
Dynamics of spectral algorithms for distributed routing
ARCHNE

by MASSACHUSETT INS fE
OF TECHNOLOGY

Petar Maymounkov
JL0 1 2012

B.A. Mathematics, Harvard University (2001)
M.Sc. Computer Science, New York University (2004)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@2012 Massachusetts Institute of Technology. All rights reserved.

A uthor .. / . 4..... //..............
Department of Electrical Engineerihg and Computer Science

March 2, 2012

C ertified by

Jonathan Kelner
Assistant Professor of Applied Mathematics

Thesis Supervisor

A ccepted by
Profeeslie A. Kolodziejski
Professor ofElectrical Engineering

Chairman, Committee for Graduate Students

2

Dynamics of spectral algorithms for distributed routing
by

Petar Maymounkov

Submitted to the Department of Electrical Engineering and Computer Science

on March 2, 2012, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

In the past few decades distributed systems have evolved from man-made machines to organically

changing social, economic and protein networks. This transition has been overwhelming in

many ways at once. Dynamic, heterogeneous, irregular topologies have taken the place of static,
homogeneous, regular ones. Asynchronous, ad hoc peer-to-peer networks have replaced carefully

engineered super-computers, governed by globally synchronized clocks. Modern network scales

have demanded distributed data structures in place of traditionally centralized ones.

While the core problems of routing remain mostly unchanged, the sweeping changes of the

computing environment invoke an altogether new science of algorithmic and analytic techniques.

It is these techniques that are the focus of the present work.

We address the re-design of routing algorithms in three classical domains: multi-commodity

routing, broadcast routing and all-pairs route representation. Beyond their practical value, our

results make pleasing contributions to Mathematics and Theoretical Computer Science. We

exploit surprising connections to NP-hard approximation, and we introduce new techniques in

metric embeddings and spectral graph theory.

The distributed computability of "oblivious routes", a core combinatorial property of every

graph and a key ingredient in route engineering, opens interesting questions in the natural

and experimental sciences as well. Oblivious routes are "universal" communication pathways

in networks which are essentially unique. They are magically robust as their quality degrades

smoothly and gracefully with changes in topology or blemishes in the computational processes.

While we have only recently learned how to find them algorithmically, their power begs the

question whether naturally occurring networks from Biology to Sociology to Economics have

their own mechanisms of finding and utilizing these pathways.

Our discoveries constitute a significant progress towards the design of a self-organizing In-

ternet, whose infrastructure is fueled entirely by its participants on an equal citizen basis. This

grand engineering challenge is believed to be a potential technological solution to a long line of

pressing social and human rights issues in the digital age. Some prominent examples include

non-censorship, fair bandwidth allocation, privacy and ownership of social data, the right to

copy information, non-discrimination based on identity, and many others.

Thesis Supervisor: Jonathan Kelner

Title: Assistant Professor of Applied Mathematics

3

4

Acknowledgments

I was interested in Mathematics at an early age in a kind of manner unconditional on any goal.

My interests however took shape and direction when I met teacher Michael Mitzenmacher in

college, whose engaging teaching permanently turned me into a Computer Scientist. Soon after

I studied at the Courant Institute under the supervision of David Mazieres. I continue to be

indebted to David for his addictive enthusiasm and energy. The research we did together formed

my impressions of what academic work should be like: an exciting social process of collaboration

and passion.

To follow I was dropped in the whirlpool of fast-paced science at MIT, where many peo-

ple were instrumental to my path. I want to thank Frans Kaashoek for providing me with

unconditional support and freedom to pursue my ideas.

Perhaps by chance, but probably not just, I have always lived a double-life between the

"systems" and "theory" communities. I am very thankful to my systems colleagues - Russ Cox,

Michael Freedman, Bryan Ford, Thomer Gil, Szymon Jakubszak, Frans Kaashoek, Maxwell

Krohn, Chris Lesniewski-Laas, Robert Morris, Jeremy Stribling, Michael Walfish - for being

great company, sporting furiously good debates, being patient with my theory and teaching

me the ins and outs of practical science. In my theory life I extend my gratitude to all the

remarkable teachers - Richard Cole, David Karger, Piotr Indyk, Michel Goemans, Igor Pak,

Joel Spencer, Madhu Sudan, and more - who taught me modern thinking in brilliantly different

ways and whose unique personalities have shown me how science is embodied in people.

I especially thank my adviser at MIT, Jonathan Kelner. Jon encouraged me to take on

entirely new areas of Mathematics and introduced me to all things spectral. He has been

greatly accommodating and helpful, never starved of insightful ideas.

I thank my co-authors - Haim Avron, Keren Censor-Hillel, Matthew Brand, Bernhard Hae-

upler, Nick Harvey, Desmond Lun, Andreas Molisch, Sivan Toledo - for the exciting times we

have shared in making our discoveries and for patiently introducing me to their respective fields

of expertise. It has been an honor working with all of you. My work on Kademlia, while not

my most sophisticated piece, has had the biggest practical impact and has brought me some

flattering fame. I would like to thank Jed McCaleb for taking a large part in bringing this

theoretical work to practice and the larger audiences.

Throughout my years at MIT I have had numerous stimulating exchanges with the wonderful

folk that shared their time with me at MIT. They are Alexandr Andoni, Arnab Bhattacharyya,

Elena Grigorescu, Krzysztof Onak, Kevin Matulef and many others. Academics aside, life in

Cambridge has been stimulating because I met Oren Weimann and Benjamin Rossman, Grace

Loo and Alexis Schulman, Szymon Jakubszak and Katie Lazarowicz, Trisha Shrum and Tara

Grillos. I am grateful to my friends for decacdes, Tasho Statev-Kaletha and Chris Coyne.

Above all, I need to thank my family and relatives for their never-ending support. Despite

the ocean that separates us, my parents Boris Maymunkov and Ivet Baeva-Maymunkova have

always found ways to be right beside me.

5

6

Contents

1 Spectral routing 15

IL Routing the y .. .19

1.2 1einmids. 1lows and uting . 19

1.3 Oblivious network design . 20

1 .3. 1 S poci Il izat ions . 21

1.3.2 Lowei bounds . 22

1.3.3 BoItleiic('k a)proximating decompi)ositions 22

1.3.4 Tree-bairsed irouting . 25

L. Liini routing s(chemes . 28

1.4.1 The r-outing oeiriator . 28

1.4.2 Geomi-etrv of congestion . 29

1.4.3 Routing HI it a anom minimiztion prIoblem 31

1.5 l t i outing . 33

1.5.1 Elctrie / Oblivious riouting . 34

1.5.2 letrIill flow. effect(ive resistanc ad t1h gra)h Lala)I iI 34

1.5.3 Representation- . 36

1.5.1 C(m p utat ion . 37

1.5.5 Robustiess i nd 1 atency . 38

1.5.6 A iadysis . 39

1.5.7 \Worsi-eas(el1 D man(Is Theorei . 41

1 .5.8-' Uionditiotmd Peifornim (e Bound (P roof of Theorem 1.5.2) 43

1. 5.9 Laplacin (I operaitor inequalities . 44

1.5.10 LteOncy (Proof of TIhieorem .) . 47

1.5.11 E le t rie walk . 48

1.5.12 Eh c out (11ing with iprj)o.xiaIte 0 1 lot(nitis 49

1.5. 13 Rohistiss (Proof f Theooems 1.5.4 and 1.5.5) 54

L5.1 I P)ow(er iteitions (Poof of Theoiem 1.5.3) 55

1.5.15 Synntriization o)f i 1wk' c(ct ric(flow algoritlni 56

1.5. 16 ()peI(fi questions .. 57

7

2 Greedy embeddings 59
2.1 Introduction 61

2.1.1 History of the problem . 62
2.1.2 O ur results . 63

2.1.3 Dinension rd(luction does not help . 63

2.1.4 Road map . 64
2.2 Topological ib(I(ings . 66

2.2.1 Or(dinal ei e(d ings . 66
2.2.2 Greedy em in (iigs vs. ionotone maps 66

2.2.3 Greedy embeddings vs. spllericity . 67
2.3 Hyperbolic geometry . 68

2.3.1 The half-plhu e model . 68
2.3.2 The K in model . 69
2.3.3 BisectinIg hvperplalnes . 70

2.4 Embe(ings an(I tree (ecomposiitions . 71
2. 1.1 (ree(ly eb (ings basics . 71
2.4.2 Dist alice-preserving eml beding . 71
2.4.3 Tree (e(1composition and heiavv pats . 71

2.5 Lower bounds . 73
2.5.1 Graphs with hlar(crossroad(1s . 73
2.5.2 Dimension theorem .. 73
2.5.3 C omle)(te r f .. 74
2.5.4 Coiection between ucli(d an(hIvperbl)Oic space bounds 77

2.6 Concise Hypeirbolic Eib(ings(of Trees . 78

2. .1 C onstriction . 78
2.6.2 Correct ness argument . 79

2.6.3 Cauonizatl in . 79
2.6.4 Descriptiom complexit . 80
2.6.5 R e marks . 80

9.7 Low di mIensional Euclidean eibMeddings of t e 82
2 .8 Open Problemns . 83

3 Bottleneck-independent computation 85
3. 1 Io(hiction an(result .. 87

3. 1. 1 L-'ocal moe(lets of computatim . 87

3.1.2 Inormation sprea(ing an(model r(e uctions 88
3. 1 .3 Techniqu(es . 88
3.1.4 Rel Ited \o k . 90

3.2 Gossip an(1 cond((uctance . 92
3.2. 1 The uniform1 gossip algolitlnn . 92

8

3).. C onductance . 93

3.3 NeighbI)or Exchan lge in O(nh) rounds . 95

3.3.1 C on(Iuitance decomposition of a graph . 95

3.3.2 The Superstep algoiritlin for- the Neiglihor 'xchainge(Problii 97

3. 1 Neighlora Exclailge in Ieredit my sparse graphs 100

3.5 Siii lators and grapht2ell si e . 103

3.6 O pen probleins . 107

3.6. 1 Sitinplified Ni iglhbor E1xchanl..ge . 107

3. 6.2 Asy\ nchrionous aigorithin aiid sof decisions 108

9

10

List of Figures

2-1 Slwn: (a) an non-ro(ted tree. (b) its heavy-pathl decomposition. and (c) the

hieraichical path relationship. 72

2-2 Illist at ((d is Ilie q embedding of P from Figure 2-1. On the left is a view

from the maxis looking dowi towards the irigin. Ot the right is a plaaIIIr sct ion

(I fie II(y gj (f). y (p) and hi e origin. 79

2-3 An ilistr at 0ion of I lie canonicIal embedding of a cychI 81

3- 1 Code for Superstep algorithml. It is easily verified t hat ithe above algoritlnn cant

be implemented in the GOSSIP 11odel of conununahlication. 98

3-2 Code for DirectExchange algoritlln. 101

3-3 An examIIple illusti rating the behIavior) of Ie algorit 1uni (hoosing a ran d(IIeiglb(r

whose105 informition is still unknowi. 107

11

12

List of Tables

13

14

Chapter 1

Spectral routing

Our investigation of Spectral Routing arose as an attempt to find a practical solution to a long-

standing problem in systems and networking: distributed routing with congestion guarantees.

With the advent of real-time, continuously-changing modern networks, with hard-to-predict

topologies, this problem has grown in difficulty and application. In this chapter, we describe

how recent developments in Spectral Graph Theory have allowed us to devise realistic algorithms

for the routing domain. Beyond being of practical value, Spectral Routing stands on its own with

the pleasing techniques and connections that it contributes to Theoretical Computer Science and

Mathematics.

Routing networks are quite diverse. They range from multicore systems, whose buses form

static typically smaller synchronous networks with "nice" and known topologies, to heteroge-

neous asynchronous real-time peer-to-peer systems with dynamically changing complex topolo-

gies. Some aspects of routing are, nevertheless, common to most settings. Connectivity and

capacity, at least in a given time instance, are modeled as an edge-weighted graph. The concur-

rency aspect of communication demands is usually modeled as a multicommodity-type problem

over that graph. Whereas, the differences between routing algorithms stem from considerations

of computational model, representation, objective and temporal properties of the connectivity

graph and the demands.

To distinguish the application area of the present work in the landscape of the larger Rout-

ing Theory, we are best suited by a metaphorical division of routing systems into "early" and

"modern" networks. The early distributed systems were mostly motivated by multi-core pro-

cessors and super-computers, where the network topology is synthetic and typically engineered

to be "regular" and mathematically convenient. Furthermore, such networks benefit from the

convenience of synchronized time. In contrast, modern ad-hoc peer-to-peer systems like social

and sensor networks, are generally seen as asynchronous distributed systems, with a potentially

changing connectivity graph and communication demands.

The topologies of early networks, for instance those found in multi-core processors, were

designed so as to ensure high throughput and easy routing algorithms. One of the most studied

15

topologies, for example, is the hypercube, which has been the starting point for most modern
research on routing [106]. Naturally, other types of constructible expanding graphs have been
considered as well [t07], since in this setting high connectivity with fewer wires is the main design
objective. On the other hand, in modern systems the network topology is typically not designed
but rather dictated by external circumstances, which have inspired various topology models and
related algorithms. In physical sensor networks, for example, it is customary to assume planarity
or other geometrically-inspired graph properties [83], while in social networks it is acceptable to
assume at least expansion as a fair mathematical interpretation of Stanley Milgram's "six degrees
of separation phenomenon" [65]. These are just a couple of nice examples, however. Quickly the
literature has uncovered a proliferation of network models which are simple and complex, and
mostly incomparable. Some such models are scale-free graphs for social and protein networks,
disc graphs for cellular networks, etc. The growing variety of network topologies has suggested
(for more than a decade now) an obvious general question: Can we architect routing algorithms
that work on all topologies? This is one of the questions addressed in the present work.

Another differentiating aspect of modern networks is dynamicity. Graph topologies change
over time. For the easier problem of routing for information dissemination (one-to-all commu-
nication), some routing works model dynamicity as an adversary [51] and overcome deliberate
graph churn via network coding techniques. We are interested in the more subtle multicom-
modity routing problem. We address dynamicity in two ways. First, our routing algorithms
converge quickly, so as to ensure useful routing tables before the graph has had a chance to
change. Second, the quality of our routing schemes degrades gradually with the amount of
graph change.

In addition to topology changes, another source of variability are the demands. In both
early and modern networks, more often than not, one needs to accommodate asynchronously
changing demands in real time. This is a challenging task in light of the fact that in general all
routes depend on the set of all concurrent demands. While at the same time, it is impractical to
recompute a global (essentially offline) multicommodity problem each time a demand changes.

The first glimpse of tackling this hard setting appeared in Valiant's work [106] on congestion
minimizing routing on the hypercube via oblivious routes. Valiant showed that, at least when
the graph is expanding and highly symmetric, it is possible to assign universal routes to each
source-sink pair so that the resulting routes would be near optimal for all sets of concurrent
demands. These routes were dubbed oblivious, in appeal to their demand independence. Various
works [6] have highlighted the importance of routing with concurrent and changing demands.
Nevertheless, Valiant's result had not been extended to general graphs for a long while until a
groundbreaking line of work on "oblivious network design" [90, 7, 11, 541, 89]. This work was
primarily fueled by a different objective: it had been observed that oblivious routes can be
used as a general tool for attaining NP-hard approximations to problems like Min Bisection,
Sparsest Cut, Max Concurrent Flow-Sparsest Cut Ratio, Minimum k-Multicut, Online Multicut
and others. This research culminated in a work of Ricke [89], describing a polynomial-time
algorithm for constructing optimal oblivious routes for general graphs. Rdcke's algorithm falls

16

short of applying to modern networks since it is not distributed. This issue is addressed in the

spectral routing algorithm presented here.

In the distributed setting, representation is intimately tied to computation as well as to the

mathematical form of the routing scheme. Rscke's scheme is based on distributions over trees,
which turn out to be inconvenient in the distributed setting. Spectral routing instead decomposes

routes into electrical flows. Since routing in a distributed system occurs via message forwarding,
a routing scheme is abstractly represented as a function g(v, t) which given a current vertex v

and destination vertex t outputs a vertex u = g(v, t), adjacent to v, where the message is to

be forwarded.1 The obvious representation of the routing function entails storing Q(v, t), for all

t, at v, and doing so at every v. This requires O(n) space per vertex, which can be reduced

significantly in some cases (depending on graph structure, objective function or relaxation). As

we see in this chapter, clever encodings of the routing function (quite different from the trivial

one) allow for significantly more efficient updates.

The hardness of routing also depends on the objective (or cost) function at hand. In-

formally, some routing algorithms try to minimize path length, while others try to minimize

"congestion" or in other words to maximize a certain measure of global throughput of the net-

work across all active demands. The former has earned the name fi-routing whereas the latter

Eco-routing. This is not coincidental. As we show later, most routing problems amount to the

same multicommodity-type convex program with differing norms in the objective and, in fact,
Ep-routing, for 1 < p C, is defined naturally and often corresponds to a real-world objective.

For example, 2 -routing minimizes latency.

In the static setting, when graphs do not change, fi-routing is easy. Computing all pairs

shortest paths, even in a distributed manner, is straightforward. This is why research on l-

routing has placed more focus on efficient representation, rather than discovery. Notably, Thorup

and Zwick [104] construct schemes for general graphs which trade off representation complexity

for relaxed guarantees. Their schemes use (nil/k) bits per vertex, while producing paths whose

length is within a factor 2k - 1 of the optimal.

In modern networks, however, fi-routing is rarely practical due to its sensitivity to graph

changes. Instead, foo-routing is used as an approximate model of the objective: Provide as much

bandwidth as possible to all concurrent demands in a fair manner. This objective is significantly

harder to optimize for. However, its stability against graph change justifies its popularity. In

this chapter we build ,co-routing schemes for distributed networks. We leave it open to build

such schemes for other Ep norms, by combining with recent techniques on approximating matrix

p-norms [1i3].

The real-time, distributed routing algorithms that we develop here are a step towards a

future architecture of the Internet. In this vision, all devices (mobiles, desktops, etc.) can

dynamically connect to other "nearby" devices (WiFi networks, Internet Service Providers,
next-door neighbors, etc.). And while aware only of their neighbors, devices would be able to

'In some cases, the routing function may take additional input like e.g. the origin vertex of the message. This

information is typically carried inside the message header.

17

route packets globally to any other destination device. This ambitious goal is motivated by
various growing problems with current Internet infrastructure. It aims to reduce the increasing
costs of global network administration, which is currently largely manual and centralized. And
it addresses the bubbling need of end users for networking independence and non-censorship
from corporate and governmental entities.

18

1.1 Routing theory

In the next few sections, we develop the main tools of routing theory and discuss the historical

works building up to distributed oblivious routing.

In Section 1.2 we introduce the key objects at play in routing theory, which constitute

a minimal indispensable vocabulary on the subject. The basic concepts in routing, such as

demands, flows, routing functions, and so forth, have enjoyed various representations across

textbooks and works on the subject. We cast these concepts in a fine-tuned manner in the

language of linear algebra. These early definitions of Section 1.2 already start to pave the way

to the main unification of routing schemes that is found later in Section 1.4.

Following this, in Section 1.3, we review the line of work that initiated oblivious routing and

the main results therein.

1.2 Demands, flows and routing

The object of interest is a graph G = (V, E) (with V = [n] and |El = m) undirected, positively

edge-weighted by w,, > 0, and not necessarily simple. The intention is that higher w,, signifies

stronger connectivity between u and v; in particular, wuv = 0 indicates the absence of edge (u, v).

For analysis purposes, we fix an arbitrary orientation "-&" on the edges (u, v) of G, i.e. if (u, v)

is an edge then exactly one of u -* v or v -4 u holds. Two important operators are associated

to every G. The discrete gradient operator B E RExV (also written as V), sending functions

on V to functions on the undirected edge set E, is defined as X V B :X - Xv if u - v, and

xy)B := xv - Xu otherwise, where xy is the Kronecker delta function with mass on y. For

e E E, we use the shorthand Be := (XeB)*. The discrete divergence operator is defined as B*

and is also written as V*.

A (single-commodity) demand of amount a > 0 between s E V and t E V is defined as the

vector d = a(Xs - xt) E Rv. A (single-commodity) flow on G is defined as a vector f E RE,
so that f(u,v) equals the flow value from u towards v if u -4 v, and the negative of this value

otherwise. We also use the notation fu : f(u,v) if u -+ v, and fu v := -f(u,v) otherwise.

We say that flow f routes demand d if B*f d. This is a linear algebraic way of encoding the

fact that f is an (s, t)-flow of amount a. A multi-commodity demand, also called a demand set,
is a matrix whose columns constitute the individual demands' vectors. It is given as the direct

product oDrdT of its columns. A multi-commodity flow is represented as a matrix erfT, given

as a direct product of its columns, the single-commodity flows. For clarity, we write fT,e for

(fr)e. The flow erf, routes the demand set ord, if B*f, = dT, for all T, or in matrix notation

B*(eTfT) = TdT.

Whenever we want to indicate that a variable d is a multi-demand, we write d E (RV)e.

The key notational point here is that the I-superscript notation X1 represents the space of all

finite direct products of elements of X. And so, similarly, (RE), is the space of multi-flows.

19

1.3 Oblivious network design

Oblivious network design was first introduced as a concept in [50]. It was motivated by appli-
cations of multi-commodity flow problems in real-time settings, where it is infeasible to com-
pute commodity flows using classical algorithms due to harsh time constraints and continuously
changing demands.

The context is an undirected graph G = (V, E) (with |V| = n and |El = m) which represents
a communication network. A single typed demand d is 4-tuple (s, t, a, T), consisting of a source
vertex s E V, a sink vertex t E V, an amount a E R>o and an abstract type T E T, which comes
from a fixed type set T with |TI = K. A single typed demand can also be viewed as a pair
(d, r), where d E Rv is a demand vector and T is the abstract type. In applications, a demand of
this kind represents a requirement to send some prespecified amount of a given commodity from
the source vertex to the sink vertex. The type represents a characteristic, like quality-of-service
level, of the commodity at hand.

Oblivious network design is an optimization problem where, given G, the goal is to output
a set of flows F = {fst} (st)c(,), one for each pair of distinct vertices (s, t) E (i), such that fst

routes Xs - Xt (one unit of flow between s and t). The intention here is that after F has been
outputted and hence committed to, we would like to route any set of demands using F.

More specifically, let D = {(si, ti, ai, T)}i be a given set of typed demands. We would route
each di using the flow aifes,ti, where fs,t, comes from F, and we annotate each flow with the
respective demand type Ti. This gives us the routing {(aifs,,t,, T)} . We abbreviate this routing
by F(D).

The objective of oblivious network design is to output an F that is competitive in the worst-
case against a routing that is optimal for D in G. In order to formalize this, we need to define
a notion of cost that a particular routing {(aifsiti, T)} incurs on G.

Assume we are given a routing (set of flows, annotated with type information) R ={(f, T)}i.

In order to compute the cost of R, an oblivious network design problem specifies two special
functions: a load function fload and an aggregation function fagg.

The load function fload maps a routing R to a vector of edge loads in R E. The load
function has some required structure. For an edge e, we define the edge traffic as the vector

te = (te,I, ... , teK), where te,T = f,,T I(fi)el is the sum of all flow amounts over e over
all flows that are of type T. We require that fload(R)e is a function only of te. In other words,
fload is elementwise composition of m separate functions (fload)e : RK -+ R.

The aggregator function 0agg : R. Ro maps the vector of edge loads to a single number

that represents the total cost of the routing, which we call congestion. In applications, this
function is typically a convex norm. Later, we are going to see how the combined choice of fload
and fagg encodes various classical combinatorial problems. To summarize so far, the cost of a

routing R is given by Eagg(fload(R)).

