

spaced.

The temporal clustering of false alarm times has application-specific implications

for the potential utility of this system. For example, consider the false alarms gen-

erated by a seizure detector for an ambulatory alerting system in a given week. The

overall disruption caused by these alarms occurring a few minutes apart from one

another may be less objectionable than the case where each occurs on a different day.

However, the extent to which some factors may influence the number and distribu-

tion of events is not clear. For the hospitalized patients from whom the data for

this study was recorded, the medications levels were changed on a daily basis. This

may have caused changes in the IEEG and unfamiliar electrical patterns that led to
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false alarms (or diminished performance in other forms). Nonetheless, the finding

that false alarms are clustered temporally implies that long recordings are necessary

in the evaluation of a seizure detector. Long records provide an ability to obtain far

more representative estimates of the false alarm rate.

2.5.2 Impact of Number of Electrodes

As opposed to several other investigations, the approach utilized here incorporated a

full set of intracranial electrodes. Overall, it is not clear what the effect of using a

small subset of the channels has on the performance of classifiers. There are, however,

some factors to consider. Using a full set of electrodes makes the clinical deployment

of the algorithm simpler from the user's standpoint. For some patients it can be

difficult to select only a few channels because ictal onset changes may involve many

channels and be subtly different for each seizure. Furthermore, including all channels

allows the system to leverage information that is not readily apparent to a clinical

reader (from regions seemingly not involved in the onset) to better differentiate ictal

and interictal patterns. On the other hand, allowing all channels to be used may lead

the learning algorithm to incorporate non-specific information that may increase the

likelihood of incorrect classification. To better understand these tradeoffs a subse-

quent investigation of different channel counts using a given detection algorithm is

necessary. Although there is currently a considerable difference between the number

of channels in monitoring units versus implantable devices, the number of channels

in the latter is likely to increase.

False Alarm Events

0 20 40 60 8 100 120 140
Time (hours)

Figure 2-7. Approximate timing of false alarms that occurred in tests on Patient 8 data.
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Chapter 3

Seizure End Detection in Intracranial

EEG

In this chapter we describe and evaluate an algorithm for seizure end detection using

IEEG. Whereas seizure onset detection was approached as a binary classification

problem into inter-ictal(non-seizure) and seizure onset classes, the seizure end detector

is tasked with discriminating between ictal and post-ictal activity. The algorithm

searches for the cessation of electrographic seizure activity once a seizure has been

discovered by a seizure onset detector. This approach was preferred over using a

single detector to mark both the beginning and end of electrographic seizure activity

for several reasons.

The characteristics of IEEG onset activity can differ greatly from those in the

latter stages of a seizure. For example, seizures with focal activity (i.e., activity lim-

ited to a small number of nearby channels) during their onset can exhibit generalized

activity towards their end. Other characteristics such as the fundamental frequency

ictal activity can differ between the earliest and latest stages of a seizure. Finally,

the post-ictal period tends to be associated with electrographic qualities (e.g. slowing

and amplitude attenuation) that distinguish it from the rest of the inter-ictal activity.

As with seizure onset, the IEEG immediately following seizure end varies across

patients and seizure types. Seizure end detection is further complicated in many cases

by the gradual nature with which the IEEG changes at the end of seizures. When

ictal-to-postictal IEEG transitions are gradual, electroencephalographers as well as

algorithms may be challenged to identify the time of seizure termination.
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Our machine-learning-based approach is patient-specific. We employ an approach

where the seizure end detector is designed to discriminate between ictal and post-ictal

activity, and is paired with a seizure onset detector that triggers it.

3.1 Seizure End Detection Algorithm and Evaluation

The seizure end detector performs a sliding window analysis of the IEEG following

the beginning of a seizure. The analysis window used by the seizure end detector is 4

seconds long, and is advanced forward by 1-second increments. The detector extracts

salient features from each analysis window, and then assembles those features into

a feature vector. Next, the detector uses a classifier to determine whether a feature

vector is representative of the ictal or post-ictal state. To prevent early seizure end

declarations because due to the detector's failure to recognize the onset, at least three

successive windows must be classified to belong to the seizure class before a seizure

end can be declared. If KE = 5 successive feature vectors are classified as belonging

to the post-ictal state, then the detector declares that the seizure has ended.

Since ictal and post-ictal IEEG activity characteristically differ both in their spa-

tial distribution and spectral structure, it is important that our feature vector capture

these signal properties. The feature extraction process is very similar to those used

for seizure onset detection described in Chapter 2. Each spectral feature in the fea-

ture vector XT represents the logarithm of the total energy in a specific frequency

band on a single channel. One difference in the case of seizure end detection is that

we do not stack several of these vectors to form time-delay embedded feature vector.

This is because later-stage seizure activity characteristics do not tend to change on a

small timescale, or transition between different types of activity in a short period as

is often the case with seizure onset activity.

The feature vector is classified as representative of ictal or post-ictal activity using

a linear support vector machine (SVM). The SVM algorithm uses training ictal and

post-ictal feature vectors to learn a decision boundary that separates these two classes

of activity. Training ictal and post-ictal vectors are derived from multiple seizures of
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a single patient. Once a decision boundary is learned, the SVM algorithm determines

the class membership of a newly observed feature vectors based on which side of the

boundary the vector falls. Within the SVMlight software package [16], the error cost

parameter was set to C=1/50.

3.1.1 Data and Evaluation

We evaluated our methodology using the seizure data and associated post-ictal data in

the database described in Chapter 2. This database contains 65 seizures recorded from

10 epilepsy patients admitted to Massachusetts General Hospital. For each seizure

in the database, an expert electroencephalographer determined seizure onset and end

times by examining the IEEG without knowledge of the determinations made by the

algorithm. Table 3.1 contains some relevant information for all patients, such as the

number of seizures recorded and the electrode types. Two seizures were omitted from

the dataset because many channels were obscured by high-amplitude artifact for the

majority of their duration. The IEEG during one of the seizures is shown in Figure

3-1.

Patient 1 2 3 4 5

Number of seizures 3 5 6 5 8
# of electrodes 98 56 114 34 68
Electrode types Grid & Depth Grid & Depth Depth

Depth Depth

Patient 6 7 8 9 10

Number of seizures 3 7 11 11 6
# of electrodes 40 54 64 80 85
Electrode types Depth Depth Depth Depth Grid &

Depth

Table 3.1. Patient data set information for the database used to evaluate the seizure end detector.

We use multiple metrics to assess the performance of the seizure end detector.

The first metric, end detection error, measures the time difference between algorithm

declaration of seizure end and expert-marked seizure termination within the IEEG.
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1LSbF LSbF2
2LSbF3-LSbF4
3LSbF5-LSbF6
4LCIN1-LCIN2
5LCIN3-LCIN4
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7LATI -LAT2
2LAT5-LAT4
9LPT1 -LPT2
1OLPT3-LPT4
11 LPT5-LPT6
12LSMA5-LSMA2
1 3LSMA3-LSMA4
1 4RSbF1 -RSbF2
15RSbF3-RSbF4
1 6RSbF5-RSbF6
17PC IN1-RCIN2
1 8RCIN3-RCIN4
1 9RCIN5-RCIN6
20RATI-RAT2
21 RAT3-RAT4
22RATS-RAT6
23RPT1 RPT'2
24RPT3-RPT4
25RPT5-RPT6
26RSMA1-RSMA2
27RSMA3-RSMA4
2BRSMA5-RSMAS14

Figure 3-1. A 30-second window of intracranial EEG during a Patient 2 seizure omitted from the
end detection study. Many channels are artifact-obscured for much of its duration.

The algorithm declares seizure end at the end of the last of KE = 5 analysis windows

that have been classified as representative of post-ictal activity. When we wish to

ignore the sign of the error, we report the absolute end detection error, which is the

absolute value of the end detection error. The sensitivity refers to the percentage of

test seizures whose end the algorithm detected.

We use a leave-one-record-out testing procedure to evaluate the performance of

our seizure end detector. To independently evaluate the seizure end detector, we

assume a separate module will detect seizure onset, and test records extend from

the electrographic onset of a seizure to PD = 8 minutes following its end. The

PD parameter determines the length of the post-seizure period that the algorithm

considers as post-ictal. However, this setting can result in the inclusion of data in the
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set of post-ictal training examples that may be considered not to be post-ictal. The

transition from post-ictal to background (or inter-ictal) IEEG is often very gradual,

and there may not be a clear or unequivocal end to the post-ictal period. From each

record we compute approximately 480 feature vectors labeled as post-ictal, and a

number of seizure feature vectors proportional to the length of the seizure. A single

exception was made for Patient 4, where seizures were less than 8 minutes apart,

and the records ended 6 minutes after the seizure end in that case. Let Ni be the

number of records in the dataset of patient i. A seizure end detector is trained on

feature vectors derived from the ictal and post-ictal periods in N 1 records. Next,

the detector is tasked with detecting seizure end in the withheld record. These two

steps are repeated Ni times so that each record from patient i is tested once. For

each tested record, we note whether seizure end was detected, and if so, with what

error.

3.2 Results and Discussion

For 5 out of 10 patients, 100% of seizure ends were detected within a 15-second

margin of the expert-marked end. Overall, 88% of all seizure terminations were

detected within 15 seconds of the marked seizure ends, and 86% were detected within

a 10-second margin. This result can be compared to that obtained with the scalp

EEG seizure termination detector in [31], where 81% of seizure ends were detected

with an absolute detection error smaller than 15 seconds. A positive detection error

(indicating late end detection) was obtained for a large majority of seizures, and this

is mainly due to the algorithm requirement that KE = 5 consecutive windows must

be deemed by the classifier to correspond to post-ictal epochs before the end can be

declared. Among those seizures for which an absolute detection error in excess of 15

seconds was obtained with this algorithm, the vast majority had a negative detection

error (corresponding to premature seizure end detections). For a single seizure, a

seizure end declaration that was induced by a short-lived artifact was ignored, and

the algorithm was allowed to continue a search for the seizure end. We thus consider

49



artifact detection designed to work as part of a seizure end detector to be task that

can be addressed separately.

As discussed in Chapter 2, the Patient 6 seizure of a distinct type relative to the

two remaining seizures in the dataset was missed by the seizure onset detector in a

leave-one-record-out test. The same phenomenon also lead to a large offset detection

error for the seizure of a unique type. Another patient dataset with only 3 seizures

also resulted in a low percentage of seizure ends detected within a 10-second margin

(66% for Patient 1).

The algorithm declared a premature seizure end in a few cases due to a phe-

nomenon where ictal activity persists on a small number of channels after an abrupt

end of such activity on all the remaining channels. An example of this is illustrated in

Figure 3-2, which shows a 20-second window of IEEG during a seizure from Patient

1. Whereas the high amplitude activity comes to a halt for most channels during this

epoch, near-periodic activity (with decreased amplitude) continues on a few chan-

nels ('AnTD','PsTD' or 'SBTP' channels, all corresponding to temporal lobe depth

electrodes). The end is declared during the period shown in that figure, but the

expert-marked seizure end is approximately 45 seconds after the end of this window,

resulting in a very high absolute detection error. The amplitude of this activity is

increasingly and gradually attenuated on the five channels after it ends on all other

channels. Combined with the cessation of ictal activity on a large majority of the

channels, this may be why the classifier began prematurely classifying windows as

belonging to the post-ictal class. In the remaining two seizures from this patient, all

ictal activity ends abruptly and simultaneously on all channels. The IEEG around

the marked seizure end for one of the two remaining seizures is shown in Figure 3-3.

This is important to note because the occurrence of this phenomenon is not by itself

sufficient to lead to erroneous algorithm end declarations. A premature end declara-

tion resulted in cases where this phenomenon is unique to a single test seizure. If a

similar pattern was shown in any of the other seizures from this patient's dataset, it

is likely that this very premature end detection could have been avoided.
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Figure 3-2. A 20-second window of intracranial EEG during a Patient 1 seizure. Whereas the high
amplitude activity comes to a halt for most channels during this epoch, near-periodic activity (with
decreased amplitude) continues on a few channels. A premature end detection was obtained for this
seizure. The expert-marked seizure end is approximately 45 seconds after the end of this window
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Figure 3-3. A 20-second window of intracranial EEG from Patient 1 showing the expert-marked
end of a seizure (blue dotted line). Ictal activity ends abruptly on all channels nearly simultaneously,
in contrast to the seizure end shown in Figure 3-2

We also had a premature end detection in a case where the highest-intensity ictal

activity transitioned between different areas in the brain, with a lull in high ampli-

tude activity in between. IEEG from a section of this patient's seizure are shown

in Figures 3-4 and 3-5. A premature end detection resulted from an unusual seizure

pattern where the seizure starts with ictal activity present in both the temporal lobe