We can now return to the objective of the optimization problem. Given G, Eload and fagg we

aspire to output a set of all-pairs unit flows F, so that for the worst-case demand D, the cost of

20

F(D) is minimal compared to the cost of Ropt(D) where the latter is the minimum cost routing

for D. Formally,

F = arg min max fagg (fload (F'(D)
F' D fagg(fload(Ropt(D)))

The competitive ratio of the output is given by

= min max fagg (fload (F'(D)))

F' D fagg (fload (Ropt (D)))

It is instructive to note that the oblivious design problem has a natural offline version. The

main difference is that in the offline version the demands D are given as part of the problem, and

can therefore be taken into account during the computation of F. Formally, the offline problem

is expressed by

F = arg min fagg (fload (F'(D)))
F1

The offline problems are clearly strictly simpler than the oblivious ones, since more infor-

mation is given in the problem input. It is worth noting that all of these problems also possess

an online version, which in terms of difficulty sits between offline and oblivious. In the online

version demands are revealed one at a time, and routing decision have to be made before the

next demand is revealed.

1.3.1 Specializations

To demonstrate the generality of the network design problem, we are going to show that different

choices of Lagg, fload and the size of the type set K specialize to various flavors of classical

combinatorial optimization problems.

When K = 1, (Eload)e are identity, and Eagg =o, the offline problem is the Maximum

Concurrent Multi-commodity Flow problem.

When K = 1, (fload)e are concave functions, and Eagg = fl, the offline problem is a buy-

at-bulk or rent-or-buy network design problem.

When K = (i), (Vload)e = foo, fagg = f1 and each (s, t) pair gets a unique type, the offline

problem is a fractional Steiner forest problem where one needs to buy fractional edge

capacities so that each pair appearing in a request is connected in the resulting graph.

Initially, Gupta et al. [50] have developed algorithms for the oblivious versions of the above

problems. More generally, they deal with the cases when the load functions (Eload)e are either

monotone sub-additive or monotone norms, and the aggregation function Lagg is either f 1 or to.

They obtain poly-logarithmic competitive ratios in these cases.

21

In a subsequent work, Englert et al. [37] extend these results to the case where (Eload)e is a
monotone norm and Eagg = fp, for 1 < p < oc. For these cases, they achieve a O(log n) com-
petitive ratio. This result also implies a O(logP n) competitive ratio for the following oblivious
specialization of the network design problem:

When K = 1, (fload)e(t) = tp, and Eagg = fi, the oblivious problem models latency in
traffic networks [94, 93, 43]. In this setting every edge possesses a latency function flat
which describes the latency incurred by all flows passing through this edge, as a function
of the total edge traffic. The goal is to minimize the average latency over all network links,
given by o Ee tellat(te) where te is the total edge traffic.

For example, if the latency functions are linear, as is the case in some TCP/IP networks [13],
the latency minimization problem can be cast in the oblivious design framework with K = 1,
(fload)e = t2 and £agg = fi.

1.3.2 Lower bounds

Gupta et al. [50], who introduce oblivious network design, show that if £agg = o, the load
function (fload)e must be a norm since there exist sub-additive load functions for which no
oblivious algorithm is o(nl/ 4)-competitive.

The minimum congestion routing version, where K = 1, (fload)e is identity and Eagg = foo,
has a lower bound of Q(log n) even in the online setting which was shown by Bartal et al. [12]
and Maggs et al. [78].

The fraction Steiner tree problem, where K = (), (fload)e = foo and £agg = fi, has a lower
bound of Q(log n) even if it is not required that the routing scheme be tree-based. This is due
to Waxman et al. [5(].

Lawler et al. [72] show that it is not possible to design aggregation function oblivious schemes
as any fixed scheme will suffer a competitive ratio of Q(Vjn) for some p, where £agg = Ep. They
also present a matching competitive ratio upper bound.

Englert et al. [:37] show that for the case of latency minimization, where K = 1, (fload)e(t)
tP and £agg = fi, there is no oblivious routing scheme that achieves a competitive ratio of
o(logP n/ (log log n)P).

1.3.3 Bottleneck approximating decompositions

Prior to our work on electric routing [62] and the related work [72], all known oblivious routing
schemes were based on convex combinations of trees. This line of research culminated in an
optimal oblivious routing scheme for congestion (the regime K = 1, Eagg = f, fload identity)
that was discovered by Ricke [89]. Notably, RAcke points out that oblivious routing schemes for
congestion are, in fact, a form of graph approximation that preserves the cut structure of the
graph. This can be juxtaposed to graph metric approximations, like Bartal's probabilistic tree
approximations [1M], where the approximation preserves distances instead.

22

It turns out that one can give a general definition of "graph approximation", which specializes

naturally to either of the above cases by changing a certain "cost" function. In this section,
we develop the notion of graph approximation formally. Intuitively, a graph approximation is

a mathematical object that approximates the "bottlenecks" of a graph while at the same time

having a computationally convenient form for the purposes of optimization. In other words, the

definition is tailored to enable the following use case:

Given a flow-type optimization problem on G, there is a map that converts the

problem to one on H (the graph approximation). On H, the respective problem can

be solved exactly and efficiently, producing a solution that can be mapped back to

G. It is then guaranteed, that this final solution is not too far from the optimal

answer on G.

Multicommodity flows

For the purposes of defining graph approximations, we need to recall the classical Concurrent

Multicommodity Flow Problem. This problem is identical to oblivious network design with the

exception that the demands are given ahead of time.

In particular, we are given a set of (untyped) demands (si, ti, a-), represented by source and

sink vertices and an amount, or by their respective demand vectors di E DG. The goal is to

route the set e7 idi in an underlying weighted undirected graph G, using flows eifi that minimize

a cost function. The cost function c : F*-+ R maps multiflows to a non-negative real. We

restrict our interest to cost functions of the form fagg(fload(Q)), as in our discussion so far.

When the cost function is given by Eagg = and fload = fi, the problem is known as

congestion minimization.

Graph approximations

Intuitively, a graph approximation of a graph G is a mathematical object which is "nearly

equivalent" to G with respect to Minimum Congestion Multicommodity Problems, but is also

"simpler" than G in that exact problem solutions can be found by fast (and usually simple)

algorithms.

The notion of a graph approximation here is purposefully broad. It generalizes prior work in

different domains by varying a certain cost metric while being agnostic to the implementation

of the graph approximation. E.g. sub-trees, dominating trees, spanners and so forth are all

different types of implementations of graph approximations. For its generality, the definition

has a slight categorical flavor.

We let G be a graph. This graph has an associated space of flows FG a RE and a space

of demands DG - Rv, as we have seen earlier. These two spaces are related by an operator

V* : FG --+ DG which maps every flow to its corresponding demand vector. (This is the

divergence operator defined earlier. We subscript it with G to highlight the contextual graph.)

23

A graph approximation H, is an abstract object which, like a graph, has a designated space
of flows FH, a space of demands DH and a divergence operator V* : FH - DH. Intuitively, in
order for H to be an approximation of G, it should fit the following description:

Given an optimization problem specified by a multi-demand on G, if we map the
problem to H, solve it there and map the solution multi-flow back to G, the resulting
cost should not be much larger than if we had solved the problem directly on G.

We represent the specific minimization problem by a cost function cG : F -+ R>o, which
maps a mulit-flow to a non-negative real cost. Note that the cost function is a property of the
problem, not of the graph or the approximation. Consequently we define a "solve" function
SG : D) - F' via

SG(dG) := arg min cGfG),
fGCFG:V* (fG)=dG

which takes a problem as a multi-demand and outputs the solution as a multi-flow. A similar
solve function SH : D - + F is required on H, and the latter is a property of the graph
approximation H. Naturally, SH is expected to respect the problem constraints which is to say:

(i) (Constraint condition) For all dH E DE, V* (SH(dH)) = dH. In other words, the solution
multi-flow actually meets the requested demand.

You will notice, from our informal requirement above, that we need to be able to convert
a problem, i.e. a multi-demand, from G to H. We denote the function that achieves this by

pGH : DG -+ DH. Additionally, we need to be able to convert a solution, i.e. multi-flow,
obtained on H to one on G. We denote this map by pHG : FH - FG.

We are now sufficiently equipped to define what it means for H to be a r-approximation for
G in a very general sense. Two conditions must be met:

(ii) (Constraint preservation) For all fH E F1 and dG E DE, V* (fH) = PGH(dG) implies

VG(HG(fH)) = dG.

In other words, given any multi-flow fH on H, let its respective demand in H be dH

V* (fH). Consequently, if dH happens to be the image pGH(dG) of some demand dG in G,
then it better be the case that if we map fH to G, via fG := IHG(fH), then the demand
of the image fG should be the same as dG.

(As a side remark, notice that this condition implies that if d' z d" then pGH(d')

JGH(d)).

This condition ensures that when we start with a problem dG on G, and map it to a
problem dH = ILGH(dG) on H, the eventual solution fH = SH(dH), when pushed to G as

fG = PHG(fH), will actually meet the initial problem constraints V*(fG) = dG-

24

(iii) (Approximation strength) For all dG E DB

CG (pHG (SH (pGH (dG)))) -< K - CG (SG (dG))

This simply says that if we "solve through H" we shouldn't do much worse than if we solved

directly in G. The one-sided inequality suffices, since we are dealing with a minimization

problem.

When conditions (i), (ii) and (iii) are met, the tuple (H, pGH, [pHG, SH) comprises a -graph

approximation of G for the cost metric CG-

Remark 1.3.1. Variations on this definition are possible. E.g. SH could be removed from

the definition and replaced by

SH(dH) arg min cH(fH),
fHeFH:H (fH)=dH

where now the cost CH must be defined universally so that it does not change much when going

through pHG. These variations are beyond our point of interest.

In the case cG = o, the resulting graph approximations are known as cut-based decompo-

sitions and are used for approximating graph bottlenecks for the purposes of multicommodity

routing [90, , 54]. In the other extreme, when CG = f1, the resulting type of graph approxi-

mations are widely known as multiplicative distance-approximation oracles [10, 11, 38].

1.3.4 Tree-based routing

As we mentioned in the previous section, seminal works in approximating graph bottlenecks [s9]

and approximating graph metrics [10] use the same underlying object-trees. And more specif-

ically, convex combinations of "decomposition trees", also previously known as "hierarchical

tree decompositions". We dedicate this section to a precise definition of these and, further, to

translating this definition to the language of linear algebra. This translation is an important

step on the path of unifying important graph approximation techniques, by casting them in the

framework of "linear routing operators" (which are addressed in a later section).

Decomposition trees

Our context will be an undirected graph G = (V, E). A decomposition tree for G is a tree

T = (VT, ET), whose leaf nodes are in one-to-one correspondence with V. Additionally, every

non-leaf node of T corresponds to a vertex in G and every edge of T corresponds to a path in

G between the respective vertices.

Formally, a vertex map o-vertex : VT - V maps the nodes of T onto the vertices of G, such that

restricted to the leaf set of T the mapping Overtex is one-to-one. An edge map o-edge : ET - E*

maps the edges of T to paths in G such that (UT, VT) is mapped to a path connecting Uvertex(UT)

25

and overtex(VT). Inverse maps are also included in a decomposition tree. The inverse vertex
map avertex :V - VT maps each vertex of G to the corresponding leaf node of T. The inverse

edge map ae+ge F -E E sends each (u, v) of G to the unique shortest path in T connecting

vertex(u) and avertex(V).
This completes the "traditional" definition. We are now going to extend this definition by

replacing each of the four a-maps with four respective (-maps that are linearized versions. Let
DG RV and DT S RVT be the demand spaces of G and T, respectively. Similarly, let FG a RE
and FT RET be the flow spaces of G and T, respectively.

We construct the demand map (demand : DT - DG as a linearization of o-vertex. This is done
by defining (demand(Xu) = Xo-vertcx(U), for all u E VT that are leaf nodes; and (demand(Xu) = 0 for

non-leaf u. The inverse map (demand : DG Dr is constructed similarly. Using the same idea,
we construct the flow map flow : FT -+ FG as a linearization of Uedge. For every edge eT E ET of
T, let 7reT be the flow vector in FG of the path Oedge(eT) in G. We then define (flow(XeT) :reT
for all such eT. (Since XeT form a basis of FT, (flow is fully defined by its values on XeT.) In a
similar vein, let Xe E FG be the flow vector of e E E, and let Te E FT be the flow vector of the

path uege(e) in T. We then define (+ w(Xe) := T, for all e E E.

In summary, the decomposition tree is now the tuple (T, (demand, fimand, (fow, +

Cut-based decompositions via trees

It is easy to see that any decomposition tree is a graph approximation. Given a demand E£d on
G, we can push it to T via (+emand, solve the problem on T where the solution is always unique
and independent of the cost function, and push the answer back to G via (flow.

Furthermore, since a tree provides a unique routing for any given demand, it is clear that
if eifi is the routing for a multi-demand eidi, then each individual flow fi depends only on di
and not on the whole multi-demand. (This is not true for graphs in general.) Therefore, tree
routing constitutes oblivious routing and, in fact, we could represent it quite concisely in terms
of linear algebra as we explain next.

It is easily checked that for a tree T = (VT, ET), the function that maps demands to the
unique routes in the tree PT RVT - RET is linear. We can thus derive the routing function of
a decomposition tree as (flow. PT -emand, which is linear since its components are.

For graph approximation purposes, it turns out that a single decomposition tree is not
sufficient for most cost measures. Instead, a convex combination of decomposition trees is used.
Given decompositions trees T with respective routing operators gj, the routing operator of a
convex combination of decomposition trees is simply defined as Ej A gi, where E> Ai = 1 and
Ai > 0, for all i. The power of this type of graph approximation was established by Ricke's
landmark result:

Theorem 1.3.2 (R Acke [89]). For every weighted, undirected graph G, there exists a polyno-
mially computable convex combination over decomposition trees which O(log n)-approximates G
with respect to congestion cost, given by fagg = foo and (Vioad)e(X) = x/we, where we represents

26

the edge weight.

27

1.4 Linear routing schemes

In this section, we are going to introduce a class of routing schemes, which can be concisely
represented by linear operators. This class was first introduced in work of the author [62] as
a superclass of electric routing. Independently Lawler et al. [72] consider electric routing and

implicitly utilize linear routing schemes. Linear schemes generalize Rdcke's tree-based routing
schemes as well as the electric routing schemes of [62, 72].

Linear schemes are interesting for a few reasons. They generalize the key theorems in the
analysis of tree routing [72] and electric routing [62]. Roughly speaking, in both cases it is
proven that there exists a universal set of worst-case demands that does not depend on the
routing operator. The proofs in these works are seemingly very different, however the language

of linear routing unifies them in a single conceptually-cleaner proof, given in Section 1.4.2.

Furthermore, since the class of tree-based schemes contains an optimal scheme for every
graph, as shown by Ricke [89], it follows that the super-class of linear schemes does as well.
Therefore, we can search for an optimal scheme directly in the space of linear schemes. This
search, turns out, is a standard convex minimization problem and therefore succumbs to solu-
tions by a long list of well-understood and fine-tuned optimization methods like Interior Point
Methods, the Simplex Method, Multiplicative Weight Updates and many others. This is in
contrast to Rdcke's algorithm which itself is a special form of a gradient descent and requires a
custom implementation.

1.4.1 The routing operator

Recall that a (general) oblivious routing scheme is any function p : Rv RE, mapping a
demand vector to a flow vector, which has the property that p(d) routes d when d is a valid
single commodity demand (i.e. of the form X, - xt). Formally, for any s f t E V, we require
that V*(g(Xs - Xt)) = Xs - Xt. A linear routing scheme is one where g must also be linear. In
other words, we seek a linear operator p : RV - RE such that V*(p(d)) = d whenever (1, d) = 0.
We generally do not care how g behaves on 1 (since this is not a meaningful demand vector)
however for mathematical convenience we throw in the condition that g(1) = 0, which results
in the following definition.

Definition 1.4.1. A linear routing scheme is a linear operator y : Rv -+ RE with
V*(p(d)) = 7r1 (d), for all d E RV, where 7r_1 is projection onto the space orthogonal to 1.
This can be expressed concisely via the matrix identity

V*g = 7r

which we call the routing identity.

We have already seen linear routing. Recall that in Section 1.3.4 we showed that routing via
a convex combination of decomposition trees can be represented as a linear operator. We will
later see another example-that of electric routing.

28

Note that p is equivalently a matrix in RExV. The routing identity describes the set of valid

routing operators as an affine subspace of RExV. In particular, for the difference A =' -

between two routing operators, we have

V* A = V*(g' - g") =V g' - V* " = Tji - i = 0

Conversely, if A is such that V* A = 0 and p is a routing scheme, in that V* g = w1 i, then

V*(g +,A) = V* Q + V*A = 7ii

And so p + A is a routing operator as well.

The condition V* A = 0 says that every column of A is a circulation. And therefore, not

surprisingly, the bottom line is that starting from an arbitrary routing operator we can get to

any other one by adding circulations to each of its columns.

For notational convenience, we extend g to a function over demand sets by defining o(eDTd,)

oTg(dT). This identity says that each demand in a set is routed independently of the others

by its corresponding g-flow. If g is viewed as a matrix, this identity already holds using the

convention that (denotes column vector concatenation.

As a reminder, let's rewrite the program for oblivious routing for the case where we insist

on finding a linear routing scheme:

(1.4.1) min max fagg(load(p(ed)))
Q:V* Q=7r 11 ed fagg(fload(Rpt(ed)))

The "master theorem" of linear routing that we cover in the next section will allow us to simplify

this program significantly.

1.4.2 Geometry of congestion

The oblivious competitive ratio of linear schemes is amenable to theoretical analysis because of

a master theorem which says that universal worst-case demands exist independent of the routing

operator (this is akin to the Min-Max Theorem for zero-sum games) and there is an easy way

to find them. For example, for Lagg = foo the set of unit demands between the endpoints of all

graph edges e@(,g)E(xu - xv) is the worst-case.

This is what makes their analysis at all possible in both [62] and [72]. Furthermore, it is

what helps cast the search for an optimal routing scheme as a standard norm minimization

problem. A similar "master theorem" holds for tree-based routing, and it is the starting point

of the analyses in [89] and [37].

The following theorem works in the regime of a single commodity type K = 1, an orientation-

independent and monotone load function (fload)e and a monotone aggregation function fagg. Ori-

entation independence, given by (fload)e(X) = (load)e(-X), means that the load is independent

from which way the flow goes over an edge.

29

Some notation is due before we proceed. For a set of flows of E (RE)G, we call the non-
negative vector t E RE, defined by te = E I |fel, the traffic of of.

Theorem 1.4.2. (Master Theorem) Let p be a linear routing scheme, £agg be a monotone

aggregation function, and fload be a monotone, orientation-independent load function. If D = ed
is a set of demands, F = ef is an optimal routing and t is the traffic vector of F, then

fagg(f load(g(D))) agg(f load (0(G(u,,v)EE tuo(XU - Xv))))

Proof. Let D = ed be a fixed set of demands and let F = oDf be an optimal routing for D.
Denote by te, for all e E E, the traffic over edge e induced by @f. Formulaically:

(1.4.2) 1fe I = te
f E F

We are going to show |g(D)| < Ig(Ga(u,v)EE tuv(Xu - Xv))l elementwise. Note that generally
l ef I G a g| implies fload(Gf) <_ fload(Gag), since fload is orientation independent and monotone.
Thus, it would follow that

fload(g(D)) - fload (p(G(u,v)EE tuv (Xu - Xv)))-

And since fagg is monotone, the latter would imply that

fagg (fload (V(D))) < fagg (fload (g((u,v)CE tuv(Xu - Xv)),

concluding as desired.

For starters, recall that if fd in F flows d in D, the routing condition asserts that d =

E(u,v)CE fd,uv(Xu - Xv). This allows us to expressing the routing of g in terms of F,

g(D) = Q(GdEDed) =adED fd,uv(Xu - XV,

(u,v)CE

where fd is the flow in F that routes demand d and fd,uv is the amount of flow that fd flows on

(u, v) E E.

Next, we separate the contribution of the different fd,uv components using the linearity of p
and the triangular inequality for | -|

GdeD g 3 fd,uv(Xu - Xv) GadED Q(fd,uv(Xu - Xv))

(u,v)EE (u,v)E

(GdED G(u,v)EE g(fd,uv(Xu - Xv))

Having done this, we can switch the order of the G-summation and, using linearity of p,

30

combine all component flows that correspond to the same demand

edCD e(u,v)EE (fd,uv(Xu - Xv)) = (u,v)EE edGD P(fd,uv(Xu - Xv))

Finally, applying (1. 1.2) to the expression above,

D(uv)EE XU X) E
deD

|fdUVI) = G(u,v)CE p0(tuv(XU -

= g((u,v)E E tuv(Xu -

Xv))

Xv))

concludes the chain if inequalities with the desired result.

1.4.3 Routing as a norm minimization problem

The purpose of the Master Theorem is to simplify the convex program for computing an optimal

oblivious scheme (1, 4. 1). Let us start by observing that the cost function is a norm:

Lemma 1.4.3. The cost function fagg(fload(-)) is a convex norm over the vector space of

multi-flows (RE),.

Proof. We demonstrate the triangle inequality

fagg (fload ((f + + f ")) - fagg (fload(f') + f load (@ f f agg (fload (f')) + f agg (eload (f 1))

Since fload is monotone and dependent only on the absolute values of the entries in its

arguments, it follows that it is sub-additive fload(If'+ f") - fload(±f) + fload(ef"). This

fact and the monotonicity of fagg justify the first inequality above. The second inequality follows

from fagg being a norm. El

To simplify notation and emphasize the fact that the cost function is a norm, we henceforth

write || - ||cost for fagg(fload()). The key point is that the Master Theorem helps us simplify the

expression for the competitive ratio of g,

m agg(load(g(od)))max
id fagg(f load (Romt(tmdtte

in (1.4. 1), by replacing the numerator with the upper bound from the theorem. Let t(of) denote

31

(u,v)EE (Xu SXv)

dcD
fd,uVI)

the traffic vector of Ef and D = ed. We have:

m agg~load(g(od))) ||x -(D)||cost
max = max
ed £agg (fload (Ropt (ed))) D ||gopt (D)||lcost

(*) ||g___(D)|cost_
= max

D ||t(gopt(D))||cost

gm (e(u,v)EEtuv(Xu - Xv)) Hcost
=max

t ||t||cost

Max ||gIo(u,v)EEtuv(Xu - Xv cost
t:lltllcost=1

The first identity (*) follows from the fact || C fH|cost = ||t(e(f))||cost (in the regime K = 1).

The second (**) follows from applying the upper bound in the nominator and noticing that it

can be attained.

The upside of this new expression is that for specific cost functions we know the structure of

the set of traffic vectors t, for which ||t|lcost = 1. In particular, in the most-widely studied case

fagg = f, the maximum is attained at t = 1. This is because 1 E RE is maximal in absolute
value in the set {t : ||t||cost = 1} and ||g(-)||cost is monotone. This allows us to further simplify

the expression for the competitive ratio to ||g(e(u,v)(Xu - Xv))||cost. In matrix notation, this

latter expression amounts to | V* |cost, since (D(u ,v)EE(Xu - Xv) is the matrix of the divergence

operator V*.

To summarize, the convex program for fagg = foo oblivious routing can be written as

min 11g V* |cost
Q:V* Q=7_L1

This represents a standard norm minimization over an affine subspace and can be solved using

a range of techniques like Interior Point Methods [57, 92] or Multiplicative Weight Update

algorithms.

32

1.5 Electric routing

Electric routing is a type of linear routing that sits in a sweet spot with respect to multiple

computational considerations. Compared to Rscke's optimal scheme which achieves optimal

competitive ratio of O(log n) for all graphs in the regime fagg = o, electric routing achieves

ratio O(log n) only for expanders and ratio O(Vn/) for the remaining graphs. On the other hand,

unlike Rscke's scheme, electric routing can be computed efficiently in distributed systems. And

in expanders, the computation is extremely efficient, taking only O(log n) steps.

Considering that many real-world ad-hoc networks like peer-to-peer social systems are ex-

panders, electric routing is the only practical oblivious routing scheme applicable. Beyond its

practical appeal, electric routing is of purely mathematical interests. As we show later, it turns

out that the competitive ratio of electric routing is in fact equal to the 1| - |I1,1 norm of the

Laplacian matrix, which is a natural mathematical object. Here we provide tight bounds to this

norm, which is a result that seems to be of independent interest.

Related work

Two bodies of prior literature concern themselves with oblivious routing. One focuses on ap-

proximating the shortest-path metric [103, 102, 1, 2], the other focuses on approximating the

minimal congestion universally across all possible demand sets [89, 55]. The algorithms in these

works are essentially best possible in terms of competitive characteristics, however they are not

distributed and do not address (competitive) performance in the presence of churn. It is not ob-

vious how to provide efficient distributed variants for these routing schemes that are additionally

resistant to churn. The primary reason for this are the algorithmic primitives used. Common

techniques are landmark (a.k.a. beacon) selection [103, 102], hierarchical tree-decomposition

or tree-packings [89]. These approaches place disproportionately larger importance on "root"

nodes, which makes the resulting schemes vulnerable to individual failures. Furthermore, these

algorithms require more than (quasi-)linear time (in the centralized model), which translates to

prohibitively slow distributed times.

We are aware of one other work in the theoretical literature by Goyal, et al. [47] that relates

to efficient and churn-tolerant distributed routing. Motivated by the proliferation of routing

schemes for trees, they show that expanders are well-approximated by the union of 0(1) spanning

trees. However, they do not provide a routing scheme, since routing over unions of trees is not

understood.

Concurrently with this paper, Lawler, et al. [72] study just the congestion of electric flow

in isolation from other considerations like computation, representation or tolerance to churn.

Their main result is a variant of our graph expansion-based bound on |Lt i i, given by Theo-

rem 1.5.10. Our approaches, however, are different. We use a geometric approach, compared to

a less direct probabilistic one. Our proof exposes structural information about the electric flow,
which makes the fault-tolerance of electric routing against edge removal an easy consequence.

This is not the case for the proofs found in [72].

33

1.5.1 Electric foo oblivious routing

Our entire discussion on electric routing will focus on the regime K = 1, fagg = fo, and fload = fi.
In this regime, much of the notation can be simplified from the more general setting discussed
so far. We introduce this notation here.

The congestion | -||cost of a multi-commodity flow measures the load of the most-loaded edge,
relative to its capacity. It is given by

(1.5.1) || (D fT||cost := maxE fT,e/wel = ||(eTfT)*W -41, where |IAii:= sup ||Axli
e T X#,0 ||X||1

An oblivious routing scheme is a (not necessarily linear) function R : Rv 9 RE which has
the property that R(d) routes d when d is a valid single-commodity demand (according to our
definition). We extend R to a function over demand sets by defining R(eD dT) := or R(dT). This
says that each demand in a set is routed independently of the others by its corresponding R-
flow. We measure the "goodness" of an oblivious routing scheme by the maximum traffic that it
incurs on an edge (relative to its capacity) compared to that of the optimal (demand-dependent)
routing. This is captured by the competitive ratio rIR of the routing scheme R, defined

(1.5.2) 77R := sup sup IiR(EDTdT)ICOSt
e,d, ef, || (T fT||cost

B*(e,f,)=(Drd,

Let E denote the (yet undefined) function corresponding to electric routing. Our main theorem
states:

Theorem 1.5.1. For every undirected graph G with unit capacity edges, maximum degree

dmax and vertex expansion a := Sinsv , one has 77 c (4 In -.a ln 2"max

This is tight up to a factor of 0 (In Inn).

The competitive ratio in Theorem 1.5.1 is best achievable for any oblivious routing scheme
up to a factor of O(lnlnn) due to a lower bound for expanders, i.e. the case a = 0(1), given
in [52]. Theorem 1.5.1 can be extended to other definitions of graph expansion, weighted and
unbounded-degree graphs. We omit these extensions for brevity. We also give an unconditional,
albeit much worse, bound on 7,:

Theorem 1.5.2. For every unweighted graph on m edges, electrical routing has qg <
O(m1 / 2). Furthermore, there are families of graphs with corresponding demand sets for which
,qe = O(m1/2).

1.5.2 Electric flow, effective resistance and the graph Laplacian

In this section, we develop a formal definition of electric flow and the electric routing operator
S. Let W = diag(..., we,...) E- RExE be the edge weights matrix. We appeal to a known

34

connection between graph Laplacians and electric current [35, 99]. Graph edges are viewed as

wires of resistance we and vertices are viewed as connection points. If p E RV is a vector of

vertex potentials then, by Ohm's law, the electric flow (over the edge set) is given by f = WBp

and the corresponding demand is B*f = Lo where the (un-normalized) Laplacian L is defined

as L = B*WB. Central to the present work will be the vertex potentials that induce a desired

(s, t)-flow, given by pjs'tl = Lt(Xs - xt), where L t is the pseudo-inverse of L. Thus, the electric

flow corresponding to the demand pair (s, t) is WBystl = WBLt(x, - Xt). We define the

electric routing operator as

(1.5.3) E(d) = WBLtd

The vector S(Xs - xt) E RE encodes a unit flow from s to t supported on G, where the flow along

an edge (u, v) is given by [st, uv] : (Xs - Xt)u-V = (4 - t])wn.2 (Our convention is

that current flows towards lower potential.) When routing an indivisible message (an IP packet

e.g.), we can view the unit flow E(Xs - Xt) as a distribution over (s, t)-paths defined recursively

as follows: Start at s. At any vertex u, forward the message along an edge with positive flow,

with probability proportional to the edge flow value. Stop when t is reached. This rule defines

the electric walk from s to t. It is immediate that the flow value over an edge (u, v) equals the

probability that the electric walk traverses that edge.

Let "~" denote the vertex adjacency relation of G. In the distributed setting (which is of key

interest for electric routing), in order to make a (divisible or indivisible) forwarding decision, a

vertex u must be able to compute [st, uv for all neighbors v ~ u and all pairs (s, t) EE (). This

issue pertains to the representation of electric routing in a distributed system and is discussed

in Section 1.5.3

2 The bilinear form [st,uv] = Xs,tBLtB*XU,v acts like a "representation" of G, hence the custom bracket

notation.

35

1.5.3 Representation

In order to compute [st, uv] (for all s, t E V and all v ~ u) at u, it suffices that u stores the
vector p(w] := LtXW, for all w E {w : w - u} U {u}. This is apparent from writing

(1.5.4) [st, uvj = (Xu - Xv)Lt(X, - Xt) (u - [v)*(x, - ,),

where we have (crucially) used the fact that Lt is symmetric. The vectors [w] stored at a
comprise the (routing) table of u, which consists of deg(u) - n real numbers. Thus the per-
vertex table sizes of our scheme grow linearly with the vertex degree - a property we call fair
representation. It seems that fair representation is key for routing in heterogeneous systems
consisting of devices with varying capabilities.

Equation (1.5.4), written as [st, uv] = (X, - xt)*([Ul] - 1p[]), shows that in order to compute
st, uv]j at u, it suffices to know the indices of s and t (in the jW['s). These indices could

be represented by O(In n)-bit opaque vertex ID's and could be carried in the message headers.
Routing schemes that support opaque vertex addressing are called name-independent. Name
independence allows for vertex name persistence across time (i.e. changing graph topology) and
across multiple co-existing routing schemes.

36

1.5.4 Computation

We use an idealized computational model to facilitate this exposition. The vertices of G are

viewed as processors, synchronized by a global step counter. During a time step, pairs of

processors can exchange messages of arbitrary (finite) size as long as they are connected by

an edge. We describe an algorithm for computing approximations g[v] to all [iv] in O(In n/A)

steps, where A is the Fiedler eigenvalue of G (the smallest non-zero eigenvalue of L). If G is an

expander, then A = 0(1). At every step the algorithm sends messages consisting of O(n) real

numbers across every edge and performs 0(deg(v) -n) arithmetic operations on each processor v.

Using standard techniques, this algorithm can be converted into a relatively easy-to-implement

asynchronous one. (We omit this detail from here.) It is assumed that no graph changes occur

during the computation of vertex tables.

A vector (E Rv is distributed if (v is stored at v, for all v. A matrix M E RVxV is local (with

respect to G) if Muv # 0 implies u ~ v or u = v. It is straightforward that if (is distributed

and M is local, then M(can be computed in a single step, resulting in a new distributed vector.

Extending this technique shows that for any polynomial q(-), the vector q(M)(can be computed

in deg(q) steps.

The Power Method gives us a matrix polynomial q(.) of degree O(ln n/A) such that q(L)

is a "good" approximation of Lt. We compute the distributed vectors (" := q(L)xl, for all

w, in parallel. As a result, each vertex u obtains [ul] = ((UI,. . , (]), which approximates

([u] according to Theorem 1.5.3 and the symmetry of L. In one last step, every processor u
sends [u] to its neighbors. The approximation error n- 5 is chosen to suffice (in accordance with

Corollary 1.5. 14) as discussed next.

Theorem 1.5.3. Let A be the Fiedler (smallest non-zero) eigenvalue of G's Laplacian L, and

let G be of bounded degree dmax. Then ([vl - pv] 1 2 < n - 5 , where (1v] = (2dmax)- 1 I k MXxv

and M = I - L/2dmax, as long as k ; Q(A- 1 - Inn).

Theorem 1.5.3, which analyses the straightforward Power Method approach, implicitly as-

sumes bounded degree in that all vertices must know an upper bound on dmax in order to apply

M from Theorem 1.5.3. Using a generous bound, anything w(1), on dmax is bad because it

slows down the mixing of the power polynomial. To avoid this complication, one must use a

symmetrization trick, explained in Section 1.5.15.

37

1.5.5 Robustness and latency

In order to get a handle on the analysis of routing in an ever-changing network we use a simpli-
fying assumption: the graph does not change during the computation phase while it can change
afterwards, during the routing phase. This assumption is informally justified because the com-
putation phase in expander graphs (which we consider to be the typical case) is relatively fast,
it takes O(In n) steps. The routing phase, on the other hand, should be as "long" as possible
before we have to recompute the scheme. Roughly, a routing scheme can be used until the graph
changes so much from its shape when the scheme was computed that both the probability of
reaching destinations and the congestion properties of the scheme deteriorate with respect to the
new shape of the graph. We quantify the robustness of electric routing against edge removals in
the following two theorems:

Theorem 1.5.4. Let G be an unweighted graph with Fiedler eigenvalue A = G(1) and
maximum degree dmax, and let f 1't] denote the unit electric flow between s and t. For any
0 < p < 1, let Q, = {e - E : Ifht '1 > p} be the set of edges carrying more than p flow. Then,
|QJ < min{2/(Ap2), 2dmax||LtJ1(1/p}.

Note that part one of this theorem, i.e. |Qp < 2/(Ap 2), distinguishes electric routing from
simple schemes like shortest-path routing. The next theorem studies how edge removals affect
demands when "the entire graph is in use:"

Theorem 1.5.5. Let graph G be unweighted of bounded degree dmax and vertex expansion
a. Let f be a routing of the uniform multi-commodity demand set over V (single unit of demand
between every pair of vertices), produced by an q-competitive oblivious routing scheme. Then,
for any 0 < x < 1, removing a x-fraction of edges from G removes at most x_ (7.dmax -In n-a -1)-

fraction of flow from f.
The expected number of edges traversed between source and sink reflects the latency of a

routing. We establish (Proven in Section 1.5.10):

Theorem 1.5.6. The latency of every electric walk on an undirected graph of bounded degree
dmax and vertex expansion a is at most O(min{m 1/ 2, dmaxa-2 Inn}).

38

1.5.6 Analysis

The main hurdle is Theorem 1.5.1, which we attack in two steps. First, we show that any

linear routing scheme R (i.e. scheme for which the operator R : RV - RE is linear) has

a distinct worst-case demand set, known as uniform demands, consisting of a unit demand

between the endpoints of every edge of G. Combining this with the formulaic expression for

electric flow (1.5.3) gives us an operator-based geometric bound for 10, which in the case of a

bounded degree graph is simply < ; O(lLtIliI,) where the operator norm |1H1 I is defined by

IA 1I:= supo| IAx|11/|xI1i. This is shown in Theorem 1.5.7. Second, we give a rounding-

type argument that establishes the desired bound on ||Lt|1f1. This argument relies on a novel

technique we dub concurrent flow cutting and is our key technical contribution. This is done in

Theorem 1.5. 10. This concludes the analysis of the congestion properties of electric flow.

The computational procedure for the vertex potentials /4v]'s (above) only affords us approx-

imate versions f"] with f2 error guarantees. We need to ensure that, when using these in place

of the exact ones, all properties of the exact electric flow are preserved. For this purpose, it is

convenient to view the electric flow as a distribution over paths (i.e. the electric walk, defined

above) and measure the total variation distance between the walks induced by exact and approx-

imate vertex potentials. This is achieved in Theorem 1,.5. 13 and Corollary 1.5. 11. It is then easy

to verify that any two multi-commodity flows, whose respective individual flows have sufficiently

small variation distance, have essentially identical congestion and robustness properties.

Organization

We begin our analysis, in Section 1.5.7, with the proof of Theorem 1.5.7 which is the entry point

for most other arguments. Following this, in Section 1 .5.8, we prove the general bound on the

competitive performance of electric routing, which builds on Theorem 1.5.7.

In Section 1.5.9, we develop the self-contained, main technical result which bounds the

norm of the graph Laplacian. Further, combining with the result of Section 1.5.7, this produces

the conductance-dependent bound on the competitive ration, Theorem 1.5.1.

Next, in Section 1.5.10, we prove the latency-related Theorem 1.5.6 which rests on the results

of Sections 1.5.7 and 1.5.9.

We then switch gears to define the notion of "electric walk" in Section 1.5. 11, which gives us

a tool for analyzing imperfect electric flows resulting from perturbed potentials or missing edges.

In Section 1.5.12, using electric walks we prove Theorem 1.5.13 that quantifies the changes in

electric flows resulting from perturbed vertex potentials. This quantification is then used to

assert the feasibility of electric routing using approximate computations.

Section 1.5. 1.3 proves Theorems 1.5. 1 and 1.5.5, quantifying decrease in electric flow in the

presence of missing edges. These proofs build on tools developed in Sections 1.5.9 and 1.5.11.

Sections 1.5. 11 and 1.5. 15 discuss algorithm designs. The former presents the baseline algo-

rithm for computing electric potentials, whose runtime is sensitive to the maximum degree. The

latter improves this algorithm to a "symmetrized" one that does not depend on the maximum

39

degree.

We conclude with some open questions in Section 2.8.

40

1.5.7 Worst-case Demands Theorem

Recall that given a multi-commodity demand, electric routing assigns to each demand the corre-

sponding electric flow in G, which we express (1.5.3) in operator form E(ord,) := WBLt(erdr).

Electric routing is oblivious, since F(&Tdr) = DT.(d,) ensures that individual demands are

routed independently from each other. The first key step in our analysis, Theorem 1.5.7, entails

bounding ie by the || . |1-,1 matrix norm of a certain natural graph operator on G. This step

hinges on the observation that all linear routing schemes have an easy-to-express worst-case

demand set:

Theorem 1.5.7. For every undirected, weighted graph G, let U = W1/ 2BLtB*W1/ 2 , then

(1.5.5) ?, Wi/ 2 nw-1/211

Proof of Theorem 1.5. 7. It is sufficient to consider demand sets that can be routed in G with

unit congestion, since both electric and optimal routing scale linearly with scaling the entire

demand set. Let or-d, be any demand set, which can be (optimally) routed in G with unit

congestion via the multi-commodity flow efT. Thus, d, = Ee fT,eBe, for all r.

The proof involves two steps:

Gi)
(o7dT) 11cost S(eeweBe)j|cost 1w1/2UW-1/2

Step (i) shows that congestion incurred when routing o)Td, is no more than that incurred

when routing G's edges, viewed as demands, through G:

= DT E(dr) cost

&rE(Z fr,eBe) cost
e

1 CD (f,eBe)cost

e S(ZfTe Be) Lcost
T

<_ S,,(weBe) cost

use dT => fT,eBe

use E (dj) E(d)
j j

use 11 fjllcost 11@jf lcs

use 11 ej cjf~ 1cost >3 11 ac f~ 1cost

use I3lfT,el I We

, (eIWeBe) cost

41

(i) |S((ETdT) Icost

(ii) ||E(eweBe)j|cost (eweBe)*W -

(WBLtB*WW-l = |W 1/2 JW-1 /2 -

Remark 1.5.8. Note that the proof of step (i) uses only the linearity of S and so it holds
for any linear routing scheme R, i.e. one has ||R(dT)||G < I eR(eweBe)IlG.

Using Theorem 1.5.7, the unconditional upper bound in Theorem 1.5.2 is simply a con-
sequence of basic norm inequalities. This argument is given in Section 1.5.8. Theorem 1.5.1
provides a much stronger bound on 71, when the underlying graph has high vertex expansion.

The lower bound in Theorem 1.5.1 is due to Hajiaghayi, et al. [52]. They show that every
oblivious routing scheme is bound to incur congestion of at least Q(Inn/ln lnn) on a certain
family of expander graphs. The upper bound in Theorem I.5.1 follows from Theorem 1.5.7,
Theorem 1.5.10 and using that |111|,1 = O(||Lt|1, 1) for unweighted bounded-degree graphs.
Thus in the next section we derive a bound on ||Ltiii in terms of vertex expansion.

42

1.5.8 Unconditional Performance Bound (Proof of Theorem 1.5.2)

Proof of Theorem 1 5. 2. The upper bound follows from:

(1.5.6) j 1 ||- isi < mi/2 - || ||2-+2 - mi/2

The second step is justified as follows

(1.5.7) |Ui i max I mi/2 -max IIHXe|2 , mi/ 2 .|1112112.e e

The third step is the assertion

(1.5.8) |IHl2-42 - 1,

which follows from the (easy) fact that H is a projection, shown by Spielman, et al. in

Lemma 1.5.9.
The lower bound is achieved by a graph obtained by gluing the endpoints of n copies of

a path of length n and a single edge. Routing a flow of value fi- between these endpoints

incurs congestion n/2. 0

Lemma 1.5.9 (Proven in [100]). H is a projection; Im(H) = Im(W 1 / 2B); The eigenvalues

of H are 1 with multiplicity n - 1 and 0 with multiplicity m - n + 1; and He,e = |Uxe|| 2.

43

1.5.9 Laplacian fi operator inequalities

The main results here are an upper and lower bound on |iLt ||11, which match for bounded-
degree expander graphs. In this section, we present vertex expansion versions of these bounds
that assume bounded-degree.

Theorem 1.5.10. Let graph G = (V, E) be unweighted, of bounded degree dmax, and vertex
expansion

(1.5.9) a = min IE(SS then ||Lt|II <1 (4ln -) - (aln max)-1
SCV min{ISI,ISCI} 2 1 \ 2dmax - a)

The proof of this theorem (given in the next Section) boils down to a structural decomposi-
tion of unit (s, t)-electric flows in a graph (not necessarily an expander). We believe that this
decomposition is of independent interest. In the case of bounded-degree expanders, one can
informally say that the electric walk corresponding to the electric flow between s and t takes
every path with probability exponentially inversely proportional to its length. We complement
Theorem 1.5.10 with a lower bound on |ILt||1i1:

Theorem 1.5.11. Let graph G (V, E) be unweighted, of bounded degree
dmax, with metric diameter D. Then, ILtII 1 > 2D/dmax and, in particular,
|ILt|1141 > (2lnn) - (dmalndmax)- for all bounded-degree, unweighted graphs with vertex ex-
pansion a = 0(1).

Proof of Theorem 1.5.11. Let s -f t be a pair of vertices in G at distance D. We consider the
flow f = BLt(X, - xt). Set b = Lt(X, - xt), and note that we can use ||f || as a lower bound
on ||LtI11,,

||f||1 = |@u - $vl < draxZ |$v C dmax||Lt(Xs - X0) dmax||LtI1+ 1.
(u,v) V

Now, let {7} 1 be a path decomposition of f and let l(7i) and f(7jr) denote the length and value,
respectively, of rj. Then,

||f|1i = | I - O4 l = E l(7ri)f(7rj) > D f (7jr) = D.
(u,v)

Proof of upper bound on |ILt|111 for expanders

Proof of Theorem 1.5.10. Reformulation: We start by transforming the problem in a more man-
ageable form,

|Ltylli (*) n - 1
(1.5.10) ||LIllii :=-sup = max||LtXwI|| < nmax I|Lt(X, - xt)|I,

ypho ||ylli w n S7 t

44

where the latter inequality comes from

|LtXs|| =|Lt~rii~sHr J -n Lt(xS - xi n max |Lt(X, - Xt)Hi.

Pick any vertices s # t and set ' = Lt(x,-xt). In light of (1.5.1) our goal is to bound ||@||1.

We think of iL as the vertex potentials corresponding to electric flow with imbalance X, - Xt.

By an easy perturbation argument we can assume that no two vertex potentials coincide.

Index the vertices in [n] by increasing potential as $i1 < ... < V). Further, assume that n is

even and choose a median co so that $1 < - < On/2 < CO < 4 n/2+1 < ... < On . (If n is odd,

then set co to equal the potential of the middle vertex.)

We aim to upper bound ||@I|1, given as 11 =1 Z - O $. Using

that E, 4b = 0, we get ||@11i = 2 = -2 Zu:u <0O .

Assume, without loss of generality, that 0 < co, in which case

n/2

(1.5.11) 1 = -2 E ou < 2 0 - col =: 2N
U:2<0 i=1

In what follows we aim to upper-bound N.

Flow cutting: Define a collection of cuts (Si, S) of the form Si = { Ov: $, ci}, for integers

i 0, where Si will be the smaller side of the cut by construction. Let ki be the number of

edges cut by (Si, SP) and pij be the length of the jth edge across the same cut. The cut points

ci, for i > 1, are defined according to ci = ci_1 - Ai_1, where Ai_1 := 2 . The last
ki_1

cut, (Sr+1, S+1), is the first cut in the sequence co, c, ... , cr+1 with kr+ = 0 or, equivalently,

Sr+1 = 0.

Bound on number of cuts: Let ni = |Sil. The isoperimetric inequality for vertex expansion

(1.5.9) applied to (Si, S) and the fact that ni < n/2, by construction, imply

(1.5.12) > a.
ni

Let li be the number of edges crossing (Si, S) that do not extend across ci+1, i.e. edges that

are not adjacent to Si+ 1 . The choice Ai := 2 E pij/ki ensures that li > k2/2. These edges are

supported on at least li/dmax vertices in Si, and therefore ni+1 < ni - li/dmax. Thus,

li ki (,12) ani a
(1.5.13) ni+1 < - < i- ni - - = ni 1 -

dmax 2 dmax 2 dmax 2dmax

45

Combining inequality (1.5.13) with no = n/2, we get

(1.5.14) ni , - 1I - O
2 2dmax

The stopping condition implies Sr # 0, or nr ; 1, and together with (1.5. 14) this results in

(1.5.15)

Amortization argumen

(1.5.16)

n2 (a
r log/ 0 , with 0 =1 - 2d.x

2dax

t: Continuing from (1.5.11),

n/2 (* r

N = E i- c| (nj - ni+1) YAj,
i=1 i=O j=O

where (*) follows from the fact that for every vertex v E Si - Si+1 we can write <V'v - col <,

Zj=0 Aj.
Because BLt(x, - xt) is a unit flow, we have the crucial (and easy to verify)

for all i, E, pij = 1. In other words, the total flow of "simultaneous" edges is 1.
property that,
So,

__ = 2 (112) 2
Ai = 2E -= - < -

. k ki ani
J

Now we can use this bound on Aj in (1.5.10G),

(ni - ni+1) niAj 2

i j=o i=1 a
= 2 (r + 1),

where to derive (*) we use nr+1 = 0. Combining the above inequality with (1.5.15) concludes
the proof. Fi

46

(1.5.17)

4 I

1.5.10 Latency (Proof of Theorem 1.5.6)

Proof of Theorem 1.5. 6. Let X be the indicator that edge e participates in the electric walk

between s and t. Then the latency can be expressed as

max EX S'il = max Z u - (6s - 6t)
e (U'v)

= max IBL(6s - 1)| = ||BLtB*1 =l | 1

The latter is bounded by Theorem 1.5.10 and |ll_1 <; 1 /2, as in (1.5.6) e.g.