(as evidenced by the channels labeled 'RAT' and 'RPT'), and the frontal lobe ('RSbF'

and 'RPsF' channels). The activity ceased in the temporal lobe, but continued (al-

beit somewhat attenuated and altered) in the frontal lobe. The frontal lobe activity

evolves, as illustrated by Figure 3-5, which shows the IEEG during a 15-second win-

dow at a later stage in the seizure. In response primarily to the cessation of temporal

lobe ictal activity the classifier begins to misclassify the epochs following that point

as post-ictal, leading to an early seizure end declaration. However, as the frontal lobe

activity progressed and evolved, the algorithm returned to (correctly) classifying the
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later epochs as belonging to the ictal class

-IV-

Figure 3-4. A 15-second window of intracranial EEG from a Patient 5 seizure, during which an early
seizure end detection occurs. The seizure starts with ictal activity present in both the temporal lobe
(as evidenced by the channels labeled 'RAT' and 'RPT'), and the frontal lobe ('RSbF' and 'RPsF'
channels). The activity ceased in the temporal lobe, but continued (albeit somewhat attenuated
and altered) in the frontal lobe.
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Figure 3-5. A 15-second window of intracranial EEG from Patient 5 seizure starting after the
window shown in Figure 3-4. The frontal lobe activity ('RSbF' and 'RPsF' channels) has evolved
leading up to this period, and the algorithm correctly classifies these epochs as ictal after a premature
seizure end has been declared.
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Only 3 out of 7 seizure ends were detected within a 10-second margin of the

expert-labeled end for Patient 7. Despite some variation in the seizure patterns, the

seizure onset detector demonstrated relatively low latency when tested on this patient

data set. However, perhaps a greater degree of latter-stage ictal pattern diversity led

to less impressive seizure end detection results. In addition, many of this patient's

seizures featured a gradual ending, marked by an expert based on subtle changes in

activity. In addition, it was very difficult to objectively establish a clear seizure end

point, and subjectivity may have played a large role.

In a few cases an early seizure end detection resulted from the misclassification of

clearly ictal activity. Although a seizure end was declared by the algorithm during

periods with activity associated with the ictal state (such as high amplitude or rhyth-

mic activity), this can occur when certain aspects of the spatio-spectral electrographic

pattern has not been observed during seizures used for training. Two periods of ictal

activity can differ in several ways, including the channels that show ictal activity, the

amplitude of the activity, or the approximate dominant (fundamental) frequency of

the activity. As an example Figure 3-6 shows a 7-second window of IEEG during

which the algorithm declared a premature seizure end. This period features high

amplitude activity on the channel labeled 'LAnT1-LAnT2', but the classifier fails to

recognize a series of epochs as ictal, and declares an early seizure end. This may

be because no similar period in any of the six remaining seizures used for training

featured clear ictal activity on this channel.

Problems from cases like this can be remedied by an increase in the number of

training seizures, to ensure that the classifier is exposed to as many of the patient's

electrographic ictal patterns as possible. However, in absence of additional data, one

way the likelihood of early termination detections in similar scenarios could be re-

duced is by supplementing the method with a patient non-specific component. This

could be a knowledge-based approach, i.e. translating a clinician's characterization of

indisputable ictal activity to some simple heuristics on a few measures (such as signal

line-length or rough measures of signal periodicity). Alternatively, this component

could be machine-learning-based, i.e., trained using the seizure and post-ictal data
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from many patients. This component would likely have to be designed to be conser-

vative in the sense that it errs on the side of declaring non-seizure activity, to avoid

delaying the declaration of seizure termination. However, in cases like this with less

subtle ictal activity this component can intervene to prevent an early declaration of

seizure end. However, one issue that must be addressed before such is the lack of a

consistent channel map across different patients for intracranial EEG. The channels

correspond to a different set of locations on or within the brain for different patients.

In addition to channels corresponding to different locations, the number of channels

generally differs from patient to patient, and the feature extraction process described

in this chapter will yield feature vectors of different sizes for different patient. There-

fore, a way of transferring what is learned from electrodes in different configurations

and locations from other patients must be devised before a similar patient-non-specific

solution can be applied.

Figure 3-6. A 7-second window of intracranial EEG from a Patient 7 seizure during which an early
seizure end is declared by the algorithm. This period features high-amplitude ictal activity on the
channel labeled 'LAnT1-LAnT2'
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Chapter 4

Channel Pre-selection and

Patient-Specific Feature Extraction in

Seizure Onset Detection

For the results in Chapter 2 we did not require the manual pre-selection of a small

set of channels by an expert. In this chapter, we present the results when the seizure

detector is restricted to the use of a small number of pre-selected channels (2-4). This

restriction may, for example, be due to instrumentation power constraints. Another

possible motivation for a reduction in the size of the channel set is an improvement

in performance, since allowing all channels to be used may lead the algorithm to

incorporate non-specific information (from channels not involved early in the onset)

that may increase the likelihood of incorrect classification.

EEG channel selection could be accomplished in an automated manner, by means

of algorithms that are designed to use training data to search for a reduced channel set

that results in good performance [26]. However, in this chapter we explore the effect

on automated seizure onset performance when the channels are manually selected

based on visual examination, and correspond to the channels that display the earliest

onset activity for each patient.

We also present and evaluate an algorithm for patient-specific feature extraction,

an approach where the feature extraction process for a given patient leverages the

training data available for that patient. The results from an evaluation of a detector

that supplemented the original spectral energy features with features computed in a
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patient-specific manner are also presented.

4.1 Channel Pre-selection Examples

In cases where a limited number of channels is used, it is still a goal of automatic

seizure onset detection to declare a seizure with as low a latency as possible. There-

fore, if the information from only a small number of channels will serve as input to an

algorithm, they are usually selected to be those that display the earliest ictal activity

(including the activity that was identified by an expert to determine the onset). This

is often associated with an assumption that one or few seizures are representative of

other or future seizures in terms of the identity of these channels. Without a simi-

lar assumption, one cannot ensure that cases where future seizures show the earliest

activity on channels that have not been pre-selected for a particular patient will be

avoided. This would predictably have undesired effects on detection latency. The

feasibility of disposing of all but few of the IEEG channels is linked with spatial con-

sistency in the onset activity. Therefore we focus only on patients whose seizures show

the highest level of consistency in terms of the channels that show the earliest signs

of seizure activity. In this section we discuss an example of a patient dataset that was

included in the evaluation of the seizure onset detector with channel pre-selection,

and a patient dataset that was not included in the channel-selection study.