Remark 1.5.12. For expanders, this theorem is not trivial. In fact, there exist path real-

izations of the electric walk which can traverse up to 0(n) edges. Theorem I.5.6 asserts that

this happens with small probability. On the other hand, in a bounded-degree expander, even if

s and t are adjacent the walk will still take a O(log n)-length path with constant probability.

47

1.5.11 Electric walk

To every unit flow f E RE, not necessarily electric, we associate a random walk W = Wo, W1,....
called the flow walk, defined as follows. Let a B*f and so E, o, = 0. The walk starts at
Wo, with

Pr{Wo = v} =2 -max{0, o-v} E, f , - EW fesV
Er|W-,| EU KE (fun- - EW fenU)

If the walk is currently at Wt, the next vertex is chosen according to Pr{ Wt+1 = v I Wt = u}

Lfu- where

(1.5.18) ', fuvI1 (u, v) E E and f flows from u to v

0, otherwise.

When the underlying flow f is an electric flow, i.e. when f = E(B*f), the flow walk deserves the
specialized name electric walk. We study two aspects of electric walks here: (i) stability against
perturbations of the vertex potentials, and (ii) robustness against edge removal.

48

1.5.12 Electric routing with approximate potentials

The set of vertex potential vectors E"| - LtxV, for all v E V, encodes all electric flows, as argued

in (1.5.4). In an algorithmic setting, only approximations (Iv of these vectors are available. We

ensure that when these approximations are sufficiently good in an f2 sense, the path probabilities

(and congestion properties) of electric walks are virtually unchanged.

Theorem 1.5.13. Let @['] be an approximation of plvl, for all v E G, in the sense that

(1.5.19) | 1|w [" - vI||2 <, V, for all v E V, with v = n-A,

where A > 4 is a constant. Then for every electric walk, defined by vertex potentials p0

EZ av pl"), the corresponding "approximate" walk, defined by vertex potentials = E av(Iv,
induces a distribution over paths -y with

(1.5.20) Pr,{W = -y} - Prg{W =y} O(n)

where -y ranges over all paths in G, and Pr,,{W = y} denotes the probability of -y under p
(respectively for PrQ{W = }).

As shown in Theorem 1.75.16, the Power Method affords us any sufficiently large exponent

A, say A = 5, without sacrificing efficiency in terms of distributed computation time. In this

case, the following corollary asserts that routing with approximate potentials preserves both the

congestion properties of the exact electrical flow as well as the probability of reaching the sink.

Corollary 1.5.14. Under the assumptions of Theorem 1..5. 1 and A = 5, the electric walk

defined by vertex potentials (= E[s] - @[t] reaches t with probability 1 - on(1). Furthermore, for

every edge (u, v) with non-negligible load, i.e. |@u- (v| w(n- 2), we have |@u-@j -n |Pu- -*,

where (o = p ls - pOit.

Proof of Theorem 1.5.13

Proof of Theorem /.5.1. Notation: Note that in this proof we use the notation of (1.5.18). So,
for a potential vector V), we have 4u, : = @u -@/ if (u, v) is an edge and $u ; ov, and u- := 0

otherwise. So, for example, the potential difference on (u, v) can be written as Ou4, + #cvn.
On the other hand, we use the single letter edge notation Spe to denote the signed (according to

B) potential difference on e, SO (Pe := (P - p if Be = 6u - o6. Let D be the maximum degree.

Edge approximation: Fix any unit electric flow, defined by potentials p := EV avAo[", and

write its approximation as 5:= E av [S3. All unit flows can be so expressed under the restric-

tion that EV aV = 0 and Ev lavl = 2. The approximation condition (1.7.19) combined with

49

Lemma 1.5.15 gives us, for every edge e = (u, v),

kOe - >. av (P [v] -e

V

V

E S l 2v apply Lemma 1.5.15
V

= 4v

We call this the additive edge approximation condition

(1.5.21) (e - 4v e e + 4v

Now, consider a fixed path 7y along the electric flow defined by p, traversing vertices

wo, W1,... , Wk. Let Pr,{W = 7y} and Prf{W = -y} denote the probability of this path un-
der the potentials p and 0, respectively. In most of what follows, we build machinery to relate
one to the other.

Path probabilities: For a general unit flow (not necessarily an (s, t)-flow), defined by vertex
potentials @, PrV, {W = y} equals

k--1

(1.5.22) Prgp{Wo = wO} 11 Prof{W+i+ = wi+ l Wi = w Pr {W. = Wk |Wk},
(i=o

where next we explain each factor in turn.

The first, Prg{Wo = wo}, is the probability that the walk starts from wo, and is expressed
as

(1.5.23) Pr.{Wo = wo} = max (0, @ Oo - 5 Ume).
U U

The second and trickiest, Prp{Wi+1 = wi+1| Wi = wi}, is the probability that having
reached wi the walk traverses the edge leading to wi+1, and EZ $w,2 ;;_ Eu $uj , we write

(1.5.24) Prf{Wi+1 = wi+1| W = wi} = /Wi-4Wi+.

max (5 4I, 5 @W-+U)
U 'U

To grasp the meaning of the denominator, note that the quantity | EU $24, - EU 7,-UI is
the magnitude of the in or out flow (depending on the case) at wi.

The third, Prf{Wo = Wk I wk}, is the probability that the walk ends (or exits) at wk

50

conditioned on having reached Wk, and

(1.5.25) Prf{Woo = Wk I Wk} max (0, S _ _U-*Wk - 1: 'bWk--*U.

U U

Next, we are going to find multiplicative bounds for all three factors by focusing on "domi-

nant" paths, and discarding ones with overall negligible probability.

Dominant paths: It is straightforward to verify (from first principles) that the probability

that an edge (u, v) occurs in the electric walk equals |peI = -puv + ym-_. We call an edge

short if Ipe I < e, where the exact asymptotic of e > 0 is determined later, but for the moment

v < e < 1. We restrict our attention to dominant paths y that traverse no short edges, and

have Pr,{Wo = wo} > e and Pr,{Woo =wk| wk} > e.

Indeed, by a union bound, the probability that the electric walk traverses a non-dominant

path is at most 2ne + n 2e. This will be negligible and such paths will be of no interest. In

summary,

(1.5.26) Pr,,{W dominant} 1 - 2ne - n 2 f

We now condition on the event that -y is dominant.

The no short edge condition gives e < Ipel < 1, and using (1.5.21) we derive the stronger

multiplicative edge approximation condition

1 e 8Dv
(1.5.27) - a e o where o- = 1 +

~' Pe

which holds as long as e > 4v, as guaranteed by the asymptotics of e. Also note that the latter

condition ensures that Oe and e have the same sign. An extra factor of 2D is included in o

with foresight.

For the first factor (L.5.23), we have

(1.5.28) Prg{Wo wo} =) wo-+U - E (u- wo
U U

wo-+u - pu->wo - 4Du use (1.5.2 1)
U U

Pr {Wo = wo}I - T use Pr,{W = wo} e

1
> -Pr,{Wo = wo} use e < 1/2.

o-

For the second factor (1 5.21), assume E @uw, ZE $w,_, . An identical argument holds

in the other case. Abbreviate

PrgIwi+1 Iwi} := Pr4{Wi+i = wi+1 Wi = wi}.

51

Path dominance implies E 0
u-w e, and so

(1.5.29) Prg wi+1I wi} =
')OWi-4 wi+l-

E punw + 4Du

S . (pumw +1

0-2(wi- Wi~1

ZU C)0u+Wi

2 Pr{wi+i
Wi}.

o- l

For the third factor (I1.5 .215), similarly to the first, we have

(1.5.30) Prg{Wo = Wk IW} =

5 Pu+W - >3W_-Av
U U

> I:Su-W - I: S
0

w1-*u - 4Dv
U

use (1.5.27) and (1.5.21)

use e < 1/2 and E SPu-+w, - C
U

use (1.5.21)
U

Pr,{W= Wk I Wk}(} 4D1-

1
-PW{o k m|wk}

o-

use Pra{Wo = Wk I Wk} e

use E < 1/2.

Dominant path bound: We now obtain a relation between Pr,{W = 'y} and Prf{W = y}
by combining the bounds (I.5.28), (1.5.29) and (1.5.30) with (1.5.22):

Pr{W = y} 1
(1.5.31) PrW = -y} .2n+2

8Dv 2n+2

exp (16Du 2n+22
eE /

apply bounds, and path length < n

use o-I 1 -8Dv/e

use 1 - x e-2x

Statistical difference: Abbreviate p(-) := Pr,{W = -y} and q(y) := Pr,{W = -y. Below,
-y iterates through all paths, (iterates through dominant paths and (iterates through non-
dominant paths. We bound the statistical difference (1.5.20), using (1.5.31) which says q(() >

52

E
-Y

p() - q(()I+ (S) - q()|

S -)p(() - (q(() - Op(())|+ q use 0 < 1

q(() - Op(()|+ 5 q()

(1.5.32) (1 -0) + O p(()

In this final step, we pin-point the asymptotics of c that simultaneously minimize the two terms

of (1.5.32). In the following, we parameterize c = n-B and use (1.5.26),

(1 - 6) +6Ep(()=

16Du 2n+2
=1-exp (-)

+ exp -
16Du 2n+2(+ n2)

(2n + n2

= 1 - expO(- DnB-A+1) + n 2-B - expO(- DnB-A+1)

= O(DnB-A+1) + n2-B . exp O(- DnB-A+1),

= O(n BA±2) + O(n 2-B)

=O(n2- 4),

use 1 - e- x

use D ; n

set B = A/2.

Lemma 1.5.15. If x, y E f2 and Ix - Y112 , V, then for all i j,

(xi - xj) - 2v ; yj - yj < (xi - xj) + 2v.

Proof. We have (X, - y,) 2 ' _ y w2 , implying |xi - yij < V. Similarly for j.
the two proves the lemma.

53

Combining

Ip(7) - q(-)| =

1.5.13 Robustness (Proof of Theorems 1.5.4 and 1.5.5)

We prove Theorem 1.5.4 and 1.5.5 here. The proof of the former interestingly relies on the flow
cutting techniques developed previously in Section 1.5.9.

Proof of Theorem 5.). For the first part, let {(ui,v),..., (Uk, vk)} = Q, and let pi =

If ']) = -(x), - - xt)|. Consider the embedding (V -+ R, defined by
((v) = x*Lt(o - 6t). Assume for convenience that ((ui) < ((vi) for all i. Let (min mine ((v)
and (max = max, ((v).

Choose c uniformly at random from [(min, (max] and let Xi = pi - I{((ui) < c < ((vi)}, where
I{-} is the indicator function. Observe that the random variable X = E> Xi equals the total
electric flow of all edges in Q, cut by c. Since these edges are concurrent (in the electric flow)
by construction, we have X 1. On the other hand,

EX = Zpi -Pr{((ui) <,c ((vi)}PZi > k
i (max- (min 2 2

Combining this with EX < 1 produces |Qj < 2/(Ap 2).

For the second part, kp < EecQp f tI | eCE f | BL(X-xt)|| 2dmax -||Lt||1, 1 .
This gives |Q,| < 2dmax ||Lf|I1i_1/p.

Proof of Theorem 1.5.5. Let fpt be a max-flow routing of the uniform demands and let 0 be
the fraction of the demand set that is routed by fopt. The Multi-commodity Min-cut Max-flow
Gap Theorem (Theorem 2, in [73]) asserts

| E(S,SC)| 1 IE(S, S') aO(In n) - 0 > min > - - min=-
scv |S| .|SC| n Scvmin{|SI,SCI} n

Thus the total demand flown by fopt is no less than 09() > Q(an/ In n). Normalize f (by scaling)
so it routes the same demands as fopt. If k edges are removed, then at most qk flow is removed
from f, which is at most a fraction qk - O(In n/an) of the total flow. Substitute x = k/m and
use m < dmaxn to complete the proof. E

54

1.5.14 Power iterations (Proof of Theorem 1.5.3)

Theorem 1.5.3 is implied by the following theorem by specializing e = O(n-5).

Theorem 1.5.16. Let G be a graph, whose Laplacian L has smallest eigenvalue A and whose

maximum degree is D. Then, for every y with ||Y|12 = 1 the vector x Lty can be approximated

using

1 d L

X= 2D (I-2D
i=0

so that for every e > 0,

||X - 4|2 < E, as long as d > Q(1) ' In A (DIln.

Proof of Theorem 1.5. 16. We normalize L via N = L/ (and so L = N- 1 /T), where T = 2D.

Since T= 2D > Amax(L), the eigenvalues of N are in [0, 1]. In this case, the Moore-Penrose

inverse of N is given by N j = Z o(I - N)'. Set Nt - Z e(I - N)' and Nt= Nt - Nt. Our

aim is to minimize d so that

Nt + N No N N
| _x - x|2 = y- y _y 'E

T T 2 r 2 T 2-2

where ||Al1212 supxgo lAx 12/11Xl|2 denotes the matrix spectral norm. Set r, :r/Amin, SO

that r- 1 is the smallest eigenvalue of N,

N ||2-+2 = (1 - N)' E2- I - N)||24211 21(2 -

i=d+1 i=d+1

(1.5.33) E (1 - , =(1 -)d+1,
i=d+1

Setting (1.5.33) less than Te gives

d > In K/(-re)
In K/(K - 1)

55

1.5.15 Symmetrization of the electric flow algorithm

In this section we discuss how to modify the computational procedure, given in Section 1.5.4 and
analyzed in Section 1.5.14, in order to apply it to graphs of unbounded degree. The described
algorithm for computing p[w] = Lixw relies on the approximation of Lt via the Taylor series

1 0
1 = E e(1 - x)'. The series converges only when Ixl|2 < 1, which is ensured by setting
X 2 dmax , and using that ||L||2- 2 < 2dmax. Thus we arrive at 2dmax -Lt = 0 (I- 2dmax)i. This
approach continues to work if we replace dmax with any upper bound hmax > dmax, obtaining
Lt = 2hmax =0(I - M)' where M = , however this is done at the expense of slower2hmax2h-m.x'

convergence of the series. Since in a distributed setting all vertices must agree on what M
is, a worst-case upper bound hmax = n must be used, which results in a prohibitively slow
convergence even for expander graphs.

Instead, we pursue a different route. Let L = D- 1/2LD- 1/2 be the normalized Laplacian
of G, where D E R"X' is diagonal with D, = deg(v). One always has ||||2-2 ; 2 (Lemma

1.7 in [23]) while at the same time Amin(L) > max {' 4dmax dmaxa } (Theorems 2.2 and 2.6
in [23]), where a and # are the vertex- and edge-expansion of G, respectively. Set M = L/3, so
that |IM|| 2 , 2 < 1. Recall that the aim of our distributed procedure is to compute pL at u (for
all w). We achieve this using the following:

S= X*LX = x*D1/2M D-1/2W xi Z 00(I - M)i XwXLX U U 3 - deg(u) 3 Ndeg(w)

The key facts about the series in the left-hand side are that (i) it converges quickly when G is
an expander and (ii) all vertices can compute M locally, in particular, without requiring any
global knowledge like e.g. an upper bound on dmax.

56

1.5.16 Open questions

We conclude our exposition on electric routing with a couple of open questions.

A central concern, widely-studied in social-networks, are Sybil Attacks [3 1]. In systems

where new members can join via edges to "friend" nodes, Sybil attacks can be modeled as

graph-theoretic noise, as defined in [58]. It is interesting to understand how such noise affects

electric routing.

Another open problem concerns the space requirements at each vertex for oblivious routing.

We suspect that any O(In n)-competitive oblivious routing scheme, which outputs its routes in

the "next hop" model, must maintain Q(n)-size routing tables at every vertex. In the next hop

model, every vertex v must be able to answer the question "What is the flow of the (s, t)-route

in the neighborhood of v?" in time O(polylog(n)), using its own routing table alone and for

every source-sink pair (s, t).

57

58

Chapter 2

Greedy embeddings

In this chapter we concern ourselves with representing routing schemes on trees. While a tree

provides an obvious, unique, non-self-intersecting path between every pair of vertices, encoding

all such paths in an efficient, distributed manner is not trivial.

Routing on a tree is a key primitive since a number of advanced routing schemes are pre-

sented in the form of convex combinations of trees. Bartal's graph metric approximation via

distributions over trees [10], for example, constitutes an fi-routing scheme. Rscke's cut-based

graph decompositions in the form of convex combinations of trees [89] constitute an fo-routing
scheme. And Thorup and Zwick's distance oracles for graph metrics [1 () 1] constitute another

ei-routing scheme based on trees, which trades off performance guarantees for a smaller number

of trees involved in the construction. In all of the above cases, the vertices of the network need

to learn how to route with respect to a collection of graph subtrees, and consequently decide

which single tree to use based on some additional rules.

A seminal work of Thorup and Zwick [104] achieves routing on trees with essentially optimal

(1 + o(l)) log n bits per vertex representation. The schemes of [10 1] are combinatorially complex

and quite brittle to changes in the underlying graph. For this reason, a parallel line of research

has focused on finding conceptually simpler representations at the cost of small (typically a

constant factor) inefficiencies in terms of bit complexity or objective guarantees. In this vein,

"greedy routing" has become a prominent approach. The vertices of the tree are embedded

into a "nice" metric so that greedy message forwarding with respect to that metric results in

routing along desired paths. In this work we develop a number of greedy constructions for

trees and provide respective lower bounds on representation complexity. Our key upper bound

is an embedding of every tree into 3-dimensional hyperbolic space, which requires O(log n)-bit

coordinates per vertex - a constant factor away from the optimal.

Formally, a greedy embedding of an unweighted undirected graph G = (V, E) into a metric

space (X, p) is a function f : V -+ X such that for every source-sink pair of different vertices

s, t E V it is the case that s has a neighbor v in G with p(f(v), f(t)) < p(f(s), f(t)).

Finding greedy embeddings of connectivity graphs helps to build distributed routing schemes

59

with compact routing tables. In this chapter we take a refined look at greedy embeddings,
previously addressed in [66, 82], by examining their description complexity as a key parameter
in conjunction with their dimensionality. We give arguments showing that the dimensionality
lower-bounds for monotone maps do not extend to greedy embeddings. We prove a unified
O(log n) lower-bound on the dimension of no-stretch greedy embeddings when the host metric
is Euclidean or Lobachevsky geometry. The essence of the lower bound entails showing that
low-dimensional spaces lack the topological capacity to realize the embeddings of certain graphs
with "hard crossroads." This technique might be of independent interest. We develop new
methods for building concise embeddings of trees (and some other graphs) in 3-dimensional
Lobachevsky spaces using recursive applications of hyperbolic isometries guided by caterpillar-
type decompositions. Our embeddings improve over prior work [66] by achieving O((T) -log n)
description complexity, where K(T) is the caterpillar dimension. We further demonstrate concise
O(log n)-dimensional greedy embeddings of trees into Euclidean space using techniques inspired
by [49], thereby strengthening our belief and intuition that all graphs can be embedded with no

stretch in O(log n)

60

2.1 Introduction

A greedy embedding of an unweighted undirected graph G = (V, E) into a metric space (X, p)

is a function f : V - X such that for every source-sink pair of different vertices s, t E V

it is the case that s has a neighbor v in G with p(f(v), f(t)) < p(f(s), f(t)). From here on

n = IVI and the word "embedding" will refer to a greedy one unless otherwise stated. This

definition implies that routing greedily (with respect to the host metric) in G always succeeds.

In particular, a routing algorithm induced by a given greedy embedding works as follows. To

deliver a letter from s E V to t* E X, the algorithm recursively forwards the letter to a neighbor

of minimal embedding distance to t* (ties are broken arbitrarily in a deterministic manner which

is universally fixed for the purposes of our discussion), provided that such neighbor is closer to

t* than the current vertex. Otherwise, routing halts and it is assumed that the target has been

reached. If the embedding is greedy and t* = f(t) for some t E V, then the letter is guaranteed

to reach t.

The notion of a greedy embedding is motivated by its applications to routing-with-local-

information in large distributed systems (discussed in more detail later). In this context one is

particularly concerned with three properties of the embedding algorithm. From here on we will

loosely use the term embedding to refer to f itself or to the algorithm that finds an embedding

for a given input graph.

i. For a given embedding algorithm, the maximum (over v E G) number of bits that the algo-

rithm uses to describe f(v) is called the description complexity of the embedding (algorithm).

Note that in a typical application, the computer at node v stores its own coordinate f(v)

in order to be able to perform routing tasks. Embeddings with Q(n) description complexity

are not interesting in light of application constraints. Our primary interest is in embeddings

with polylog(n) description complexity, heretofore referred to as concise embeddings.

ii. Every embedding f defines a unique path in G between all pairs of unequal vertices (s, t),

which is the path realized by the greedy routing algorithm (when routing from s to f(t) and

vice-versa) with respect to f (after resolving ties deterministically, as noted above). The

length of this path is denoted by dj(s, t), which is to be distinguished from the length of

the shortest-path between s and t in G denoted by dG(s, t). With this notation in hand,

the stretch of a greedy embedding is defined as D = maxstcv ds . An embedding with

stretch D = 1 is called a no-stretch embedding. Note that no-stretch greedy embeddings are

not equivalent to no-stretch distance-preserving embeddings. (Examples are given below.)

iii. The congestion of a greedy embedding is defined as the edge-congestion of the set of routes

realized by greedy routing (with respect to the embedding) between all pairs of vertices.

61

2.1.1 History of the problem

The power of geometric interpretation for routing problems was initially recognized in a sequence
of papers [59, 18, 44, 71] from the ad-hoc, wireless and sensor networks communities. These
papers consider the problem of routing messages in ad-hoc wireless networks where participating
nodes are aware of their physical planar location on Earth; and, additionally, the connectivity
graph (induced by the nature of radio communications) is close to planar. The papers describe
routing algorithms that make local forwarding decisions based on the geographic location of the
target node and the current node's neighbors. The algorithms have a common framework. First,
a planarization of the connectivity graph is obtained; consequently, routing consists of greedy
approach towards the target, combined with face routing around the perimeter of obstacles
(when greedy approach is not possible).

Routing with geographic location, however, has insurmountable shortcomings. In particu-
lar, [71] shows that the best possible routing algorithm (based only on geographic location) may
result in routing costs that are quadratic in the size of the optimal ones. This negative result
is due to the arbitrary geometric complexity that the obstacles can have. Two other shortcom-
ings are the assumption that the connectivity graphs are close to planar and that geographic
location information is available. These two assumptions render the routing schemes under
consideration useless for more complex networks like the Internet or P2P networks, where the
connectivity graphs are significantly more complex: Such graphs are often modeled by scale-free
or preferential-attachment random graphs [16, 17].

In light of these shortcomings, the non-strictly-theoretical approaches of [91, 39, 19] consider
assigning virtual coordinates in Rd to network nodes, so that basic greedy routing works with
little modification. The assignment methods investigated entail variants of the rubber-band
algorithm (applied to the connectivity graphs) and multi-dimensional scaling techniques (applied
to the shortest-path metric of the connectivity graphs). The experimental results of these papers
are generally promising but far from perfect or well-understood for large and realistic classes of
graphs.

The first rigorously theoretic attempt at the problem was made by Papadimitriou et al.
in [82], where the notion of greedy embedding was defined. This paper concerns the question
of mere existence of greedy embeddings for graphs (irrespective of stretch or congestion). The
paper shows that any graph containing a 3-connected planar subgraph has a greedy embedding
in R3 , and conjectures that every such graph has a greedy embedding in R2 as well. This
conjecture was proven correct for graphs containing a triangulated planar subgraph [28].