We evaluated the onset detection algorithm with channel pre-selection using the

IEEG database described in Chapter 2. One of the patients included in this channel

selection study is Patient 2. Figure 4-1 shows a 6-second window of intracranial EEG

from a Patient 2 seizure that includes its electrographic onset. The seizure begins with

spikes on three channels labeled 'RAT 1-RAT2', 'RAT3-RAT4' and 'RPT1-RPT2', fol-

lowed by activity which evolves and becomes rhythmic. These channels all correspond

to temporal lobe depth electrodes. Figure 4-2 shows the onset of another Patient 2

seizure. Similarly, the seizure also begins with spikes on the same three channels.

Rhythmic activity also follows the seizure in Figure 4-2, although the activity that

immediately follows the spike in Figure 4-1 is more irregular before it evolves. All six
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of this patient's seizure onsets are signalled by similar spike activity (as determined

by an expert), but most importantly for the purposes of this section, this occurs on

the same set of three channels for all seizures. Given this high level of consistency

in terms of the channels that exhibited the activity that was determined to mark the

onset, this patient was included in the channel pre-selection study. The channels that

were selected are the three aforementioned temporal lobe channels.

LSbF1-LSbF

LSbF3-LSbF

LSbF5-LSbF

LCIN3-LCIN4

LCIN5-LCIN6

LPT1-LPT2

LPT3-LPT4

LPT5-LPT6

LSMIA1-LSMA

LSMA3-LSMA4

RSbF1-RSbF2

RSbF3-RSbF

RSbF5-RSbF

RCIN3-RCIN

RCINS-RCIN

RAT1-RAT2

RAT3-RAT4

RPT1-RPT2

RPT3-RPT4

RPT5-RPTB

RSMA3-RSM

RSMA-RS

-2 0 2
Time(sec)

3

Figure 4-1. A 6-second window of intracranial EEG from a Patient 2 seizure showing the onset.
The onset is indicated by the dotted blue line. The seizure begins with spikes on 3 channels labeled
'RAT1-RAT2', 'RAT3-RAT4' and 'RPT1-RPT2', followed by activity which evolves and becomes
rhythmic.
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Figure 4-2. A 6-second window of intracranial EEG showing the onset of another Patient 2 seizure.
The onset is indicated by the dotted blue line. The seizure also begins with spikes on 3 channels
labeled 'RAT1-RAT2',RAT3-RAT4' and 'RPT1-RPT2', followed by rhythmic activity.
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The three seizures of Patient 1 did not demonstrate a similar degree of spatial onset

consistency. Figure 4-3 shows the onset of a Patient 1 seizure. The onset activity

appears on the channels labeled 'ANTD' and 'PSTD', all corresponding to temporal

lobe depth electrodes. Another seizure from this patient also features activity on the

same channels at the expert-marked electrographic onset. Figure 4-4 shows the third

(and last) seizure from the same patient. Unlike the other two recorded seizures in

this dataset, this seizure's onset was determined by the small-amplitude rhythmic

activity on the channel labeled 'PGR8-PGR13'. This seizure is unique in that it is

the only seizure in the set where the earliest ictal activity appeared on this channel.

Due to the inconsistency in the identity of the channels that show the earliest ictal

activity, this patient data set was not used for the channel pre-selection study.

It should be noted that in a practical or clinical setting, it may be difficult to de-

termine the number of seizures that must be observed before any conclusion regarding

consistency in the identity of channels that show the earliest seizure activity can be

reached. One aim of this chapter is to explore the effect of channel pre-selection on

onset detection performance when the lack of consistency in the channels that display

the earliest activity is not a (predictable) source of performance degradation, and the

assumption regarding a high level of consistency holds. The patient data sets used

in the channel pre-selection study include Patient 2, Patient 3, Patient 4, Patient 5

and Patient 9. Throughout this chapter they will instead be referred to as Patients

A,B,C,D and E respectively. Table 4.1 contains some general information for all 5

patient data sets, including the number of pre-selected channels.
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Figure 4-3. A 7-second window of intracranial EEG from a Patient 1 seizure showing the onset.

The onset is indicated by the dotted blue line. The onset activity appears on the channels labeled
'ANTD' and 'PSTD', which correspond to temporal lobe depth electrodes
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Figure 4-4. A 7-second window of intracranial EEG showing the onset of another Patient 1

seizure. The onset is indicated by the dotted blue line. Unlike the other two seizures recorded
from this patient, the seizure begins with small-amplitude rhythmic activity on the channel labeled
'PGR8-PGR13'.
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Patient A B C D E

Total time tested(Hr) 127 71 29 96 148
Number of seizures 6 6 5 8 11
# of selected channels 3 4 2 2 4
Electrode types Depth Grid & Depth Depth Depth

Depth

Table 4.1. Patient data set information for the database used to evaluate the seizure end detector
with channel pre-selection.

4.2 Performance of Onset Detection Algorithm With Channel Pre-selection

The results presented in this section are obtained by modifying the full-channel fea-

ture vectors (described in Chapter 2) so that only the features corresponding to

pre-selected channels are preserved. The output of the artifact rejection component

described in Section 2.1.2, which used the full channel set, was again used to prevent

alarms during epochs where high-amplitude artifact was detected in this study. The

SVM error cost parameter was set to C = 1 x 10-2 for all patients. Overall, 100% of

the 36 test seizures were detected. The median latencies for each patient are shown

in Table 4.2. The median false alarm rate was 1.5 false detections per 24 hour period.

The average false alarm rates for each patient are also shown in Table 4.2. For com-

parison, the results from the full-channel study from Chapter 2 are repeated in Table

4.3 for convenience. Decreasing the cost parameter C led to a larger training error,

particularly for the seizure class. We found that in many cases it was advantageous

to allow for an increase in training error as this often resulted in a large decrease in

false alarm rate at the expense of a relatively small increase in latency.

Patient A B C D E

Sensitivity 100% 100% 100% 100% 100%
Median Latency(sec) 4 3.75 4 4.75 7
False alarms/ 24Hr 0.4 4.1 0.8 3.1 1.5

Table 4.2. Sensitivities, median latencies and false alarm rates obtained for each patient data set
from evaluation of the seizure onset detector with channel pre-selection.
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Patient A B C D E

Sensitivity 100% 100% 100% 100% 100%
Median Latency(sec) 3.25 3.25 5 5.75 4.5
False alarms/ 24Hr 0.4 1.7 0 0.8 0.3

Table 4.3. Sensitivities, median latencies and false alarm rates obtained for each patient data set
from evaluation of the seizure onset detector using a full channel set.

The median latency increased with channel pre-selection for 3 out of 5 patients,

with the largest increase seen for Patient E (2.5 seconds). For the two patients where

latency decreased (with channel pre-selection), the difference in median latency was

exactly one second. In fact, the difference in median latency between the channel-

selected and full-channel results did not exceed one second for 4 out of the 5 patients.