Following the work of [82], and perhaps motivated by the application of greedy embeddings,
Kleinberg [66] asks the more general question: Are there (nice) host metric spaces that accom-
modate greedy embeddings of all connected graphs?. He answers this question affirmatively using
the fact that a greedy embedding of a graph spanning tree is also a greedy embedding of the
graph (albeit with possibly arbitrary stretch), and showing that all trees can be embedded (not
concisely) into H 2 , the 2-dimensional Lobachevsky space. Additionally, his paper highlights the
importance of the stretch and congestion parameters of greedy embeddings in view of applica-

62

tions. For embeddings of star graphs on n vertices into Rd endowed with a Minkowski norm, it

is shown that d = Q(log n). Kleinberg concludes his work with a list of open problems regarding

existential and algorithmic aspects of greedy embeddings with various levels of stretch.

2.1.2 Our results

This work is a continuation of the study of greedy embeddings. The primary theme in our

paper is addressing the existence of no-stretch embeddings for all graphs. Our findings provide

evidence that such embeddings may exist. Our emphasis on finding embeddings with no stretch

is in line with the fact that in real-world routing applications even small amounts of stretch are

prohibitive.

First, in the spirit of keeping the applications in mind, we address the bit complexity of

greedy embeddings (defined above). We improve Kleinberg's result by showing that all trees

(as well as some other tree-like graphs) have concise (also defined above) greedy embeddings

into H 3 , the 3-dimensional Lobachevsky space. We complement this result by exhibiting concise

low-dimensional greedy embeddings of trees into f2. The latter construction sheds some light

on the "shape" of possible greedy embeddings of general graphs in Euclidean spaces.

Second, we give arguments and a theorem that strongly suggest that no-stretch embeddings

do not require high dimension and, in fact, we believe that all connected graphs have concise

no-stretch low-dimensional embeddings in f2. Therefore, we begin a systematic attempt to un-

derstand the structure of no-stretch embeddings. As a first step, we develop a unified technique

with a strong topological flavor that demonstrates that a certain family of graphs with "hard

crossroads" requires Q(log n) dimensions to embed into Lobachevsky or Euclidean space. This

technique motivates an interesting topological question regarding Minkowski normed spaces and

manifolds. Our lower-bound can be interpreted as saying that Lobachevsky geometry is no more

powerful than Euclidean geometry when it comes to harder graphs, contrary to intuition. We

complement this lower-bound with a theorem stating that every no-stretch greedy embedding

into Ed can be used to derive a corresponding embedding into H d.

This paper is not concerned with congestion since we believe that this parameter is of sec-

ondary importance. This belief is supported by the fact that standard techniques like using a

distribution over embeddings or routing through randomly selected intermediaries can be used

to reduce congestion.

2.1.3 Dimension reduction does not help

Finding low-dimensional greedy embeddings into £2 is hard: In this section we explain that

standard dimensionality reduction techniques alone are of no use for constructing greedy em-

beddings. When seeking low-dimensional Euclidean embeddings it is common to use one of the

following two approaches:

e The Bourgain approach: Find an embedding into an arbitrary metric that realizes the

required embedding properties. Then squeeze this embedding into f(log using Bour-

63

gain's O(log n)-distortion embedding, while "making sure that the necessary embedding
properties are preserved." Alternatively,

The Johns on-Lindenstrauss approach: Find an embedding into f2 (of arbitrary dimen-
sion) that realizes the required embedding properties. Then reduce the dimension using
Johnson-Lindenstrauss Flattening Lemma, while again "making sure that the necessary
embedding properties are preserved."

In the case of greedy embeddings "making sure that the necessary embedding properties are
preserved" boils down to requiring that pairwise distances whose relative magnitudes must be
preserved by the embedding have a sufficiently large margin e. The minimum margins are
e = O(log n) and e = 1/ log0 (1) n, respectively, for the above two approaches.

We are going to show that neither of these requirements are achievable for almost any graph
G. Start with two technical observations:

Lemma 2.1.1. Let s = v 1, v2 , .. .,Vk+1 = t be the unique shortest path between s and t in
a graph G. Let f : (G, da) -+ (X, dx) be a no-stretch greedy embedding with margin e, and also
let x = dx (f(vi), f(vi+1)). Then Xi + - - - + Xk > (1 + e)k-1 max {X1 , . . . ,Xz}

Sketch of Proof: The margin requirement says that for any three vertices u, v and w such that
u and v are adjacent and v is on the unique shortest path from a to w, it must hold that
dx(f(u), f(w)) > (1 + e)dx(f(v), f(w)). Observe that for any 1 < i < j < k the unique
shortest-path between vi and vj is vi, vi+1,..., v3 . Now the lemma follows by induction. E

Corollary 2.1.2. Using the setup from the previous lemma, the following must hold k >
(1 + e)k-1

Proof. Let Lmax = max {xi, . . ,Xk}, then simply: k-max > xl+. - -+X > (1+f)k-1 Xmax. E

When we substitute for the margin e in the above corollary we get:

Corollary 2.1.3. No graph that has a unique shortest path of length 0(1), respectively

logo()1 n, can be greedily embedded in fpo1y og(n)using the Bourgain approach, respectively the
Johnson-Lindenstrauss approach.

In other words, both approaches are futile for almost every graph, and in particular for nice
classes of graphs like trees, cycles, random graphs, etc.

2.1.4 Road map

The paper is organized as follows. Section 2.2 positions our work with respect to the related class
of ordinal and proximity embeddings. Sections 2.3 and 2. 1 discuss the preliminaries of hyper-
bolic geometry, greedy embeddings, and tree decompositions. Section 2.5 proves a lower-bound
on embedding dimension for a family of graphs with rich combinatorial structure. Sections 2.6

64

and 2.7 explain our concise embeddings for trees in Lobachevsky and Euclidean space, respec-

tively. Finally, Section 2.8 contains concluding remarks and open problems motivated by our

work.

65

2.2 Topological embeddings

2.2.1 Ordinal embeddings

Greedy embeddings are a type of ordinal embeddings, i.e. embeddings that preserve the rel-
ative order of pairwise vertex distances. The latter have enjoyed significant attention in the
multi-dimensional scaling community in view of their applications to visualization, compression,
nearest-neighbor search, etc. (see [3] for details). The strictest kind of ordinal embeddings are
monotone maps, which are discussed below. Monotone maps provably require Q(n) dimensions
to realize almost all distance orders on n-point metrics (see [15]). To address this problem [3]
considers ordinal embeddings of minimum relaxation, a variant that enforces order preservation
of well-separated points only. In this vein, greedy embeddings are a variant of ordinal embed-
dings that require order preservation only among pairs of points of the form (x, z) and (y, z)
where x and y must be neighbors or share a neighbor in the original graph.

2.2.2 Greedy embeddings vs. monotone maps

In [15] Linial and Bilu study embeddings that preserve relative pairwise distances. They define
a monotone map as function f : X --+ Y mapping a finite metric (X, dx) into a (usually normed
or otherwise nice) host metric (Y, dy) such that V a, b, c, d E X : dx(a, b) < dx(c, d) '
dy(f(a), f(b)) < dy(f(c), f(d)). They show that any ordering on) can be realized as a
metric on n points with a matching ordering on the pairwise distances. Furthermore, they show
that any such metric can be embedded in 2 and almost no such metrics can be embedded in
,o(n)2

We prove a theorem showing that the relationship between monotone maps and greedy
embeddings is weak at best. The proof of the following theorem is deferred to the full version:

Definition 2.2.1. A reduction of the problem of finding a monotone map for a given order
w E S(n) on the pairwise distances between n points, is a function R from S(n) to the set of
unweighted undirected graphs. Additionally, there is a subset of vertices H C V(R(w)) such
that |HI = n and for every no-stretch greedy embedding f of R(7) the restriction to H of f is
a monotone map for 7r.

Theorem 2.2.2. The problem of finding a monotone map for a given order on the pairwise
distances between n points cannot be reduced to a problem of finding a no-stretch greedy embedding
of a graph on o(e") vertices for 1 - o(1) fraction of orders.

It is obvious that a monotone map for a graph metric is also a greedy embedding for this
metric. On the other hand, there is an abundance of examples where the greedy embedding of a
graph metric is not necessarily a monotone map. Perhaps the best such example is that of Kn,n.
The complete bipartite graph K,,n has no monotone map into f") while it has a no-stretch
greedy embedding into f2: Position all vertices of K uniformly along the unit circle S1 while
interlacing vertices from opposite sides of Kn,.. The techniques used in [15] to derive the Q(n)

66

bound on the monotone dimension of most graphs were borrowed from [4] and these techniques

produce only trivial lower-bounds for the greedy embedding dimension.

2.2.3 Greedy embeddings vs. sphericity

Another related notion is that of a proximity embedding defined in [77]. A proximity embedding

f : G d of an undirected unweighted graph G is one for which Vv, w E G: ||f(v) - f(w)II <

1 <-> (v, w) E G. The sphericity of a graph is the minimum dimension d for which such

embedding exists. As pointed out in [15], the sphericity of a graph is a lower-bound on its

minimum monotone map dimension. Sphericity also bears only a weak connection to greedy

embeddings. On the one hand, K, has sphericity Q(n) while it embeds greedily into f2 with no

stretch. On the other hand, trees and graphs of bounded degree have easy proximity embeddings

in fl using standard constructions involving the Johnson-Lindenstrauss lemma and only

local graph structure considerations (see [12]). In contrast, Appendix 2.1.3 proves that standard

techniques based on flattening or Bourgain's embedding cannot be used to construct greedy

embeddings.

67

2.3 Hyperbolic geometry

Hyperbolic geometry is a vast and complex area with applications in various branches of Mathe-
matics. In this section we give a brief and somewhat self-sufficient introduction to the properties
of hyperbolic spaces used in this paper. More comprehensive expositions can be found in the clas-
sical texts of Thurston [105] and Do Carmo [29]. A considerably more concise and self-contained
introduction is the one by Katok [61], which we recommend for the beginner. Hyperbolic geom-
etry has found little attention in Computer Science, but for a few notable exceptions [98, 66, 68].

Hyperbolic spaces, also known as Lobachevsky spaces (not to be confused with the more
general Gromov 6-hyperbolic spaces [5, 48]; of course, Lobachevsky spaces are also Gromov
log 3-hyperbolic), can be constructed either axiomatically [25] (much like classical Euclidean
geometry) or more explicitly using the language of Differential Geometry [29]. For the benefit
of the reader's intuition we give the latter construction. We then state a few simple facts (while
omitting proofs) which will enable us to reason about hyperbolic geometry in terms of its model
via the more familiar Euclidean space.

2.3.1 The half-plane model

The d-dimensional real hyperbolic space, denoted Hd, is modeled by the upper-half plane
Rd+ =(X..., Xd)T E Rd Xd > O} in Rd endowed with the Riemannian metric:

ds 2 ± d
d

By construction Hd is geodesic. The Euclidean hyperplane H = {(zi, .=. ., Xd)T E Rd |Xd = 0}
plays a special role and is called the boundary at infinity. The following few facts establish the
basic properties of Hd.

Theorem 2.3.1 (See Proposition 3.1 in [29]). Infinite geodesics, also called lines, in Hd (i.e.
isometric maps of the form g : R <- H d) correspond to Euclidean circles and lines orthogonal
to the boundary at infinity and restricted to the upper half-plane, collectively referred to as
generalized circles.

Fact 2.3.2 (See [29] p.177). Hyperplanes in Hd (i.e. isometric maps h : Hd- 1 <- Hd)
correspond to (d - 1)-dimensional Euclidean spheres and planes orthogonal to the boundary at
infinity and restricted to the upper half-plane, collectively called generalized spheres.

The isometries of Hd are modeled by conformal (angle-, but not orientation-, preserving)
transformations of Rd that map the upper half-plane to itself, restricted to the upper half-plane.
More notably though:

Theorem 2.3.3 (See Theorem 5.2 and Theorem 5.3 in [29]). Let f : H d - Hd be an
isometry. Then, f is the restriction to Rd+ of a composition of Euclidean isometries, dilations
or inversions that map Rd+ onto itself, at most one of each.

68

We assume that the reader is already familiar with the isometries and dilations of Rd+. An

inversion about a Euclidean hyperplane is defined as Euclidean reflection with respect to that

hyperplane. An inversion of a point p about a Euclidean hypersphere centered at c with radius

r is defined as the unique point q on the ray ici for which IcpI - |cql = r 2 . For convenience, we

define shorthand notation for the Euclidean hemisphere Sc,r = {u E Rd+ : Iu - cI| = r} and the

corresponding half-ball Bc,r = {u E Rd+ Iu - cH| < r}, where in both cases c E CHd.

In this paper we use three specific isometries to construct greedy embeddings. Since we

need to keep track of the bit complexity of point coordinates after application of isometric

transformations, we give explicit formulas for them here:

" An inversion about a hyperbolic hyperplane corresponding to a Euclidean hemisphere Sc,r

is given by ac,,(v) = (v - c) - r2 /llV - c112 - c

* A translation by a vector w E aHd is given by #w3(v) = v + w

* A dilation at the origin by a factor D > 0 is given by 7D(v) = D - v

Finally, we will need an expression for the pairwise distance function of Hd. We will denote

the geodesic segment between points v and w in Hd by [v, w]. The Riemannian metric on Hd

naturally induces a pairwise metric function p(-, -). Let h = { E Rd X2 = - = zd-1 = 0, Xd >
0}. We give an expression for p(v, w) for the case when v, w E Hd n h. (It should be clear that

hyperbolic isometries can position any two points in this manner.) h can be viewed as a copy of

H2 , and v and w can be located in h using only two coordinates, namely the 1-st and the d-th.

We shall now view v and w as complex numbers in the following way v = vi + ivd (similarly

for w). With this notation in hand, the following theorem gives the pairwise distance between

v and w:

Theorem 2.3.4 (See Theorem 1.2.6 in [GIi]). Let v, w E H2, then:

p(v' w) = In _V-T V-W
|V -w|I -|IV -w|

2.3.2 The Klein model

The Klein model of hyperbolic space will be instrumental in our lower-bound proof. In the

Klein model Hd is modeled by the d-dimensional Euclidean disc Dd = {x E Rd I 11x|| < 1}. In
particular, the Klein model can be viewed as a homeomorphism h : Hd a Dd. We shall make

use of one simple property of this model; for further information, we refer the interested reader

to [105]:

Fact 2.3.5. Hyperbolic hyperplanes in the Klein model correspond to Euclidean hyperplanes

restricted to the unit disc.

69

2.3.3 Bisecting hyperplanes

To prove correctness of our constructions, we will use a lemma from [66] for H2 whose proof

translates to Hd unchanged:

Lemma 2.3.6. Let v and w be different points in Hd, and let b be the hyperbolic hyperplane

that bisects the geodesic [v, w], then for all u E Hd it holds that p(v, u) < p(w, u) if and only if

v and u are in the same half-space with respect to b .

In order to apply this lemma in our constructions, we will need to identify the bisecting

hyperplane between vertices with equal d-th coordinates:

Lemma 2.3.7. Let u, v E Hd such that ud = Vd. Then the hyperbolic hyperplane bisecting

[u, v] coincides with the Euclidean hyperplane bisecting u and v (in Euclidean sense).

70

2.4 Embeddings and tree decompositions

2.4.1 Greedy embeddings basics

Here we list a few easy-to-verify facts about greedy embeddings that we use implicitly throughout

the paper. More details can be found in [66].

Fact 2.4.1. If H C G is a subgraph containing all vertices of G, then every greedy embedding

of H is also a greedy embedding of G, albeit with a possibly higher stretch.

Fact 2.4.2.

i. If T is a tree and T' C T is a subtree, then every greedy embedding of T in a metric space

X restricts to a greedy embedding of T'.

ii. Greedy embeddings of trees always have no stretch 1.

iii. If X is a normed vector space which admits a greedy embedding of the star graph on n

vertices, then dim(X) = Q(logn).

2.4.2 Distance-preserving embeddings

Definition 2.4.3. A map f : X - Y, where (X, dx) and (Y, dy) are metric spaces, is a

distance-preserving embedding of X into Y with distortion D > 0, if there exists a constant

r > 0 such that:

Vv,w E X r - dx(v, w) < dy(f(v), f(w)) < D - r -dx(v, w)

2.4.3 Tree decomposition and heavy paths

This section describes a variant of the well-known caterpillar decomposition of trees [74, 79],
also recognized as Tarjan and Harel's [;53] heavy-path decomposition. Let T be an arbitrary

non-rooted tree on n vertices. A path decomposition of T into k paths is a collection of vertex-

disjoint line subgraphs of T which covers T's vertices completely, i.e. T = Pi L ... -J Pk. A

hierarchical path decomposition is a path decomposition which is additionally endowed with a

hierarchical relationship among the paths. In particular, this relationship is represented by a

rooted tree H whose vertex set is P1 ,... , Pk. Furthermore, (Pi, P) is an edge in H iff P and

Pi are connected by an edge in T. A heavy-path decomposition of a (rooted/non-rooted) tree is

a particular hierarchical path decomposition which has depth at most 2s(T) < 2 log L, where L

is the number of leaves of T. The quantity ri(T) is the caterpillar dimension of T. It is easily

verified that for an non-rooted tree T, a caterpillar decomposition of T using an arbitrary root

can be modified to produce a heavy-path decomposition of depth at most 2,(T). A heavy-path

decomposition of a bounded degree-3 tree is illustrated in Figure 2-1.

71

P, a b c d e f 8 h i k

P q
1 m n o p r

4 s

Pi

P2 P3

P4

Figure 2-1: Shown: (a) an non-rooted tree, (b) its heavy-path decomposition, and (c) the
hierarchical path relationship. 72

2.5 Lower bounds

In this section we develop a "dual" representation of greedy embeddings in terms of "bisecting

sets," which allows us to prove a unified lower bound on the Euclidean and Lobachevsky dimen-

sionality of a certain family of graphs. The Lobachevsky bound is new, while the Euclidean was

already known from [66]. Nevertheless, the unified framework of the proof seems to be of value.

2.5.1 Graphs with hard crossroads

We now define a family of graphs with hard crossroads that have rich combinatorial structure on

the set of all-pairs shortest paths. Let Qd be the graph on n = d+3-2d vertices and m = 2 d (d-2)

edges, defined as follows. The vertex set consists of {si}ic[2d], {tj}gjE[d, {Wi,q}iE[2d],qE{o,1}. The

edge set consist of two types of edges:

i. For every i E [2d], include the edges (si, w,,o) and (si, wi, 1).

ii. Let i = b1b2 .. bd be the binary representation of i. Then for every i E [2d], include the

edges (wi,b,, ti), (wib 2 , t2), ... (w, bd , td).

The main result of this section is the following theorem:

2.5.2 Dimension theorem

Theorem 2.5.1. Every no-stretch greedy embedding of Qd into Euclidean or Lobachevsky

space requires d dimensions.

This theorem implies a log(n) lower bound on the dimension of no-stretch greedy embeddings

of graphs on n vertices.

Sketch of Proof: (See Section 2.5.3 for complete proof.) Let f: Qd - (X, dx) be an embedding

into a geodesic metric space with a continuous pairwise distance metric. We shall use v and

f (v) interchangeably. Let us now cover some topological preliminaries.

Let a f b E X be two different points in X. Define the bisecting set of [a, b] to be

Bisect(a, b) = {c E X I dx(c, a) = dx(c, b)}. In the spaces under consideration, every bisect-

ing set is non-trivial and furthermore it separates the space X in at least two disjoint sets,
called chambers, one for each endpoint of the bisected geodesic segment. We use the notation

(c ab d) to indicate that c (respectively d) lies in the chamber of a (respectively b) with respect

to the bisecting set of [a, b]. We also use that chambers are preserved by homeomorphisms.

More generally, let S C X separate X into a collection of chambers {C, }, and let h : X - Y

be a homeomorphism, then h(S) separates Y exactly into {h(C 0)}.

It is easily seen that the correctness of f (as a no-stretch greedy embedding) can be expressed

by a set of inequalities of the form dx(f(x), f(z)) < dx(f(y), f(z)) where x, y, z E V(Qd). Every

73

such inequality implies a (weaker) separation constraint (z | Is). The collection of separation con-
straints partitions X into a set of chambers and establishes combinatorial constraints regarding
the position of f(x), for every x E V(Qd), with respect to containment in chambers.

The idea of the proof is to find a homeomorphism h that sends X to Rd while mapping all bi-
secting sets (or at least subsets thereof) to hyperplanes. Then using Linear Algebra we establish
that the required (by the separation constraints) geometric set system (See [8o] for definition),
formed by the points {(h o f)(x)} x,(Q and the hyperplanes {h(Bisect(f(x), f(y)))} v(Q),
cannot be realized in low dimensions.

When X is Lobachevsky, the bisecting sets are hyperbolic hyperplanes, and the Klein model is
the required homeomorphism. When X is Euclidean the homeomorphism is simply the identity.

n

It is an interesting (as far as we know, open) question to find homeomorphisms that work
for Minkowski normed spaces. Some thought will convince the reader that such homeomor-
phisms will have to be input-specific, unlike the universal Klein model homeomorphism for
the Lobachevsky case. We also believe that this approach can be extended to nice classes of
manifolds (but we do not dabble in this here).

2.5.3 Complete proof

Dual Representation

Let G = (V, E) be a graph and let f : V -+ (X,I| - ||) be an embedding, where (X, -) is one
of fd or Hd and d is referred to as the dimension of X. The conditions for f being a no-stretch
greedy embedding of G are described by a collection of inequalities, heretofore called greedy
constraints, of the form:

(2.5.1) |f () - f (z) < ||f (y) - f (z)||

where x, y, z E V are pairwise unequal. When the host metric is Euclidean or Lobachevsky,
we can rephrase the constraints using the language of hyperplanes. We shall use the notation

(a cld b), where a, b, c and d are points in the host metric space, to mean that the bisecting
hyperplane of [c, d] separates a, c and b, d. More generally, in this notation we allow arbitrary
lists (including the empty list) of points in place of a or b. Furthermore, we abuse notation a
little by using v to refer both to a vertex v E V and its image f(v). It is now easily seen that
the constraint (2.5.1) can be rewritten in the form (z xy). (The hyperbolic case follows from
Lemma 2.3.6.)

Proof Outline

The idea of the proof is to examine the constraints of Qd and show that when X is low-
dimensional there is no configuration of points and any hyperplanes that satisfy the constraints.

74

What makes this proof manageable is that we seek to realize the greedy constraints using

arbitrary hyperplanes, rather than strictly bisecting ones. In order to unify our analysis of

the normed and Lobachevsky cases, we make the following observation. In the Klein model of

Hd, the hyperbolic hyperplanes correspond to Euclidean hyperplanes restricted to the unit disc

Dd = {x E Rd : ||x|| < 1} in Rd. Therefore for both types of geometries it suffices to show that

the hyperplane/point configurations required by Qd cannot be realized in f with d' < d. This

will be established using simple Linear Algebra.

Linear Algebra and Point/Hyperplane Configurations

We shall only concern ourselves now with Euclidean geometry. If M is a matrix, we will let mi,

My and Mij refer to the i-th row, j-th column and the (i, j)-th entry of M, respectively.

A (point/hyperp lane) configuration I is a collection of points V1 ,..., V" E Rd and hyper-

planes (aT, bi),..., (af, bk) E Rd x R, where a point Vj is on the "positive" side of (a[, bi) iff

aiVj - bi > 0. The left-hand side of the latter inequality is referred to as the polarity of V with

respect to (a[, bi).

Let A E Mk,d(R) be the matrix whose rows are ai,..., ak, V E Md,,(R) be the matrix

whose columns are Vl,..., Vs, and b E Rk be the vector whose entries are bi, ... , bk. Define

the signature of AI to be the matrix x(T) = AV - b - 1 T, where 1 T = (1, ... ,1) E Rd. Observe

that x(T) has a natural interpretation; in particular, sign(x(I)jj) indicates the polarity of Vj

with respect to (af, bi). Furthermore, X(T) can be interpreted as a configuration where the

points are represented by the columns of X(T) and the hyperplanes are the canonical Euclidean

hyperplanes through the origin, orthogonal to the unit vectors ej in the i-th direction. In that

sense, x(T) is a "straighten-out" version of I which is more amenable to dimension analysis.