The most common effect on results with channel pre-selection was an increase in false

alarm rate, which was the case for 4 out of 5 patients. However, the effect of increase

in the occurrence of false alarms may have been exaggerated in the case of Patient

B, where more than 80% of false alarm occurred within a single 3-hour period (out

of a total of 73 hours) due to the persistence of recording artifact in varying forms.

Overall, these results show that while a small reduction in latency may result from

channel pre-selection in some cases, a more common effect on performance may be

an increased susceptibility of the algorithm to false alarms. An example of a false

alarm that occurred when the algorithm was restricted to using the selected channels

is shown in Figure 4-5. A false alarm was raised during the 6-second window of

IEEG in the figure, which shows the runs of irregular high-amplitude activity (at

approximately 10Hz) during this epoch on the channel labeled 'RAT1-RAT2' (with

matching lower amplitude activity on the 'RPT1-RPT2'). This activity is very similar

to the activity that appears on the same channels during the onset of this patient's

seizures. Useful information about the activity on channels in the full set that is not

obvious on visual examination (and ignored in the channel pre-selection case) may

have prevented this and similar false alarms when the algorithm used all available

channels. Such examples are consistent with the conjecture that the inclusion of all

channels allows the system to leverage information that is not readily apparent to a
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clinical reader (from regions seemingly not involved in the onset) to better differentiate

ictal and inter-ictal patterns.

Figure 4-5. A 6-second window of intracranial EEG recorded from Patient D during which a false
alarm occurred. The two channels that were pre-selected for this patient are labeled 'RAT1-RAT2'
and 'RPT1-RPT2'. The onsets of a few of this patient's seizures feature similar activity
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4.3 Patient-Specific Feature Extraction

Patient-Specific Feature Extraction (PSFE) refers to a method where the feature

extraction stage is tailored to a patient using training data. The goal is to combine

the original spectral features with salient features learned from labeled examples from

the patient to improve detection performance. In general, the strategy is to learn

certain directions in IEEG signal morphology or spectral signatures whose presence

(or lack thereof) help indicate whether a given IEEG epoch belonged to the seizure

or non-seizure class.

Figure 4-6 shows a high-level view of the algorithm with the original feature ex-

traction strategy, as described in Chapter 2. A feature extraction component converts

every window of multi-channel IEEG into a feature vector, and the feature vectors are

either used to train an SVM (along with the respective labels) or to classify an epoch

outside the training set as belonging to the seizure or non-seizure class. The feature

extraction process uses a bandpass filter bank, and each filter is defined by the center

frequency and the width of the pass-band. These properties are fixed, and do not vary

from patient to patient. The respective energies of the output of the filterbank give

us a coarse description of the spectral profile of the IEEG signal. However, it may be

that the choice of filters can be better tailored to the patient, or that adjusting some

of these parameters will lead to superior seizure detection performance. For example,

for a certain patient a smaller bandwidth for filters at certain frequencies (and larger

bandwidths for others) may be more effective. The above is just an example that

introduces the concept that we can move away from the previous method towards

a more patient-tailored mode, but the methods proposed here are not restricted or

parameterized in precisely this fashion. However, they center around alternate signal

descriptions, with some emphasis placed on discriminative value in their derivation.
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Figure 4-6. A high-level view of the algorithm with the original feature extraction strategy, as
described in Chapter 2.
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Figure 4-7 illustrates the role of the various components of the algorithm with

the proposed patient-specific feature extraction method. Before training (or test)

feature vectors can be computed, training data is used to determine a crucial aspect

of the feature extraction process (during the stage represented in the figure as "feature

extraction training"). The output of the Patient-specific feature extraction training

component consists of a dictionary, which is a set of prototype sequences which can

be combined to approximate an IEEG signal. The dictionary and the way it factors

into feature extraction is further discussed in Section 4.3.1. The PSFE training (i.e.

the dictionary learning) process is described in Section 4.3.2.

Training

Training Training Feature
Data Patient-Specfic Vectors

po Feature y SVM
Extraction Training

Dat Feature
Extraction
Training

Classifier

Testing

Test Feature
Test Data Patient-Specific Vectors SVM

Feature Classification
Extraction

Figure 4-7. High-level illustration of the algorithm steps with the proposed patient-specific feature
extraction method
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The input to the patient-specific feature extraction training component comes in

the form of seizure and non-seizure training examples, where each example corre-

sponds to an epoch of IEEG on a single channel. Since low detection latency is an

important goal in seizure detection, the examples from the seizure class are chosen to

correspond to channels that show the earliest onset activity. The feature extraction

recipe that was determined using only these channels may not be appropriate to rep-

resent the activity on the remaining channels, which can differ to a significant extent

in many ways. Therefore, we evaluate the algorithm only on the patients for whom

we have pre-selected the channels that show the earliest seizure activity, and focus

on the case where the algorithm is restricted to using only these channels to compute

feature vectors.

We limit the number of non-seizure training examples used for PSFE training,

such that they do not greatly outnumber the number of training examples from the

seizure class. This is done to reduce the computational requirement during this stage.

In addition, this can prevent cases where a small minority of non-seizure examples

exhibiting overlapping morphology with that seen during seizures is ignored in the

PSFE training phase because this direction does not have significant presence in the

non-seizure class on aggregate. The presence of such activity, even if relatively rare

within the non-seizure class (i.e. as a ratio of the total number of examples), can

still lead to a significant and undesirable number of false alarms. Selecting a smaller

number of non-seizure training examples as an input to the PSFE training phase

can avoid such a scenario. The non-seizure epochs for the PSFE training phase are

selected to correspond to the support vectors that were determined through SVM

training using the original (spectral energy) feature vectors described in Chapter 2.

In the following sections we provide some more detail about the feature extrac-

tion framework that will supplement the fixed bandpass filterbank of the previous

algorithm, and introduce some mathematical notation.
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4.3.1 Feature Extraction Steps

A signal y can be represented or approximated using a linear combination of other

signals or vectors, which we refer to throughout this document as dictionary elements.

We refer to a set of these vectors as a dictionary. In the context of PSFE, the modeled

signals y represent a finite-length epoch of single-channel IEEG. If we denote an

approximation of y as y, then

= Zxidi

where the di are the dictionary elements, and the coefficients xi provide a recipe for

synthesizing the approximation of the vector y from the dictionary. A more compact

description of the previous equation can be written in matrix form

y = Dx

where the di vectors form the columns of D, and the ith entry of x is xi.