In the rest of the proof, we will make use of the following property of X('I):

Lemma 2.5.2. For AV as above, dim (span(Vi, . . ., V)) > rank (x(T)) - 1.

Proof of Lemma 2.5.2. Note that rank(b - IT) E {0, 1}, then:

dim (span(V1,,.. ., Vn)) =rank(V)

> rank(AV)

rank(X(I) + b - 1 T)

I rank(X(xP)) - rank(b - T)|

rank(x(xI)) - 1

For every greedy embedding of a graph G, we can can view the image of V(G) and the

corresponding bisecting hyperplanes between all pairs of points as a configuration. The greedy

constraints will impose certain sign-constraints on the entries of the signature of this configura-

75

tion. In the case of Qd, these sign-constraints will help us derive a lower bound on the rank of
the signature and hence on the dimensionality of the embedding.

The Constraints of Qd

It is easily checked that the following is a subset of the no-stretch greedy constraints of Qa,
involved along the routes from si, for i E [2 d], to tj, for j E [d]. Let i bib 2 -.. bd be the
binary representation of i and let 7r E Sd be a permutation such that b,(1) - - b,(q) = 0 and
bir(q+1) br()= 1 where 0 < q < d. The constraints are:

(2.5.2) Vi E [2 d] (t 7r(1), . . . t,(q) ,0|I?,1 txi(q+1), , tr(d))

Let IF be the configuration corresponding to a no-stretch greedy embedding of Qd. As noted
earlier, the rows of x(T) correspond to (and are indexed by) the bisecting hyperplanes, and
the columns correspond to (and are indexed by) the vertices of Qd. Let C E M 2dd(R) be the
sub-matrix of x(T) defined by the hyperplanes (rows) that appear in (2.5.2) and the vertices

{tj}jc[d]. It is clear that rank(X(I)) > rank(C). Next, we are going to show that rank(C) = d.
This will imply rank(x(J)) >, d, and by Lemma 2.5.2 we will get the desired lower bound
d = Q(log IV(Qd)|).

Rank of the signature

The constraints of (2.5.2) impose that the set of d-tuples

{(sign(o - Cj,1), sign(u -Ci,2), .. . , sign(or -Cid)) : i E [2d],o E {-1,f +1}}

contains all 2 d sign patters on d slots. Then the following lemma implies that rank(C) = d:

Lemma 2.5.3. Let C E M 2d,d(R) be a matrix whose rows realize all 2 d sign patterns over d
columns, then rank(C) = d.

Proof of Lemma 2.5.,V. Induct on d. The base case d = 1 is straightforward. Without loss of
generality let C E M 2dd(R) be such that sign(Ci,j) = sign(bij - 1/2), where bij is the j-th bit
in the binary representation of i. Let U be the sub-matrix of C consisting of the first 2 d-1 rows.
From the induction hypothesis, U has rank d - 1. Let U' E Md_1,d(R) be a diagonalized version
of U. In particular:

i. Ui+1 =1 for i C [d - 1],

ii. U 1,j+1 = 0 for i f j E [d - 1], and

76

Pictorially:

r U1,1 1 0 -.- 0

,1 U2 ,1 0 1

Ud_1,1 0 --- 0 1

By definition, C must have a row ci where 1 E [2 d]\[2 d-1] such that:

i. sign(Ci,1) = +, and

ii. sign(Cij+1) = sign(-Uj,1) for all j E [d - 1]; if Uj, 1 = 0 then sign(Ci,j+1) can be arbitrary.

It is now easily verified that cl is linearly independent from all rows in U' thereby proving the

inductive step.

2.5.4 Connection between Euclidean and hyperbolic space bounds

The following theorem complements our lower-bound result:

Theorem 2.5.4. If a graph G has a no-stretch greedy embedding into f , then it has a

no-stretch greedy embedding into Hd+1.

Sketch of proof of Theorem 2.5... Given a greedy embedding f of G into f, the set f(G) can

be embedded onto the d-dimensional unit sphere Sd E Rd+1 such that the relative distance

between all pairs of points is preserved. Let g : V(G) - Sd be this embedding. The bisecting

hyperplanes between all pairs of points in g(G) in Rd+1 go through the origin. The disc 2Dd =

{x E Rd+1 : lxj| < 2} together with g(G) inside it, can be interpreted as an embedding of G

into Hd via the Klein model. This is the required embedding. 1

77

2.6 Concise Hyperbolic Embeddings of Trees

Theorem 2.6.1. Every tree T on n vertices has a concise greedy embedding in H 3 with
O(K(T) . log n)-bit vertex coordinates.

We prove this theorem in the following few sections.

2.6.1 Construction

It is sufficient to exhibit embeddings for bounded degree-3 trees. This follows from the fact that
if T* D T is a super-tree, then every greedy embedding of T* restricts to a greedy embedding
of T, and the fact that every tree T on n vertices is found as a subtree of a ternary tree of size
no larger than 2n.

We begin by obtaining a heavy-path decomposition T = Pi H ... - Pk with a hierarchical
relationship on the Pj's represented by a tree H (as in Section 2.4.3 and Figure 2-1).

Some notation is due now. Let P be a path in T, viewed as a vertex in H, and let parent(Pj)
denote its parent path in H (if it exists). Denote by apex(Pj) be the unique vertex in parent(Pj)
that Pj connects to, and by exit(P) the unique vertex in P that connects to apex(Pj). Let
subtree(apex(P)) denote the subtree of T consisting of Pj, all of its descendants in H, as well
as apex(Pj). For a vertex v in P that is not the apex of any Pi we will let subtree(v) denote the
singleton subtree of T consisting of v itself.

A canonical embedding fv : subtree(v) -+ H3 of subtree(v), where v E T, is one for which
all relevant vertices are embedded in the interior of B(o,o)T,1 , and v is embedded at the unique
location inside the ray ez such that p(fv(v), S(o,o)T,l) = a, where a is any fixed positive real
number for which e E Q. (Later we will see that we can also use a = 1.) We will describe a
recursive (on H) procedure that canonically embeds each subtree(v) until all of T is embedded.

In the base case, canonically embedding a single vertex v is trivial. We simply embed v
at the unique point on the ray ez that has hyperbolic distance to S(oo)Tl equal to a and is
"inside" S(oo)Tl (i.e. on the same side as the origin). Explicitly fv(v) = (0, 0, 1/ea)T. The
bit complexity of this embedding is 0(1) due to our choice of a. We should note however that
since the rest of the embedding will be obtained via isometric transformations, we can view the
quantity 1/ea as an irreducible (or free) variable and describe all coordinates as polynomials
over it. Either approach works.

Let us now proceed to the recursive step of embedding w where w = apex(Pj) for some P
consisting of vertices v 1 , .. . , Vk. And let exit(P) = Vq for some q E [k]. From the recursion,
we have embeddings f , fvk with fv, : subtree(vi) - B(oo)T,1 . We shall first define an
embedding gw : subtree(w) -+ H3 which is not canonical. Later we will transform g, into a
canonical one:

(2.6.1) geWu) = (O(i-q,O)T 0 fV)(u), if u E subtree(vi)

(0, 1, 1/e")T, otherwise, i.e. if u = w

78

Figure 2-2: Illustrated is the gf embedding of P3 from Figure 2-1. On the left is a view from the
z-axis looking down towards the origin. On the right is a planar section defined by gg(f), gf (p)
and the origin.

The embedding gw(u) is illustrated in Figure 2-2. Our first order of business will be to check
that it is correct. Afterwards we will apply the necessary isometric transformations to reshape
it into canonical form. Notice that isometric transformations do not violate correctness.

2.6.2 Correctness argument

To check correctness (i.e. that greedy routing works), we have to identify a subregion R c H3

where we plan to position the rest of T, i.e. T\subtree(w), later in the recursion. We will let
R = B(O,1)T,1/e2c. Note that R is intentionally chosen so that p(gw(w), R) = a.

The inductive (as in recursive) hypothesis is that all points in subtree(vi) for i E [k] are
embedded in such a way (by fv) that (a) greedy routing works among themselves, and (b) if
routing is attempted to any location outside of B(OO)T, it will reach vi. Therefore our task is
to check that under gw:

i. Routing from any vi to u E subtree(vj) reaches destination, and

ii. Routing from any vi to w or any location inside R reaches destination.

To prove the first part, it is sufficient to show that routing to u E subtree(vj) reaches at least
vj, then by inductive hypothesis we know that u will be reached under f,, (translated by

#(i-q,O)T). Assume without loss of generality that i < j. Indeed, since gw(vi) and gw(vi+1) have
the same z coordinate, their bisecting hyperplane separates gw(vi) from all points gw(u) where
u E subtree(vj). Therefore routing will progress to vi+1. The second assertion is also easy to
check. In particular, one simply verifies that at a vertex vi the bisecting plane of the edge that
leads to w separates vi from w and all of R. This is illustrated in Figure 2-2 where bisecting
hyperbolic hyperplanes are pictured as dotted lines.

2.6.3 Canonization

The canonical embedding fw is obtained from gw by:

79

i. Applying a spherical hyperbolic inversion with respect to R. (This transformation takes all
of gw and "squeezes" it inside R.)

ii. Translating R to R' so that R' is centered at the origin

iii. Isometrically expanding R' to R" = S(0,0)T,1

Formally, fw = (-,e2.) o ((,_11)T) 0 (-(,1)T,1l/e2-) o (gw).

2.6.4 Description complexity

To calculate the bit-description complexity per vertex, we will trace out what happens to a
vertex's coordinates throughout the recursion. At the lowest level of the recursion, a vertex
starts off with 0(1)-bit coordinates (namely (0, 0, 1/ea)T). At each level of the recursion, the
vertex is translated by at most n positions along the x axis. This step adds at most O(log n)
bits to its x-coordinate. Observe that the canonization step is a fixed isometric transformation,
so it contributes 0(1) additional bits. There are K(T) recursive levels, amounting to a total of
O(r,(T) - log n) bits per vertex coordinate.

2.6.5 Remarks

We will briefly note (without proof) that since Hd is Gromov (log 3)-hyperbolic (for every d ;, 2),
if we scale our embedding procedure so that the hyperbolic distance between vertices sharing
an edge is A, then the greedy embedding is also a distance-preserving embedding (in the sense
of Definition 2.4.3) with distortion 1 + log 3/A.

The techniques described in this section can be used to embed slightly more general classes
of graphs. In particular, let G be a graph that can be decomposed into a vertex-disjoint family
of subgraphs, i.e. G = H 1 . . [Hk. Let G* be a graph with a vertex set [k] where (i, j) E E(G*)
iff there is an edge in G between Hi and Hj. Then if G* is a tree and each Hi can be embedded
canonically with no stretch, all of G can be embedded canonically with no stretch.

It is easily seen, for example, that graphs that can be decomposed into lines and cycles
succumb to the same embedding procedure. The canonical embedding of a cycle is illustrated
in Figure 2-3. More complicated examples can be derived by using higher hyperbolic dimension
and/or a cleverer arrangement of the canonical embeddings from lower levels of the recursion.
The limitation of this technique, however, is that it is inherently recursive and therefore it applies
to graphs that at large scale look like trees.

80

Figure 2-3: An illustration of the canonical embedding of a cycle.

81

2.7 Low dimensional Euclidean embeddings of trees

Inspired by ideas from [49], in this section we construct low dimensional greedy embeddings
of trees into Euclidean spaces. Note that our construction is somewhat different than Gupta's
and surprisingly it does not require the use of a hierarchical path decomposition to accomplish
conciseness.

Theorem 2.7.1. Every tree T on n vertices has a concise greedy embedding in f(log n) with
o (log 2 n) - bit vertex coordinates.

Sketch of Construction: We begin by picking an arbitrary root vo for T. Using the Johnson-
Lindenstrauss lemma, or alternatively using sphere packing constructions as in [49, 24], we
obtain a bundle B of n - 1 unit vectors such that (a) each vector has positive 1-st coordinate;
(b) the angle between any two vectors is a constant slightly larger than 7r/3, say 7r/3 + 7r/180;
and (c) B is realized in f O(og n)2

The embedding algorithm assigns a vector g(v, w) E B to each edge (v, w) E T in a manner
to be specified shortly. The embedding f : V(T) -* f 2 is then defined as f(v) = g(vo, vi) + - - +

g(vk_1, v), where vo, vi,..., Vk_1, V is the path from vo to v in T. The matching g : E(T) -+

B is chosen as follows. For vertex v E T let j(v) = {g(u, w) E B : (u, w) E subtree(v)}.
Then g(-, -) is such that for every v E T and all pairs of children va and vb of v it holds that
Cone(j(va)) n Cone((vb)) = {0}. Such a matching exists and can be found algorithmically
using the sweeping-hyperplane method of [49].

Sketch of correctness: For any v E B the bisecting hyperplane of v separates v from all
other vectors in B. Using this, and the fact that any two vectors in B form an angle of roughly
7/3 +7/180, one can show correctness by induction. The induction is guided by the "growing"
process of creating the tree, similarly to the one in [19]. E

82

2.8 Open Problems

An abundance of open problems arises from the notion of greedy embeddings and their appli-

cations. We only mention two.

The main open problem is that of finding no-stretch greedy embeddings of any graph into

f2 n. We shortly describe a promising strategy for attacking this problem, which we have not

yet investigated thoroughly. Let Yp,q,, be the graph consisting of edge-disjoint copies of L,, Lq

and L, (where L, is the undirected line graph on I edges), exactly one of each, where also all

three line subgraphs share a starting vertex and a (different) ending vertex. Let a gadget be a

procedure for embedding Yp,q,, into E0(1) for any p, q and r. We believe that using such a gadget

in conjunction with dimensionality reduction, can lead to the desired embeddings of arbitrary

graphs. Our intuition is based on the following lemma:

Lemma 2.8.1. Every unweighted undirected graph can be decomposed into a collection of

(not necessarily disjoint) sub-trees and (irreducible) sub-cycles such that (i) the shortest paths

between vertices on a sub-cycle lie entirely in the sub-cycle, and (ii) the intersection of any two

sub-cycles is a connected arc, a vertex, or the empty set.

In view of applications, one other particularly important question concerns the existence

of algorithms for finding greedy embeddings in Peleg's message-passing model of distributed

network computation [85], where message-cost (in addition to time) is of central importance.

Furthermore, algorithms with good incremental properties and resilience to small changes in the

input graph are desired.

83

84

Chapter 3

Bottleneck-independent computation

85

So far we have looked at methods for computing and representing routing schemes aimed

at point-to-point communication. At the other extreme are schemes for routing broadcast, or

one-to-all, communication. In this chapter, we study the question of how efficiently a collection

of interconnected nodes can perform a global computation in the widely studied GOSSIP model

of communication. In this model, nodes do not know the global topology of the network, and

they may only initiate contact with a single neighbor in each round. This model contrasts with

the much less restrictive LOCAL model, where a node may simultaneously communicate with

all of its neighbors in a single round. A basic question in this setting is how many rounds of

communication are required for the information dissemination problem, in which each node has

some piece of information and is required to collect all others.

In the LOCAL model, this is quite simple: each node broadcasts all of its information in

each round, and the number of rounds required will be equal to the diameter of the underlying
communication graph. In the GOSSIP model, each node must independently choose a single

neighbor to contact, and the lack of global information makes it difficult to make any sort of

principled choice. As such, researchers have focused on the uniform gossip algorithm, in which
each node independently selects a neighbor uniformly at random. When the graph is well-

connected, this works quite well. In a string of beautiful papers, researchers proved a sequence
of successively stronger bounds on the number of rounds required in terms of the conductance

and graph size n, culminating in a bound of O(#--' log n).

In this work, we show that a fairly simple modification of the protocol gives an algorithm
that solves the information dissemination problem in at most O(D + polylog(n)) rounds in a
network of diameter D, with no dependence on the conductance. This is at most an additive
polylogarithmic factor from the trivial lower bound of D, which applies even in the LOCAL
model.

In fact, we prove that something stronger is true: any algorithm that requires T rounds in

the LOCAL model can be simulated in O(T + polylog(n)) rounds in the GOSSIP model. We
thus prove that these two models of distributed computation are essentially equivalent.

86

3.1 Introduction and results

3.1.1 Local models of computation

Many distributed applications require nodes of a network to perform a global task using only local

knowledge. Typically a node initially only knows the identity of its neighbors and gets to know a

wider local neighborhood in the underlying communication graph by repeatedly communicating

with its neighbors. Among the most important questions in distributed computing is how

certain global computation problems, e.g., computing a maximal independent set [75] or a graph

coloring [9], can be performed with such local constraints.

Many upper and lower bounds for distributed tasks are given for the well-known LOCAL

model [86, Chapter 2], which operates in synchronized rounds and allows each node in each

round to exchange messages of unbounded size with all of its neighbors. It is fair to say that the

LOCAL model is essentially the established minimal requirement for a distributed algorithm.

Indeed, whenever a distributed algorithm is said to have running time T it is implied that, at

the least, there exists a T-round algorithm in the LOCAL model.

In many settings, practical system design or physical constraints do not allow a node to

contact all of its (potentially very large number of) neighbors at once. In this work we focus

on this case and consider the GOSSIP model, which restricts each node to initiate at most one

bidirectional communication with one of its neighbors per round. In contrast to computations in

the LOCAL model, algorithms for the GOSSIP model have to decide which neighbor to contact

in each round. This is particularly challenging when the network topology is unknown. Note

that, as in the LOCAL model, messages sizes are unbounded (in fact, 0(n) for our purposes,

where n is the size of the network) as these models reflect high-latency networks where round

reduction is what counts. Furthermore, while in GOSSIP a node may end up communicating

with many neighbors in a single step, every node "pays" for only one connection: the one they

initiated.

Algorithms with such gossip constraints have been intensively studied for the so-called Ru-

MOR problem (also known as the rumor spreading or information dissemination problem), in

which each node has some initial input and is required to collect the information of all other

nodes. Most previous papers analyzed the simple UniformGossip algorithm, which chooses a

random neighbor to contact in each round. The uniform gossip mixes well on well-connected

graphs, and good bounds for its convergence in terms of the graph conductance have been

given [21, 81, 45]. For regular graphs, bounds in terms of vertex expansion are known as well [95].

In general, the gossip has a tendency to repeatedly communicate between well-connected neigh-

bors while not transmitting information across bottlenecks. Only recently have algorithms been

designed that try to avoid this behavior. By alternating between random and deterministic

choices, [20] showed that fast convergence can be achieved for a wider family of graphs, namely,
those which have large weak conductance (a notion defined therein). However, while this out-

performed existing techniques in many cases, its running time bound still depended on a notion

of the connectivity of the graph.

87

3.1.2 Information spreading and model reductions

Our contribution in this chapter significantly improves upon previous algorithms by providing
the first information spreading algorithm for the GOSSIP model that is fast for all graphs, with
no dependence on their conductance. Our algorithm requires at most O(D + polylog(n)) rounds
in a network of size n and diameter D. This is at most an additive polylogarithmic factor from
the trivial lower bound of Q(D) rounds even for the LOCAL model. In contrast, there are many
graphs with polylogarithmic diameter on which all prior algorithms have Q(n) bounds.

In addition, our results apply more generally to any algorithm in the LOCAL model. We
show how any algorithm that takes T time in the LOCAL model can be simulated in the
GOSSIP model in O(T + polylog(n)) time, thus incurring only an additional cost which is
polylogarithmic in the size of the network n. Our main result that leads to this simulation
is an algorithm for the GOSSIP model in which each node exchanges information (perhaps
indirectly) with each of its neighbors within a polylogarithmic number of rounds. This holds
for every graph, despite the possibility of large degrees. A key ingredient in this algorithm is
a recursive decomposition of graphs into clusters of sufficiently large conductance, allowing fast
(possibly indirect) exchange of information between nodes inside clusters. The decomposition
guarantees that the number of edges between pairs of nodes that did not exchange information
decreases by a constant fraction. To convert the multiplicative polylogarithmic overhead for each
simulated round into the additive overhead in our final simulation result we show connections
between sparse graph spanners and algorithms in the GOSSIP model. This allows us to simulate
known constructions of nearly-additive sparse spanners [S8], which then in turn can be used in
our simulations for even more efficient communication.

3.1.3 Techniques

The key step in our approach is to devise a distributed subroutine in the GOSSIP model to
efficiently simulate one round of the LOCAL model by a small number of GOSSIP rounds.
In particular, the goal is to deliver each node's current messages to all of its neighbors, which
we refer to as the NEIGHBOREXCHANGE problem. Indeed, we exhibit such an algorithm, called
Superstep, which requires at most O(log3 n) rounds in the GOSSIP model for all graphs:

Theorem 3.1.1. The Superstep algorithm solves NEIGHBOREXCHANGE in the GOSSIP
model in O(log3 n) rounds.

Our design for the Superstep algorithm was inspired by ideas from [20] and started with an
attempt to analyze the following very natural algorithm for the NEIGHBOREXCHANGE problem:
In each round each node contacts a random neighbor whose message is not yet known to it.
While this algorithm works well on most graphs, there exist graphs on which it requires a long
time to complete due to asymmetric propagation of messages. We give an explicit example and
discuss this issue in Section 3.6.

The Superstep algorithm is simple and operates by repeatedly performing log 3 n rounds of
the Unif ormGossip algorithm while eliminating some edges after each round. During a round,

88

Unif ormGossip has each node choose a random neighbor to contact and exchange messages for

a few steps, followed by a reversal of the message exchanges to maintain symmetry. From [21]
or its strengthening [45], it is known that all pairs of vertices (and in particular all pairs of

neighbors) that lie inside a high-conductance subset of the underlying graph exchange each

other's messages within a single iteration. An existential graph decomposition result, given

in Corollary 3.3.4, shows that for any graph there is a decomposition into high-conductance

clusters with at least a constant fraction of intra-cluster edges. This implies that the number of

remaining message exchanges required decreases by a constant factor in each iteration, which

results in a logarithmic number of iterations until NEIGHBOREXCHANGE is solved.

This gives a simple algorithm for solving the RUMOR problem, which requires all nodes to

receive the messages of all other nodes: By iterating Superstep D times, where D is the diameter

of the network, one obtains an 0(D . log 3 n) round algorithm. This is at most an O(log3 n)-factor

slower than the trivial diameter lower bound and is a drastic improvement compared to prior

upper bounds [20, 81, 21, 15], which can be of order 0(n) even for networks with constant or

logarithmic D.

Beyond the RUMOR problem, it is immediate that the NEIGHBOREXCHANGE problem bridges

the gap between the LOCAL and GOSSIP models in general. Indeed, we can simply translate

a single round of a LOCAL algorithm into the GOSSIP model by first using any algorithm

for NEIGHBOREXCHANGE to achieve the local broadcast and then performing the same local

computations. We call this a simulation and more generally define an (a(G), /(G))-simulator

as a transformation that takes any algorithm in the LOCAL model that runs in T(G) rounds

if the underlying topology is G, and outputs an equivalent algorithm in the GOSSIP model

that runs in O(a(G)) -T(G) + O(#(G)) rounds. Thus, the simulation based on the Superstep

algorithm gives a (log3 n, 0)-simulator.

In many natural graph classes, like graphs with bounded genus or excluded minors, one can

do better. Indeed we give a simple argument that on any (sparse) graph with hereditary density

3 there is a schedule of direct message exchanges such that NEIGHBOREXCHANGE is achieved

in 23 rounds. Furthermore an order-optimal schedule can be computed in 3 log n rounds of the

GOSSIP model even if 3 is not known. This leads to a (3, 3 log n)-simulator.

Another way to look at this is that communicating over any hereditary sparse graph remains

fast in the GOSSIP model. Thus, for a general graph, if one knows a sparse subgraph that has

short paths from any node to its neighbors, one can solve the NEIGHBOREXCHANGE problem

by communicating via these paths. Such graphs have been intensely studied and are known

as spanners. We show interesting connections between simulators and spanners. For one, any

fast algorithm for the NEIGHBOREXCHANGE problem induces a sparse low-stretch spanner. The

Superstep algorithm can thus be seen as a new spanner construction in the GOSSIP model

with the interesting property that the total number of messages used is at most 0 (n log3 n).