When the dictionary elements are fixed or known, the coefficients in x form an

alternative description of the signal. In the case where the representation is exact,

it is a complete description, but we will not be concerned with this case throughout

this chapter. We are interested in approximating the signal, i.e., allowing for some

error. In such cases, a primary consideration is the reduction of the approximation

error, which can be quantified as the mean square error

E(y,y) = y - = |ly - Dx| | (4.1)

where ||zi|| = z denotes the square of the Euclidean norm. The representation

in a given dictionary (more precisely, the logarithm of the entries in the x vector)

essentially constitutes the features we extract from an epoch from a single chan-

nel. We denote the number of dictionary elements as ND. Since the number of

coefficients is equal to the number of dictionary elements, the number of features

extracted per channel for each epoch is equal to ND. Given a dictionary, the features

extracted for a given epoch correspond to coefficients that minimize the approxima-

71



tion/representation error. However, in the next section we describe how we derive a

set of directions using a discriminative objective to obtain the dictionary.

The choice of the dictionary elements has a large influence on the resulting coeffi-

cients. Some properties or tendencies in the corresponding coefficient vectors may be

desirable for a given application, such as sparsity for compression, or segregation of

the effect of noise in a subset of the coefficients for denoising. The difference in the

feature extraction process for each patient comes from the use of a different dictionary

D for each patient. The dictionary elements di are learned using several examples

yj, each corresponding to an epoch of IEEG on one channel.

The feature extraction methodology described here does not represent a complete

departure from the original feature extraction phase, which computes spectral energy

features. Previously, a given channel is passed through a filterbank consisting of

simple bandpass filters, and the logarithm of the norms of the outputs are calculated

as the features for that channel. If the raw IEEG is first pre-processed as described

in Chapter 2, this approximately corresponds to setting the dictionary to the Fourier

basis (each basis vector di is a sinusoid of a different frequency), and then summing

the square magnitude of all the coefficients x corresponding to frequencies within a

given band to compute the feature for that band-channel pair. The Fourier basis has

a special property in that it is an orthogonal' basis (i.e. (di, dj) = 0 for i # j). A

consequence of this suggests a way of computing features when we restrict ourselves

to such bases/dictionaries. Specifically, when the basis set is orthonormal (i.e., an

orthogonal set of vectors of unit norm), given a signal y each coefficient x can be

obtained by taking an inner product between the signal and the basis vector. When

perfect representation is not possible, the choice of coefficients that minimizes the

mean square error is

xi = (y, di)

These coefficients can then be used to build the feature vector in cases where the

dictionary elements are orthonormal.

'For the purposes of this document we focus on the inner product (a, b) = aT b = ab.
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For the new PSFE features described in this chapter, the IEEG signals undergo

some simple pre-processing to obtain a vector y for each window on a given channel.

A derivative filter is applied, and this is followed by a computation of the square of

the magnitude of samples of the discrete-time fourier transform.

The patient-specific feature extraction scheme is composed of a method to learn

the dictionary, and a procedure to extract features once the dictionary is learned that

we have described in this section. In a broad sense, we desire a choice of dictionary

which yields coefficient vectors that exhibit different patterns depending on whether

the signal to be modeled using the dictionary elements belongs to the seizure or non-

seizure class. Said differently, we roughly wish to learn dictionaries that yield good

separability between classes in the corresponding coefficient space. The dictionary

learning (i.e., the feature extraction training) method we use is described in the next

section.

4.3.2 Dictionary Learning Method

To learn a dictionary from a patient dataset, the general strategy is to find directions

or morphologies that have a large presence in one class while having a minimal pres-

ence in the other class. More specifically, this methodology searches for directions in

which the power in the two classes shows a large difference.

The dictionary elements di are learned using several examples, each corresponding

to an epoch of IEEG on one channel. These can be compactly represented as the

columns of a matrix. Each example belongs to either one of two classes (seizure and

non-seizure), and these class labels are used in this learning process. It is convenient

to separate the examples into a seizure matrix Ys and non-seizure matrix YNS-

We begin by specifying an objective function that quantifies a notion of discrimi-

native value for a given dictionary element. We denote this function as F(d), and we

can determine a dictionary element by searching for maximizers of this function. We

use the objective function

|gL Ei (y , d)2 _ Ei (y sI d)21F(d) = N , N) - (4.2)
Id 112
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where y' denotes an example from the seizure class, Y s denotes an example from the

non-seizure class, and N1 and N2 represent the number of seizure and non-seizure ex-

amples respectively. We normalize by the square of the Euclidean norm of d (denoted

by |dl 1) to prevent arbitrary scaling of d from influencing the objective.

Our strategy is to successively search for dictionary elements. We can find the

first dictionary element di by finding the vector that maximizes this function. How-

ever, after finding the first element, repeating this process to obtain the remaining

dictionary members without any additional conditions will only yield an identical

result. We therefore constrain the derived dictionary elements to be orthogonal. The

orthogonality constraint on the set of dictionary elements provides a way of ensuring

some diversity among the dictionary elements. As each dictionary element is sequen-

tially derived using mathematical criteria that represents the separation between the

two classes, the subsequent dictionary element is additionally constrained to be or-

thogonal to it (and others) to avoid redundant or extraneous features resulting from

these solutions. A consequence of this is that the mathematical representation of the

extracted features is simplified. As discussed in the previous section, when the dic-

tionary is orthonormal, the least-square approximation coefficients can be obtained

by simply taking the inner product between the dictionary elements and the IEEG

window. Thus, a single matrix multiplication can yield all the features from several

IEEG channels in a single epoch. In addition, the method described in this section

searches for a dictionary element by maximizing the difference between the averages

for the two classes of the square-magnitude of the corresponding feature. As an ex-

ample that provides some intuition behind the interpretation of orthogonality, the

frequency responses of the non-overlapping ideal bandpass filters used for the original

spectral energy features are orthogonal (i.e. the inner product is zero). Increasing the

overlap in frequency increases the inner product, so in that case orthogonality of the

filter impulse responses indicates that they account for activity in different sections

of the frequency axis.

To show how the maximizer of F(d) can be found, we can rewrite the expression
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in equation 4.2 as follows:

|A 2 yls, d)2 - + (ys, d)2  (43)
F(d) = i ||d||N2| (4.3)

1 y(dT Ys)(YTd) - - (d T YNS) (YSd)
dlJ2 

(4~4)

Id N, ss - INS )sdj
- 112 SY d (4.5)

|d ||

Id T Wdl
Id d 112(4.6)

where
11

W = YsY YNS NS (4.7)
N1 SN 2

is real-valued and symmetric. It follows from the Rayleigh-Ritz theorem [13] that the

solution to this optimization problem is found by setting d to the eigenvector of the

matrix W corresponding to the largest-magnitude eigenvalue. This solution corre-

sponds to the first dictionary element, and we require that the rest of the dictionary

elements be orthogonal to this vector. However, since the W matrix is symmetric, its

eigenvectors are orthogonal. Therefore, all the dictionary elements can be determined

by finding the eigenvectors corresponding the ND largest eigenvalues, where ND is

the desired number of features per IEEG channel.