To our knowledge this is the first such construction. This also implies that, in general, NEIGH-

BOREXCHANGE requires a logarithmic number of rounds (up to log log n factors perhaps) in the

GOSSIP model. Considering in the other direction, we show that any fast spanner construc-

89

tion in the LOCAL model can be used to further decrease the multiplicative overhead of our

(log 3 n, 0)-simulator. Applying this insight to several known spanner constructions [27, 87, 36, 88]
leads to our second main theorem:

Theorem 3.1.2. Every algorithm in the LOCAL model which completes in T = T(G)
rounds when run on the topology G can be simulated in the GOSSIP model in

O(1)-min {T - log 3 n, T - 21o* " log n+ log 4 n, T - log n+ 2 log* log 4 n, T+ logoM1 3 n, T. 6+6 log n, T - A

rounds, where n is the number of nodes, A the maximum degree and 6 the hereditary density of

G.

When we apply this result to the greedy algorithm for the RUMOR problem, where T
D, we obtain an algorithm whose O(D + polylogn) rounds are optimal up to the additive
polylogarithmic term, essentially closing the gap to the known trivial lower bound of Q(D).

3.1.4 Related Work

The problem of spreading information in a distributed system was introduced by Demers et
al. [26] for the purpose of replicated database maintenance, and it has been extensively studied
thereafter.

One fundamental property of the distributed system that affects the number of rounds re-

quired for information spreading is the communication model. The random phone call model was

introduced by Karp et al. [60], allowing every node to contact one other node in each round. In
our setting, this corresponds to the complete graph. This model alone received much attention,
such as in bounding the number of calls [30], bounding the number of random bits used [46],
bounding the total number of bits [41], and more.

The number of rounds it takes to spread information for the randomized algorithm

UniformGossip, in which every node chooses its communication partner for the next round

uniformly at random from its set of neighbors, was analyzed in terms of the conductance of

the underlying graph by Mosk-Aoyama and Shah [81], by Chierichetti et al. [21], and later by
Giakkoupis [45], whose work currently has the best bound in terms of conductance, of O(og)
rounds, with high probability.

Apart from the uniform randomized algorithm, additional algorithms were suggested for
spreading information. We shortly overview some of these approaches. Doerr et al. [32] introduce

quasi-random rumor spreading, in which a node chooses its next communication partner by

deterministically going over its list of neighbors, but the starting point of the list is chosen
at random. Results are O(log n) rounds for a complete graph and the hypercube, as well as
improved complexities for other families of graphs compared to the randomized rumor spreading
algorithm with uniform distribution over neighbors. This was followed by further analysis of
the quasi-random algorithm [33, 40]. A hybrid algorithm, alternating between deterministic
and randomized choices [2(0], was shown to achieve information spreading in O(c("g + c))

90

round, w.h.p., where <Dc(G) is the weak conductance of the graph, a measure of connectivity of

subsets in the graph. Distance-based bounds were given for nodes placed with uniform density

in Rd [63, 64], which also address gossip-based solutions to specific problems such as resource

location and minimum spanning tree. Doerr et al. [31] have recently presented an algorithm for

fast information spreading in preferential attachment graphs, which model social networks.

The LOCAL model of communication, where each node communicates with each of its

neighbors in every round, was formalized by Peleg [8S6]. Information spreading in this model

requires a number of rounds which is equal to the diameter of the communication graph. Many

other distributed tasks have been studied in this model, and below we mention a few in order to

give a sense of the variety of problems studied. These include computing maximal independent

sets [S], graph colorings [9], computing capacitated dominating sets [69], general covering and

packing problems [70], and general techniques for distributed symmetry breaking [96].

Our algorithm Superstep implicitly constructs a sparsifier (sparse subgraph) of G that itself

is a graph that has low vertex degree and hence supports fast Unif ormGossip whose runtime

depends mainly on the diameter (module some log-factors), which essentially meets the lower

bound. It is worth noting a related, but different, observation of [22] that the Spielman-Teng

sparsifier has roughly the same Unif ormGossip runtime as that of the original graph.

91

3.2 Gossip and conductance

3.2.1 The uniform gossip algorithm

The UniformGossip algorithm is a common algorithm for RUMOR. (It is also known as the
PUSH-PULL algorithm in some papers, such as [45].) Initially, each vertex u has some message
Mu. At each step, every vertex chooses a random incident edge (u, v) at which point u and
v exchange all messages currently known to them. The process stops when all vertices know
everyone's initial messages. In order to treat this process formally, for any fixed vertex v and
its message Mv, we treat the set of vertices that know Mv as a set that evolves probabilistically
over time, as we explain next.

We begin by fixing an ambient graph G = (V, E), which is unweighted and directed. The
Unif ormGossip process is a Markov chain over 2v, the set of vertex subsets of G. Given a current
state S C V, one transition is defined as follows. Every vertex u picks an incident outgoing edge
au = (u, w) E E uniformly at random from all such candidates. Let us call the set of all chosen
edges A = {au : u E V} an activated set. Further let A = {(u, w) : (u, w) E A or (w, u) E A}
be the symmetric closure of A. The new state of the chain is given by S U B, where by definition
a vertex v is in the boundary set B if and only if there exists u E S such that (u, v) E A'. Note
that V is the unique absorbing state, assuming a non-empty start.

We say that an edge (u, w) is activated if (u, w) E A'. If we let S model the set of nodes
in possession of the message M, of some fixed vertex v and we assume bidirectional message
exchange along activated edges, the new state S U B (of the Markov process) actually describes
the set of nodes in possession of the message Mv after one distributed step of the Unif ormGossip
algorithm.

Consider a T-step Markov process K, whose activated sets at each step are respectively
A 1,..., AT. Let the reverse of K, written Krev, be the r-step process defined by the activated
sets AT, ... , A 1, in this order. For a process K, let K(S) denote the end state when started from
S.

Without loss of generality, for our analysis we will assume that only a single "starting"
vertex s has an initial message Ms. We will be interested in analyzing the number of rounds of
Unif ormGossip that ensure that all other vertices learn M, which we call the broadcast time.
Clearly, when more than one vertex has an initial message, the broadcast time is the same since
all messages are exchanged in parallel.

Lemma 3.2.1 (Reversal Lemma). If u E K({w}), then w E Krev({a}).

Proof. The condition u E K({w}) holds if and only if there exists a sequence of edges
(e,..ei,) such that eij E A' for all j, the indices are increasing in that i1 < . < ir,
and the sequence forms a path from w to a. The presence of the reversed sequence in Krev
implies w E Krev({u}). D

In communication terms, the lemma says that if u receives a message originating at w after T

92

rounds determined by K, then w will receive a message originating at u after T rounds determined

by Krev.

3.2.2 Conductance

The notion of graph conductance was introduced by Sinclair [97]. We require a more general

version, which we introduce here. We begin with the requisite notation on edge-weighted graphs.

We assume that each edge (u, v) has a weight wun E [0, 1]. For an unweighted graph G = (V, E)

and any u, v E V, we define wav = 1 if (u, v) E E and wuv = 0 otherwise. Now we set

w(S, T) = EuESvCT wv- Note that in this definition it need not be the case that Sn T = 0, so,
e.g., w(S, S), when applied to an unweighted graph, counts every edge in S twice. The volume of

a set S C V with respect to V is written as vol(S) = w(S, V). Sometimes we will have different

graphs defined over the same vertex set. In such cases, we will write the identity of the graph as

a subscript, as in volG(S), in order to clarify which is the ambient graph (and hence the ambient

edge set). Further, we allow self-loops at the vertices. A single loop at v of weight a is modeled

by setting wo, = 2a, because both ends of the edge contribute a.

For a graph G = (V, E) and a cut (S, T) where S, T C V and S n T 0 (but where T U S

does not necessarily equal all of V), the cut conductance is given by

(3.2.1) p(S, T) = m (S, T T
min { volG (S), volG (T))

For a subset H C V we need to define the conductance of H (embedded) in V. We will

use this quantity to measure how quickly the UniformGossip algorithm proceeds in H, while

accounting for the fact that edges in (H, V - H) may slow down the process. The conductance

of H in G is defined by

(3.2.2) <b(H) = min o(S, H - S)
SCH

Note that the classical notion of conductance of G (according to Sinclair [97]) equals <b(V)

in our notation. When we want toemphasize the ambient graph G within which H resides, we

will write <bG(H).

A few arguments in this chapter will benefit from the notion of a "strongly induced" graph

of a vertex subset of an ambient graph G.

Definition 3.2.2. Let U C V be a vertex subset of G. The strongly induced graph of U in

G is a (new) graph H with vertex set U, whose edge weight function h : U x U -+ R is defined

by

(wf if uy #v,
WUU + ExEVUWUX, if u = v.

93

Note that by construction we have <DH(U) = <DG(U). The significance of this notion is
the fact that the Markov process, describing the vertex set in possession of some message M,
for a starting vertex s E U in the UniformGossip algorithm executed on the strongly induced
H, behaves identically to the respective process in G observed only on U. In particular, this
definition allows us to use Theorem 1 of [45] in the following form:

Theorem 3.2.3. For any graph G = (V, E) and a subgraph U C V and any start vertex in
U, the broadcast time of the UniformGossip algorithm on U is O(<DG(U)- 1 log n) rounds w.h.p.

94

3.3 Neighbor Exchange in O(log3 n) rounds

The idea behind our algorithm for solving the NEIGHBOREXCHANGE problem is as follows.

For every graph there exists a partition into clusters whose conductance is high, and therefore

the Unif ormGossip algorithm allows information to spread quickly in each cluster. The latter

further implies that pairs of neighbors inside a cluster exchange their messages quickly (perhaps

indirectly). What remains is to exchange messages across inter-cluster edges. This is done

recursively. In the following subsection we describe the conductance decomposition and then in

Subsection 3.3.2 we give the details for the algorithm together with the proof of correctness.

3.3.1 Conductance decomposition of a graph

As described, our first goal is to partition the graph into clusters with large conductance. The

challenge here is to do so while limiting the number of inter-cluster edges, so that we can

efficiently apply this argument recursively. (Otherwise, this could be trivially done in any

graph, for example by having each node as a separate cluster.) We are going to achieve this in

the following lemma whose proof (found in Appendix ??) is very similar to that of Theorem 7.1

in [11]. Note that for our eventual algorithm, we are only going to need an existential proof of

this clustering and not an actual algorithm for finding it.

Lemma 3.3.1. Let S C V be of maximum volume such that vol(S) < vol(V)/2 and p(S, V-

S) < (, for a fixed parameter (<b(G). If vol(S) < vol(V)/4, then <h(V - S) > (/3.

Lemma 3.3.1 says that if a graph has no sparse balanced cuts, then it has a large subgraph

which has no sparse cuts. The following corollary establishes that Lemma 3.3. 1 holds even in

the case when the ambient graph is itself a subgraph of a larger graph.

Proof. Assume, towards a contradiction, that <1(V - S) < (/3. Then, there exists a cut (P, Q)
of V - S with y(P, Q) < (/3 and specifically

Sw(P,Q) w(P,Q)
(3.3.1) max, -

vol(P) vol(Q) J 3

Henceforth, let Q be the smaller of the two, i.e. vol(Q) < vol(V - S)/2.

We are going to show that y(S U Q, P) < (and either S U Q or P should have been chosen

instead of S.

Consider the case vol(S U Q) < vol(V)/2. In this case,

(s u QP) w(S,P) +w(Q,P) w(SP) + w(QP)
vol(S U Q) vol(S) + vol(Q)

(w(SP) w(Q,P) fw(SP) +w(S,Q) w(Q,P) m fk

vol(S) vol(Q) vol(S) vol(Q)

95

This establishes a contradiction, because p(S U Q, P) < (and vol(S) < vol(S U Q) < vol(V)/2.
Now let's consider the case vol(S U Q) > vol(V)/2. First, we argue that vol(S U Q) cannot

be too large. We use that vol(Q) } vol(V - S) = i(vol(V) - vol(S)).

vol(V) - vol(S) _ vol(V) + vol(S) 5(3.3.2) vol(S UQ) = vol(S)+vol(Q) -vol(S)+ 2 2 - vol(V)
2 2 8

Hence, vol(P) > 2 vol(V). In addition, for the cut size, we have

w(S U Q, P) =w(S, P) +w(Q, P)

((vol(S) + vol(Q)

((vol(S) + (vol(V) - vol(S)
3 2

5 1
< 5(vol(S) + I vol(V)6 6

3
= -(vol(V)

8

And now we can bound the cut conductance:

w(S U Q, P) 2(Vol (V)(3.3.3) p(S U Q, P) = w(SoQP) 8 _vol(V)

This also establishes a contradiction because o(S U Q, P) ((while vol(S) (vol(V) <
vol(V) < vol(P) <, - vol(V). E

Corollary 3.3.2. Let U C V and let S C U be of maximum volume such that vol(S) (
vol(U)/2 and o(S, U - S) < (, for a fixed parameter (D 1(U). If vol(S) < vol(U)/4, then
D(U - S) > /3.

Proof. Observe that the proof of Lemma 3.3.1 holds when the graph has loops, i.e. was $ 0
for some n's. Let H be the strongly induced graph of U. It follows from the definition that for
any two disjoint sets A, B C U we have volG(A) = volH(A) and w(A, B) = h(A, B). We can
therefore apply Lemma 3.3.1 to H and deduce that the statement holds for the respective sets
in G. 1

We are now ready to state and analyze the strong clustering algorithm. We emphasize that
this is not a distributed algorithm, but an algorithm that only serves as a proof of existence of
the partition. First, consider the following subroutine:

Cluster(G,U,):

The inputs are a graph G = (V, E), a subset U C V and a parameter 0 < < 1.

96

1. Find a subset S C U of maximum volume such that vol(S) ; vol(U)/2 and <O(S,U -
S) <; .

2. If no such S exists, then stop and output a single cluster {U}. Otherwise,

3a. If vol(S) <; vol(U)/4, output {U - S} U Cluster (G, S,).

3b. If vol(S) > vol(U)/4, output Cluster (G, S,) U Cluster (G, U - S,

The clustering algorithm for a graph G = (V, E) is simply a call to Cluster(G,V,(). The

following theorem analyses it.

Theorem 3.3.3. For every 0 < (< 1, every graph G = (V, E) with edge weights way E

{0} U [1, +oo) has a partition V = V U .. U Vk such that (b(Vi) > 1, for all i, and
log 4/3 vV)'fr l iMn

W~ w(Vi, j) (;9Vol (V).

Proof. The depth K of the recursion is, by construction, at most log 4 / 3 vol(V) assuming that the

smallest non-zero weight is 1. Let Zi C 2V be a collection of the U-parameters of invocations

of Cluster at depth 0 <; i ; K of the recursion. (So, for example, R 0 = {V}.) For a set U

let S(U) be the small side of the cut produced by Cluster (G, U, (), or 0 if no eligible cut was

found. We can then bound the total weight of cut edges as

w (S(U), U - S(U)) 5 (vol (S(U)) vol(U)
0<i<K UE7?, 0<iK UEZi O<i<K UcRl

S volV) ~log4/3 vol(V)Svol(U) < vol(V) < 2 vol(V),

0-<i-<K U E Ri Og<i, K

Where we use the convention w(0, S) = 0. If we set = for some 0 < (< 1, then

Corollary 3.3.2 establishes the theorem. D

In our exposition, we are going to use the following specialization of this theorem, obtained

by plugging in (= 1/3:

Corollary 3.3.4. Every unweighted graph on m edges has a clustering that cuts at most

edges and each cluster has conductance at least .310g 4 /3 2m

3.3.2 The Superstep algorithm for the Neighbor Exchange Problem

In this section, we will the describe the Superstep algorithm, which solves the NEIGHBOREx-

CHANGE problem. Recall that, for this problem, all vertices v are assumed to possess an initial

message Me, and the goal is for every pair of neighbors to know each other's initial messages.

We now describe our communication protocol, which specifies a local, per-vertex rule that

tells a node which edge to choose for communication at any given round. It is assumed that

97

Superstep(G,T):
The parameter G = (V, E) is an unweighted, undirected graph, and T is a positive integer.

Set F0 := Z and i := 0. While Fj # 0, repeat:

1. (First half)

1a. Initialize every vertex v with a new auxiliary message a(v), unique to v. (This
messages is added to the set of initial messages that v happens to know currently.)

1b. Perform the UniformGossip algorithm with respect to Fj for T rounds. And denote
the outcome of the random activated edge choices by Ki

ic. For every vertex u and neighbor w, let Xu, be the indicator that u received a(w)

2. (Second half)

2a. Initialize every vertex v with a fresh auxiliary message b(v), unique to v

2b. Perform K"', the reverse process of the one realized in Step 1b

2c. For every vertex u and neighbor w, let Yu, be the indicator that u received b(w)

3. (Pruning) Compute the set of pruned directed edges Pi = {(u, w) : Xuw + Yuw > 0}
4. Set Fjin := Fj - Pi and i := i + 1

Figure 3-1: Code for Superstep algorithm. It is easily verified that the above algorithm can be
implemented in the GOSSIP model of communication.

the node will greedily transmit all messages known to it whenever an edge is chosen for commu-

nication. The protocol described here will employ some auxiliary messages, which are needed

exclusively for its internal workings.

The Superstep subroutine described in Figure 3-1 is designed to ensure that, after a single
invocation, all neighbors (u, w) in an undirected graph G have exchanged each other's initial

messages. Clearly then, D invocations of Superstep, where D is the diameter of G, ensure that

a message starting at vertex v reaches all u E V, and this holds for all messages. D invocations

of Superstep thus resolve the RUMOR problem.

Theorem 3.3.5. Let G = (V, E) be an undirected, unweighted graph with |VI = n and

|E| = m. Then, after one invocation of Superstep(G,T), where T = E(log 2 M), the following
hold with probability 1 - 1|nQ(1).

(i) Every pair of neighbors {u, w} E E receive each other's messages.

(ii) The algorithm performs E (log3 m) distributed rounds.

Finally, our main result, Theorem 3.1.1, follows as a corollary of Theorem 3.3.5.
Our proof of Theorem 3.3.5 is structured as follows. If E is a set of undirected edges, let

$ {(u, w) : {u, w} E E} be the corresponding directed graph. Let $ = F0 , . .. , Fd = 0 be the
respective edge sets of each iteration in Superstep. We are going to show that, with probability
1 - 1/n"(1), the following invariants are maintained at each iteration:

98

(a) The directed edge set F is symmetric in the sense that (u, w) E F -> (w, u) E Fi,

(b) The size of Fj reduces by a constant factor at each iteration. Formally, vol(Fi+1)

vol(Fi), and

(c) After the i-th iteration, for every (u, w) E E - Fi+1, vertex u has received the message of

vertex w and vice-versa.

Since Fd = 0, claim (c) implies part (i) of Theorem 3.3.5. Claim (b) implies that the

maximum number of iterations is log 2m. Noting that every iteration entails 2T distributed

rounds, establishes part (ii) of Theorem 3.3.5.

Proof of Claim (a): Initially, FO is symmetric by construction. Inductively, assume that Fj is

symmetric. The Reversal Lemma applied to Ki and Klev implies Xuw = Yeu, for all u, w E V.

This in turn implies that Xuw + Yum = Xwu + Yea, so P is symmetric. Since Fj is symmetric

by hypothesis, we can conclude that F+1 = Fi - P is symmetric as well. E

Proof of Claim (b): Consider the graph Gi = (V, Fj) on the edge set F. Since F is symmetric,
by Claim (a), we can treat Gi as undirected for the purposes of analyzing the UniformGossip

algorithm. Let Vi u ... U Vk be the decomposition of Gi promised by Corollary 3.3. 1. (Note that

the corollary holds for disconnected graphs, which may arise.) We thus have <D(V) ; 31

for all 1 j k.
The choice -r 0(31og4 / 3 2m - log m) ensures, via Theorem 3.2.3, that the first

Unif ormGossip execution in every iteration mixes on all V with probability 1- I/n"(1). Mixing

in V implies that for every internal edge (u, w), where u, w E V and (u, w) E F, the vertices

(u, w) receive each other's auxiliary messages. The latter is summarized as Xuw = XWU = 1.

Applying the Reversal Lemma to the second execution of the Unif ormGossip algorithm, we

deduce that Yam = Y,,u 1 as well. These two equalities imply, by the definition of Pi, that

Pi is a superset of the edges not cut by the decomposition Vi U ... U V. Equivalently, F+1

is a subset of the cut edges. Corollary 3.3.4, however, bounds the volume of the cut edges by

vol(F), which concludes the proof of Claim (b). E

Proof of Claim (c): Initially, E - Fo = 0 and so the claim holds trivially. By induction, the

claim holds for edges in 5 - Fi. And so it suffices to establish that u and v exchange their

respective payload messages for all (u, w) E P. However, this is equivalent to the conditions

Xuw + Yum > 0, which are enforced by the definition of Pi. E

99

3.4 Neighbor Exchange in hereditary sparse graphs

Next, we ask what can be achieved if instead of exchanging information indirectly as done in
the Superstep algorithm, we exchange information only directly between neighbors. We will
show in this section that this results in very simple deterministic algorithms for an important
class of graphs that includes bounded genus graphs and all graphs that can be characterized
by excluded minors [76, 67]. The results here will be used for the more general simulators in
Section :3.5.

As before we will focus on solving the NEIGHBOREXCHANGE problem. One trivial way
to solve this problem is for each node to contact its neighbors directly, e.g., by using a simple
round robin method. This takes at most A time, where A is the maximum-degree of the network.
However, in some cases direct message exchanges work better. One graph that exemplifies this
is the star graph on n nodes. While it takes A = n time to complete a round robin in the center,
after just a single round of message exchanges each leaf has initiated a bidirectional link to the
center and thus exchanged its messages. On the other hand, scheduling edges cannot be fast on
dense graphs with many more edges than nodes. The following lemma, whose proof appears in
Appendix ??, shows that the hereditary density captures how efficient direct message exchanges
can be on a given graph. Let the hereditary density 3 of a graph G be the minimal integer such
that for every subset of nodes S the subgraph induced by S has at most density 6, i.e., at most
6|S| edges.

Lemma 3.4.1. The following holds for a graph G with hereditary density 6:

1. Any schedule of direct message exchanges that solves the NEIGHBOREXCHANGE problem
on G takes at least 3 rounds.

2. There exists a schedule of the edges of G such that each node needs only 26 direct message
exchanges to solve the NEIGHBOREXCHANGE problem.

Proof. Since the hereditary density of G is 3, there is a subset of nodes S C V with at least 31SI
edges between nodes in S. In each round, each of the |S| nodes is allowed to schedule at most
one message exchange, so a simple pigeonhole principle argument shows that at least one node
needs to initiate at least 6 message exchanges.

For the second claim, we are going to show that for any e > 0 there is an O(e-1 log n)-time
deterministic distributed algorithm in the LOCAL model that assigns the edges of G to nodes
such that each node is assigned at most 2(1 + e)6 edges. Then setting e < (36)~1 makes the
algorithm inefficient but finishes the existential proof. edge {u, v} is assigned to u, we say that
it has been oriented away from u, as in (u, v).

The algorithm runs in phases in which, iteratively, a node takes responsibility for some of the
remaining edges connected to it. All edges that are assigned are then eliminated and so are nodes
that have no unassigned incident edges. In each phase, every node of degree at most 2(1 + e)6
takes responsibility for all of its incident edges (breaking ties arbitrarily). At least a 1/(1 +
fraction of the remaining nodes fall under this category in every phase. This is because otherwise,

100

Set 6' = 1 and H = 0. H is the subset of neighbors in 1(v) that node v has exchanged
messages with. Repeat:

6' = (1 + e)6'

for O(- log n) rounds do

if |(v) \ H (6'
in the next 6' rounds exchange messages with all neighbors in 1(v) \ H

terminate

else

wait for 6' rounds

update H

Figure 3-2: Code for DirectExchange algorithm.

the number of edges in the subgraph would be more than (ISi - |S/(1+ -1)) (2(1 +,F)6)/2 =S6,
which would contradict the fact that the hereditary density of the graph equals 6. What remains

after each phase is an induced subgraph which, by definition of the hereditary density, continues

to have hereditary density at most 6. The number of remaining nodes thus decreases by a factor

of 1 - 1/(1 +) in every phase and it takes at most O(log1 +e n) phases until no more nodes

remain, at which point all edges have been assigned to a node.