4.3.3 Seizure Onset Detection with PSFE Results

The results presented in this section are obtained by combining the channel-selected

spectral energy features described in Section 4.2 with the PSFE features discussed in

this chapter. The number of features per channel for the original feature set corre-

sponded to the number of filters in the filterbank M = 17. However, in preliminary

analysis it appeared that reducing this number for the PSFE case improved perfor-

mance, and we set the number of PSFE features per channel to ND= 9. The SVM

error cost parameter was set to C = 1 x 10-- for all patients. Overall, 100% of the 36

test seizures were detected. The median latencies for each patient are shown in Table

4.4. The median false alarm rate was 0.5 false detections per 24 hour period. The
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average false alarm rates for each patient are also shown in Table 4.4. For compari-

son, the results from the channel pre-selection study with the original spectral energy

features only in Section 4.2 are repeated in Table 4.5 for convenience.

Patient A B C D E

Sensitivity 100% 100% 100% 100% 100%
Median Latency(sec) 3.75 5 4.5 4.25 6
False alarms/ 24Hr 0 4.4 0 1.5 0.5

Table 4.4. Sensitivities, median latencies and false alarm rates obtained for each patient data set
from evaluation of the seizure onset detector using Patient-Specific Feature Extraction (PSFE).

Patient A B C D E

Sensitivity 100% 100% 100% 100% 100%
Median Latency(sec) 4 3.75 4 4.75 7
False alarms/ 24Hr 0.4 4.1 0.8 3.1 1.5

Table 4.5. Sensitivities, median latencies and false alarm rates obtained for each patient data set
from evaluation of the seizure onset detector with channel pre-selection using the patient non-specific
spectral energy features only.

The estimated false alarm rate and median latency increased with the inclusion

of the PSFE features for one patient (Patient B). The estimated false alarm rate de-

creased and the median latency increased for Patient C. However, the results indicate

an improvement in performance for 3 out of the 5 patients (Patient A, Patient D and

Patient E). Both the false alarm rate and the median latency fell when the PSFE

features are used for these three patients. While the improvement in performance is

not entirely consistent across all patients, these results are encouraging. The PSFE

features appear to complement the patient non-specific features, and this suggests

that this is a promising area of investigation. The methods we have discussed can

be further refined, and further algorithm development may lead to more dramatic

or consistent improvement in performance. Alternative dictionary learning methods

could be considered, and more broadly, different approaches and implementations of

patient-specific feature extraction. We hope this encourages the use of this and sim-

ilar ideas (i.e., the introduction of learning in the feature extraction component) in
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other EEG-related applications, or more broadly, in learning-based solutions to other

biomedical problems.

4.3.4 Future Work

In this section we propose some future work in the form of an alternative approach

to PSFE. The method outlined in this section involves a feature extraction procedure

where coefficient vectors are computed from IEEG examples and a dictionary by

means of sparse approximation. In sparse approximation, the coefficient vectors are

restricted to have a certain number of zero entries. Therefore, this process seeks a

least-squares optimal approximation using a linear combination of a limited number of

the dictionary elements, and finding the subset of the dictionary that is most effective

for this is part of the sparse approximation problem. The idea behind this form of

feature extraction is to attempt to learn dictionaries such that certain coefficients are

more likely to be zero for one class, and other coefficients tend to be equal to zero for

the other class.

We seek a sparse coefficient vector x to approximate a signal given a (fixed)

dictionary D. More specifically, feature extraction through sparse approximation

involves a search for a coefficient vector specified as

arg min||y - Dx|| such that ||xlo < T (4.8)

where ||xilo denotes the number of nonzero entries in x. Good approximate solutions

can be found by means of the Basis Pursuit algorithm [5], which instead solves the con-

vex problem that minimizes the objective I|y - Dx||12+ A lx|i where ||xi1 = E 1il.

The A parameter trades off approximation error with sparsity of the resulting coeffi-

cient vector.
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To learn a dictionary using training data, we can begin by leveraging existing

work on dictionary learning for sparse approximation. The K-SVD algorithm finds

both a dictionary and the corresponding coefficients that model a set of signals in Y,

by reducing the approximation error within strict sparsity constraints [2, 3]. In this

way, the algorithm adapts a dictionary to a set of training signals. Specifically, it

searches for solutions that reduce the objective E ||yi - Dxil with the constraint

that ||xillo < T for all i.

The algorithm attempts to find a dictionary that minimizes the approximation

error given sparsity constraints on the coefficient vectors xi. Alternatively, the prob-

lem can be formulated as the search for a dictionary that maximizes sparsity of the

coefficient vectors given a limit to the approximation error on a set of signals in Y.

The algorithm draws its inspiration from the K-means clustering algorithm, and

can be viewed as a generalization of the K-means clustering algorithm. As is the case

with the K-means algorithm, K-SVD only provides solutions at local minima. How-

ever, just as with K-means, multiple initializations of the optimization procedure can

increase the likelihood that the algorithm still gives good or even optimal solutions.

The standard K-SVD algorithm derives a dictionary from a single set of given

signals, but any consideration for class labels or discrimination between said classes

is outside the context of the problem originally addressed by the algorithm. We

therefore require a modification or extension of the K-SVD algorithm that is designed

to leverage class labels to improve classification performance.

There are discriminant variants of the K-SVD algorithm that have been described

in the literature [15, 34]. These methods alter the K-SVD algorithm by incorporat-

ing the error cost function of a linear classifier (using the representation coefficients

associated with a dictionary) into the objective. The classification error function of

a linear classifier on the coefficient vectors serves as an indicator of the separability

of the training examples in the coefficient space for a given choice of dictionary. This

may allow for the derivation of dictionaries that represent the data well (low approx-

imation error), but also yield representations that a linear classifier can predict the

labels from with some accuracy. These and other discriminative dictionary learning
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methods can be explored to design an alternate method for patient-specific feature

extraction.
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Chapter 5

Summary and Discussion

This thesis addresses the computerized analysis of IEEG for the detection of the elec-

trographic onset and end of epileptic seizures. We first described and demonstrated

the utility of a learning-based algorithm for the early and accurate determination of

seizure onsets from intracranial data.

We analyzed more than 875 hours of continuous intracranial EEG recorded from

10 patients to evaluate our algorithm. The study used more than 87 hours of data per

patient, which significantly exceeds the amount of data used in most previous stud-

ies. This allows for more realistic estimates of long-term performance. We presented

results from a study that uses the full set of intracranial electrodes of sufficient record-

ing quality. The data used to evaluate our detector was recorded at Massachusetts

General Hospital. The patients were all surgical candidates who required invasive

monitoring, and therefore represent more complicated cases than the general popula-

tion of patients with epilepsy. For the hospitalized patients from whom the data for

this study was recorded, the anti-epileptic drug levels were changed on a daily ba-

sis. The medications have a significant effect on both seizure and non-seizure IEEG.

The lack of consistency in the magnitude or nature of these effects at different times

complicates the evaluation of the detector.

The results from this system provide evidence that patient-specific algorithms can

outperform existing methods, especially when trying to balance early detection with

a low false alarm rate. The proposed algorithm performance compares favorably to

existing methods, as determined by well-defined performance metrics. Overall, 97% of

the 67 test seizures were detected, and the sensitivity was 100% for most patients. The
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median latency with which the detector declared the seizure onset (across all seizures)

was 5 seconds. The median estimated false alarm rate was 0.6 false detections per 24

hour period.

The cases with relatively poor performance in terms of sensitivity or latency were

cases with multiple classes of IEEG seizure activity within a patient dataset with a

limited number of seizures. In one such case this was combined with considerable

variation in morphology or the identity of the channels that displayed the earliest

noted seizure activity within those classes. For each test seizure, the paucity or

absence of sufficiently similar examples of onset activity from seizures in the training

set contributed to the decline in performance. A lower latency was obtained for a

dataset that included a large number of seizures recorded from a patient for whom

the clinician enumerated several seizure types.

The false alarm events are unevenly concentrated in different regions in time, i.e.,

they temporally cluster. The temporal clustering of false alarm times has application-

specific implications for the potential utility of this system. The IEEG of patients

with epilepsy transitions between regimes within both the seizure and the non-seizure

states and is, therefore, a nonstationary process. Different periods feature different

types of activity. Some activity may be common during some periods, and absent or

suppressed in others. The characteristics of IEEG are subject to influence by more

global processes or physiological states, such as as circadian rhythms and catamenial

cycles. Also, the daily change in medication levels may have played a role in the

number (and perhaps the distribution) of false alarms.

In addition, we described and evaluated an algorithm for the detection of the

end of seizure activity within IEEG. The algorithm is designed to be paired with a

seizure onset detector that triggers its search for the seizure end point. A seizure

end detection algorithm can enable important applications, including the delivery of

therapies to control postictal symptoms, and the detection of status epilepticus. For

5 out of 10 patients, 100% of seizure ends were detected within a 15-second margin

of the expert-marked end. Overall, 88% of all seizure terminations were detected

within 15 seconds of the expert-marked seizure ends, and 86% were detected within a
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10-second margin. This result can be compared to that obtained with the scalp EEG

seizure termination detector in [31], where 81% of seizure ends were detected with an

absolute detection error smaller than 15 seconds.

Large variations in late-stage IEEG patterns or patterns that are unique to a

single seizure in a patient dataset lead to poor seizure end detection performance in

the case of a few seizures. Problems from cases like this might be remedied by an

increase in the number of training seizures, to ensure that the classifier is exposed

to as many of the patient's electrographic ictal patterns as possible. However, in

absence of additional data, one way the likelihood of early termination detections in

similar scenarios could be reduced is by supplementing the method with a patient

non-specific component. This could be a knowledge-based approach, i.e., translating

a clinician's characterization of indisputable ictal activity to some simple heuristics

on a few measures (such as signal line-length or rough measures of signal periodicity).

Alternatively, this component could be machine-learning-based, i.e., trained using the

seizure and post-ictal data from many patients. However, a way of transferring what

is learned from electrodes in different configurations and locations from other patients

must be devised before such a patient-non-specific solution can be applied.

We explored the effects of manual channel pre-selection on seizure onset detection

for some patient data sets. We evaluated and presented the results from a seizure

detector that has been restricted to use only a small subset of the channels available.

The channels that are selected were those that displayed the earliest onset activity

for each patient. The feasibility of disposing of all but few of the IEEG channels is

linked with spatial consistency in the onset activity. Therefore we focused only on

patients whose seizures show the highest level of consistency in terms of the channels

that show the earliest signs of seizure activity. The results indicate that performance

can suffer in many cases when the algorithm uses a small set of selected channels,

often in the form of an increase in false alarm rate. This suggests that the inclusion

of a full channel set allows the system to leverage information that is not readily

apparent to a clinical reader (from regions seemingly not involved in the onset) to

better differentiate ictal and inter-ictal patterns.
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These results may shed some light on the physiological aspects of seizure gen-

eration and propagation. Information from channels that do not display clear ictal

activity during the onset appear to be useful for discriminating seizure from non-

seizure activity. Therefore, one can speculate that the activity from the regions of

the brain to which they correspond is related to the seizure activity, even if clear ictal

activity only appears in a different region. During a seizure where ictal activity is

limited to a certain region the brain, there can be physiological and subtle electrical

changes in other brain regions, as well as clinical symptoms associated with impair-

ment in the regions outside the focus [9, 8]. The small region where clear ictal activity

first appears may not be the only significant participant in the genesis of a seizure,

and seizure generation or propagation may be contingent on the state of activity in

other regions of the brain.

Finally, we proposed an alternative feature extraction method that is tailored to a

patient using the training data, and is designed to work with datasets limited to a few

pre-selected channels. The feature extraction process involves the representation of

an epoch of IEEG on a channel as a linear combination of vectors that we refer to as

dictionary elements. To learn a dictionary, the method searches for directions in which

the power in the two classes shows a large difference. The results from an evaluation

of a detector that supplemented the original spectral energy features with features

computed in a patient-specific manner show a significant improvement in 3 out of

5 patients. The features computed in a patient-specific way appear to complement

the patient non-specific features, and this suggests that this is a promising area of

investigation.

The patient-specific feature extraction methods we have discussed can be further

refined, and further algorithm development may lead to more dramatic or consis-

tent improvement in performance. Alternative dictionary learning methods could be

considered, and more broadly, different approaches and implementations of patient-

specific feature extraction. We hope this encourages the use of this and similar ideas

(i.e., the introduction of learning in the feature extraction component) in other EEG-

related applications, or more broadly, in learning-based solutions to other biomedical

84



problems.
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