We note that the lower bound of Lemma 3.4.1 is tight in all graphs, i.e., the upper bound of

26 can be improved to 6. Graphs with hereditary density 6, also known as (0, 6)-sparse graphs,
are thus exactly the graphs in which 6 is the minimum number such that the edges can be

oriented to form a directed graph with out-degree at most 6. This in turn is equivalent to the

pseudoarboricity of the graph, i.e., the minimum number of pseudoforests needed to cover the

graph. Due to the matroid structure of pseudoforests, the pseudoarboricity can be computed in

polynomial time. For our purposes the (non-distributed) algorithms to compute these optimal

direct message exchange schedule are too slow. Instead, we present a simple and fast algorithm,
based on the LOCAL algorithm in Lemma 3. 1.1, which computes a schedule that is within a

factor of 2+e of the optimal. We note that the DirectExchange algorithm presented here works

in the GOSSIP model and furthermore does not require the hereditary density 6 to be known

a priori. The algorithm for an individual node v is given in Figure 3-2. Its properties are stated

in Theorem 3.4.2.

Theorem 3.4.2. For any constant e > 0, the deterministic algorithm DirectExchange

solves the NEIGHBOREXCHANGE problem in the GOSSIP model using O(rounds, where

6 is the hereditary density of the underlying topology. During the algorithm, each node initiates

at most 2(1 + e) 26 exchanges.

Proof. Let 6 be the hereditary density of the underlying topology. We know from the proof

of Lemma 3.4.1 that the algorithm terminates during the for-loop if 6' is at least 2(1 + e)6.

101

Thus, when the algorithm terminates, 6' is at most 2(1 + E)26 which is also an upper bound on

the number of neighbors contacted by any node. In the (i + 1)th-to-last iteration of the outer
loop, 6' is at most 2(1 + c)26/(1 + c)', and the running time for this phase is thus at most
2(1 + E) 26/(1 + E)i O((log n). Summing up over these powers of 1/(1 + C) results in a total of

at most 6/((1 + E) - 1)- O(log n) = O ") rounds. D

102

3.5 Simulators and graph spanners

In this section we generalize our results to arbitrary simulations of LOCAL algorithms in the

GOSSIP model and point out connections to graph spanners, another well-studied subject.

Recall that we defined the NEIGHBOREXCHANGE problem exactly in such a way that it

simulates in the GOSSIP model what is done in one round of the LOCAL model. With

our solutions, an 0(6 log n)-round algorithm and an 0(log3 n)-round algorithm for the NEIGH-

BOREXCHANGE problem in the GOSSIP model, it is obvious that we can now easily convert any

T-round algorithm for the LOCAL model to an algorithm in the GOSSIP model, e.g., by T

times applying the Superstep algorithm. In the case of the DirectExchange algorithm we can

do even better. While it takes 0(6 log n) rounds to compute a good scheduling, once it is known

it can be reused and each node can simply exchange messages with the same 0(6) nodes without

incurring an additional overhead. Thus, simulating the second and any further rounds can be

easily done in 0(6) rounds in the GOSSIP model. This means that any algorithm that takes

O(T) rounds to complete in the LOCAL model can be converted to an algorithm that takes

0(6T + 3 log n) rounds in the GOSSIP model. We call this a simulation and define simulators

formally as follows.

Definition 3.5.1. An (a,)-simulator is a way to transform any algorithm A in the LOCAL

model to an algorithm A' in the GOSSIP model such that A' computes the same output as A

and if A takes O(T) rounds then A' takes at most 0(aT + 3) rounds.

Phrasing our results from Section 3.3.2 and Section 3.4 in terms of simulators we get the

following corollary.

Corollary 3.5.2. For a graph G of n nodes, hereditary density 6, and maximum degree A,
the following hold: (a) There is a randomized (log3 n, 0)-simulator; (b) There is a deterministic

(A, 0)-simulator; (c) There is a deterministic (2(1 + e) 26,0(6e-2 log n))-simulator for any e > 0

or, simply, there is a (6, 3 log n) -simulator.

Note that for computations that require many rounds in the LOCAL model the

(2(1 + C)26, 0(6E-2 log n))-simulator is a log n-factor faster than repeatedly applying the

DirectExchange algorithm. This raises the question whether we can similarly improve our

(log 3 n, 0)-simulator to obtain a smaller multiplicative overhead for the simulation.

What we would need for this is to compute, e.g., using the Superstep algorithm, a schedule

that can then be repeated to exchange messages between every node and its neighbors. What

we are essentially asking for is a short sequence of neighbors for each node over which each node

can indirectly get in contact with all its neighbors. Note that any such schedule of length t must

at least fulfill the property that the union of all edges used by any node is connected (if the

original graph G is connected) and even more that each node is connected to all its neighbors

via a path of length at most t. Subgraphs with this property are called spanners. Spanners are

well-studied objects, due to their extremely useful property that they approximately preserve

distances while potentially being much sparser than the original graph. The quality of a spanner

103

is described by two parameters, its number of edges and its stretch, which measures how well it
preserves distances.

Definition 3.5.3 (Spanners). A subgraph S = (V, E') of a graph G = (V, E) is called an

(a, /)-stretch spanner if any two nodes u, v with distance d in G have distance at most ad + /

in S.

From the discussion above it is also clear that any solution to the NEIGHBOREXCHANGE

problem in the GOSSIP model also computes a spanner as a byproduct.

Lemma 3.5.4. If A is an algorithm in the GOSSIP model that solves the NEIGHBOREX-
CHANGE problem in any graph G in T rounds then this algorithm can be used to compute a
(T, 0)-stretch spanner with hereditary density T in O(T) rounds in the GOSSIP model.

While there are spanners with better properties than the (log 3 n, 0)-stretch and log3 n-density
implied by Lemma 3.5.4 and Theorem 3.3.5, our construction has the interesting property that
the number of messages exchanged during the algorithm is at most 0(n log3 n), whereas all prior
algorithms rely on the broadcast nature of the LOCAL model and therefore use already 0(n 2)
messages in one round on a dense graph. Lemma 3.5.4 furthermore implies a nearly logarithmic
lower bound on the time that is needed in the GOSSIP model to solve the NEIGHBOREXCHANGE
problem since a significantly sub-logarithmic simulator would imply the existence of a too good
spanner:

Corollary 3.5.5. For any algorithm in the GOSSIP model that solves the NEIGHBOREX-
CHANGE problem there is a graph G on n nodes on which this algorithm takes at least Q(
rounds.

Proof. Assume an algorithm takes at most T(n) rounds on any graph with n nodes. The edges
used by the algorithm form a T(n)-stretch spanner with density T(n), as stated in Lemma 3.5.4.
For values of T(n) which are too small it is known that such spanners do not exist [84]. More
specifically it is known that there are graphs with n nodes, density at least 1/4ni/r and girth
r, i.e., the length of the smallest cycle is r. In such a graph any (r - 2)-stretch spanner has to
be the original graph itself, since removing a single edge causes its end-points to have distance
at least r - 1, and thus the spanner also have density 1/4n1/r. Therefore T(n) ;; argminr fr -
2, 1/4n1/r} log -

Interestingly, it is not only the case that efficient simulators imply good spanners but the
next theorem shows as a converse that good existing spanner constructions for the LOCAL
model can be used to improve the performance of simulators.

Theorem 3.5.6. If there is an algorithm that computes an (a, /)-stretch spanner with hered-
itary density 6 in O(T) rounds in the LOCAL model than this can be combined with an (a',3')-
simulator to an (a6, Ta' + 3' + 6 log n + 6/)-simulator.

Proof. For simplicity we first assume that / = 0, i.e., the spanner S computed by the algorithm
in the LOCAL model has purely multiplicative stretch a and hereditary density 6. Our strategy

104

is simple: We are first going to compute the good spanner by simulating the spanner creation

algorithm from the LOCAL model using the given simulator. This takes Ta' + /' rounds in

the GOSSIP model. Once this spanner S is computed we are only going to communicate via

the edges in this spanner. Note that for any node there is a path of length at most a to any

of its neighbors. Thus if we perform a rounds of LOCAL-flooding rounds in which each node

forwards all messages it knows of to all its neighbors in S each node obtains the messages of all its

neighbors in G. This corresponds exactly to a NEIGHBOREXCHANGE in G. Therefore if we want

to simulate T' rounds of an algorithm A in the LOCAL model on G we can alternatively perform

aT' LOCAL computation rounds on S while doing the LOCAL computations of A every a

rounds. This is a computation in the LOCAL model but on a sparse graph. We are therefore

going to use the (0(6), 0(6 log n))-simulator from Corollary 3.5.2 to simulate this computation

which takes O(3aT'+ 6 log n) rounds in the GOSSIP model. Putting this together with the

Ta' + 3' rounds it takes to compute the spanner S we end up with 6aT' + 3 log n + Ta' + /'

rounds in total.

In general (i.e., for # > a) it is not possible (see, e.g., Corollary 3.5.5) to simulate the

LOCAL algorithm step by step. Instead we rely on the fact that any LOCAL computation

over T rounds can be performed by each node first gathering information of all nodes in a

T-neighborhood and then doing LOCAL computations to determine the output. For this all

nodes simply include all their initial knowledge (and for a randomized algorithm all the random

bits they might use throughout the algorithm) in a message and flood this in T rounds to all

node in their T-neighborhood. Because a node now knows all information that can influence

its output over a T-round computation it can now locally simulate the algorithm for itself and

its neighbors to the extend that its output can be determined. Having this we simulate the

transformed algorithm as before: We first precompute S in Ta'+ #' time and then simulate the

T' rounds of flooding in G by performing aT'+ # rounds of LOCAL-flooding in S. Using the

(0(6), 0(3 log n))-simulator this takes 0(3(aT' + /) + 3 log n) rounds in the GOSSIP model.

Corollary 3.5.7. There is a (2 1og* " log n, log 4 n) -simulator, a (log n, 2 10g* " log 4 n) -simulator

and a (0(1), polylogn)-simulator.

Proof. We are going to construct the simulators with increasingly better multiplicative overhead

by applying Theorem 3.56 to existing spanner constructions [27, 87, 36, 88] for the LOCAL

model. We first construct a (log 2 n, log 4 n)-simulator by combining our new (log 3 n, 0)-simulator

with the deterministic spanner construction in [27]. The construction in [27] takes O(log n)

rounds in the LOCAL model and adds at most one edge to each node per round. Using a =

T = 6 = 0(logn), a' = log3 n and / = 0' = 0 in Theorem 3.5.6 gives the desired (log 2 nlog 4)-

simulator. Having this simulator, we can use [87] to improve the multiplicative overhead while

keeping the additive simulation overhead the same. In [87] an a = (2 1og* log n)-stretch spanner

with constant hereditary density 6 = 0(1) is constructed in T = O(2 0g*n log n)-time in the

LOCAL model. Using these parameters and the (log 2 n, log 4 n)-simulator in Theorem 3.5.6

105

leads to the strictly better (2 1g* 'log n, log 4 n)-simulator claimed here. Having this simulator,
we can use it with the randomized spanner construction in [36]. There, an a-stretch spanner,
with a = O(log n), is constructed in T = O(log 3 n)-time in the LOCAL model by extracting a
subgraph with Q(log n) girth. Such a graph has constant hereditary density 6 = 0(1), as argued
in [84]. Using these parameters and the (21o* 'log n, log 4 n)-simulator in Theorem 3.5.6 leads
to the (log n, 2 1,g* log 4 n)-simulator. Finally, we can use any of these simulators together with
the nearly-additive (5-+e, polylogn)-spanner construction from [88] to obtain our last simulator.
It is easy to verify that the randomized construction named AD1Oglogfn in [88] can be computed
in a distributed fashion in the LOCAL model in polylogn time and has hereditary density
6 = 0(1). This together with any of the previous simulators and Theorem 3.5.6 results in a
(0(1), polylogn)-simulator. E

With these various simulators it is possible to simulate a computation in the LOCAL model
with very little (polylogarithmic) multiplicative or additive overhead in the GOSSIP model.
Note that while the complexity of the presented simulators is incomparable, one can interleave
their executions (or the executions of the simulated algorithms) and thus get the best runtime
for any instance. This, together with Corollaries 3.5.7 and 3.5.2, proves our main result of
Theorem 3.1.2.

106

Zo(logn)

Zi

Figure 3-3: An example illustrating the behavior of the algorithm choosing a random neighbor

whose information is still unknown.

3.6 Open problems

Our work presents a more efficient alternative to the Unif ormGossip algorithm that allows fast

rumor spreading on all graphs, with no dependence on their conductance. We then show how

this leads to fast simulation in the GOSSIP model of any algorithm designed for the LOCAL

model by constructing sparse spanners. This work leaves some interesting directions for future

work, which we discuss below.

3.6.1 Simplified Neighbor Exchange

First, as mentioned in the introduction, there are cases in which the algorithm where each

node chooses a neighbor uniformly at random only from among those it has not yet heard from

(directly or indirectly), performs slower than the optimal. This is illustrated in the following

example.

Here is an example for a case in which the algorithm where each node chooses a neighbor

uniformly at random only from among those it has not yet heard from (directly or indirectly),
performs slower than the optimal. The graph appears in Figure 3-3, where Ci stands for a clique

of size 0(1) in which every node is also connected to the node vi.

In this example, it takes 2 rounds for the node w to hear about the node v (through nodes

in {zi, ... , zo(iogn)}). During these rounds there is a high probability that a constant fraction

of the nodes in {ui, ... , u0O(n)} did not yet hear from neither v nor w. With high probability, a

constant fraction of these will contact w before contacting v, after which they will not contact v

anymore because they will have heard from it through w. This leaves 0(n) nodes which v has to

contact directly (since nodes in {zi, .. , zo(log n) } are no longer active since they already heard

from both of their neighbors), resulting in a linear number of rounds for NEIGHBOREXCHANGE.

We note, however, that this specific example can be solved by requiring nodes that have

heard from all their neighbors to continue the algorithm after resetting their state, in the sense

107

that they now consider all their neighbors to be such that they have not heard from (this is
only for the sake of choosing the next neighbor to contact, the messages they send can include
previous information they received). Therefore, we do not rule out the possibility that this
algorithm works well, but our example suggests that this may not be trivial to prove.

3.6.2 Asynchronous algorithm and soft decisions

Second, regarding our solution to the RUMOR problem, the Superstep algorithm, as presented,
can be implemented in synchronous environments in a straightforward manner. To convert our
algorithm to the asynchronous setting, one needs to synchronize the reversal step. Synchroniza-
tion is a heavy-handed approach and not desirable in general.

To alleviate this problem, we believe, it is possible to get rid of the reversal step altogether.
The basic idea is to do away with the hard decisions to "remove" edges once a message from a
neighbor has been received. And instead to multiplicatively decrease the weight of such edges
for the next round. This approach would introduce a slight asymmetry in each edge's weight
in both directions. In order to analyze such an algorithm, it is needed to understand the
behavior of RandomNeighbor in the general asymmetric setting. In this setting, each vertex uses
its own distribution over outgoing links when choosing a communication partner at each step.
We believe that understanding the asymmetric RandomNeighbor is an open problem of central
importance. It should be mentioned, in general, that solving RUMOR (and not just Superstep)
asynchronously in the LOCAL model is a well-known, major open problem.

108

Bibliography

[1] I. Abraham, C. Gavoille, and D. Malkhi. On space-stretch trade-offs: Lower bounds. In

Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and

architectures, pages 207-216. ACM New York, NY, USA, 2006. 33

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-

independent routing with minimum stretch. 2008. 33

[3] Alon, Badoiu, Demaine, Farach-Colton, Hajiaghayi, and Sidiropoulos. Ordinal embeddings
of minimum relaxation: General properties, trees, and ultrametrics. In SODA: ACM-
SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental

Analysis of Discrete Algorithms), 2005. 66

[4] Noga Alon, Peter Frankl, and Vojtech R6dl. Geometrical realization of set systems and

probabilistic communication complexity. In FOCS, pages 277-280. IEEE, 1985. 67

[5] J. M. Alonso and et al. Notes on word hyperbolic groups. In Group theory from a

geometrical viewpoint (Trieste, 1990), pages 3-63. World Sci. Publ., River Edge, NJ, 1991.
Edited by H. Short. (S

[6] David Applegate and Edith Cohen. Making intra-domain routing robust to changing and

uncertain traffic demands: understanding fundamental tradeoffs. In Proceedings of the

2003 conference on Applications, technologies, architectures, and protocols for computer

communications, SIGCOMM '03, pages 313-324, New York, NY, USA, 2003. ACM. 16

[7] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal oblivious

routing in polynomial time. In Proceedings of the thirty-fifth annual ACM symposium on

Theory of computing, STOC '03, pages 383-388, New York, NY, USA, 2003. ACM. 16

[8] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse

graphs using nash-williams decomposition. In Proceedings of the twenty-seventh ACM
Symposium on Principles of Distributed Computing (PODC), pages 25-34, New York,
NY, USA, 2008. ACM. 9)1

[9] Leonid Barenboim and Michael Elkin. Distributed (6 + 1)-coloring in linear (in 6) time. In

Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages
111-120, New York, NY, USA, 2009. ACM. 87, 91

109

[10] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages
184-, Washington, DC, USA, 1996. IEEE Computer Society. 22, 25, 59

[11] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
thirtieth annual A CM symposium on Theory of computing, STOC '98, pages 161-168, New
York, NY, USA, 1998. ACM. 25

[12] Yair Bartal and Stefano Leonardi. On-line routing in all-optical networks. In Proceedings
of the 24th International Colloquium on Automata, Languages and Programming, ICALP
'97, pages 516-526, London, UK, 1997. Springer-Verlag. 22

[13] Aditya Bhaskara and Aravindan Vijayaraghavan. Computing the matrix p-norm. CoRR,
abs/1001.2613, 2010. 17

[14] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Rscke. A practical algorithm
for constructing oblivious routing schemes. In Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures, SPAA '03, pages 24-33, New York,
NY, USA, 2003. ACM. 16

[15] Bilu and Linial. Monotone maps, sphericity and bounded second eigenvalue. JCTB:
Journal of Combinatorial Theory, Series B, 95, 2005. 66, 67

[16] Bollobas, Riordan, Spencer, and Tusnady. The degree sequence of a scale-free random
graph process. RSA: Random Structures and Algorithms, 18, 2001. 62

[17] B. Bollobas and 0. Riordan. The diameter of a scale-free random graph. Combinatorica,
2002. In press. 62

[18] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7(6):609-616, 2001. 62

[19] Antonio Caruso, Stefano Chessa, S. De, and A. Urpi. GPS free coordinate assignment and
routing in wireless sensor networks. In INFOCOM, pages 150-160. IEEE, 2005. 62

[20] Keren Censor-Hillel and Hadas Shachnai. Fast information spreading in graphs with large
weak conductance. In Proceedings of the 22nd A CM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 440-448, 2011. 87, 88, 89, 90

[21] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Almost tight bounds for
rumour spreading with conductance. In Proceedings of the 42nd ACM Symposium on
Theory of Computing (STOC), pages 399-408, 2010. 87, 89, 90

[22] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumour spreading and
graph conductance. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1657-1663, 2010. 91

110

[23] F.R.K. Chung. Spectral graph theory. American Mathematical Society, 1997. 56

[24] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of

Grundlehren der math. Wissenschaften. Springer, 1993. 82

[25] H. S. M. Coxeter. Non-Euclidean geometry. MAA Spectrum. Mathematical Association

of America, Washington, DC, sixth edition, 1998. 68

[26] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard

Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database

maintenance. In Proceedings of the sixth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 1-12, 1987. 90

[27] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of dis-

tributed sparse spanner construction. In Proceedings of the twenty-seventh ACM Sympo-

sium on Principles of Distributed Computing (PODC), pages 273-282, New York, NY,
USA, 2008. ACM. 90, 105

[28] Raghavan Dhandapani. Greedy drawings of triangulations. Submitted, 2006. 62

[29] Do Carmo, Manfredo. Riemannian Geometry. Birkhsuser Verlag, Boston, 1992. 68

[30] Benjamin Doerr and Mahmoud Fouz. Asymptotically optimal randomized rumor spread-

ing. CoRR, abs/1011.1868, 2010. 90

[31] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in

sublogarithmic time. In Proceedings of the 43rd Annual ACM Symposium on Theory of

Computing (STOC), pages 21-30, 2011. 91

[32] Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading.

In Proceedings of the nineteenth Annual A CM-SIAM Symposium on Discrete Algorithms

(SODA), pages 773-781, Philadelphia, PA, USA, 2008. Society for Industrial and Applied

Mathematics. 90

[33] Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald. Quasirandom rumor spreading:

Expanders, push vs. pull, and robustness. In 36th International Colloquium on Automata,
Languages and Programming (ICALP)(1), pages 366-377, 2009. 90

[34] J.R. Douceur. The sybil attack. In Peer-To-Peer Systems: First International Workshop,
Iptps 2002, Cambridge, Ma, USA, March 7-8, 2002, Revised Papers, page 251. Springer,
2002. 57

[35] P.G. Doyle and J.L. Snell. Random walks and electric networks. Arxiv preprint

math.PR/0001057, 2000. 35

[36] Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and
Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets

and linear-size skeletons. J. Comput. Syst. Sci., 71:467-479, November 2005. 90, 105, 106

111

[37] Matthias Englert and Harald Rscke. Oblivious routing for the lp-norm. In Proceedings of
the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS '09,
pages 32-40, Washington, DC, USA, 2009. IEEE Computer Society. 22, 29

[38] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual A CM symposium
on Theory of computing, STOC '03, pages 448-455, New York, NY, USA, 2003. ACM. 25

[39] Rodrigo Fonseca, Sylvia Ratnasamy, David Culler, Scott Shenker, and Ion Stoica. Beacon
vector routing: Scalable point-to-point in wireless sensornets, July 09 2004. 62

[40] Nikolaos Fountoulakis and Anna Huber. Quasirandom rumor spreading on the complete
graph is as fast as randomized rumor spreading. SIAM Journal on Discrete Mathematics,
23(4):1964-1991, 2009. 90

[41] Pierre Fraigniaud and George Giakkoupis. On the bit communication complexity of ran-
domized rumor spreading. In Proceedings of the 22nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 134-143, New York, NY, USA, 2010. ACM.
90

[42] Peter Frankl and Hiroshi Maehara. The johnson-lindenstrauss lemma and the sphericity
of some graphs. J. Comb. Theory, Ser. B, 44(3):355-362, 1988. 67

[43] Eric J. Friedman. Genericity and congestion control in selfish routing. In In Proceedings
of the 43rd Annual IEEE Conference on Decision and Control (CDC), pages 4667-4672,
2004. 22

[44] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu. Geometric spanner
for routing in mobile networks. In MobiHoc '01: Proceedings of the 2nd A CM international
symposium on Mobile ad hoc networking & computing, pages 45-55, New York, NY, USA,
2001. ACM Press. 62

[45] George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance.
In 28th International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 57-68, Dagstuhl, Germany, 2011. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 87, 89, 90, 92, 9-4

[46] George Giakkoupis and Philipp Woelfel. On the randomness requirements of rumor spread-
ing. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 449-461, 2011. 90

[47] N. Goyal, L. Rademacher, and S. Vempala. Expanders via random spanning trees. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 576-585. Society for Industrial and Applied Mathematics Philadelphia, PA, USA,
2009. 33

112

[48] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res.

Inst. Publ., pages 75-263. Springer, New York, 1987. 68

[49] Anupam Gupta. Embedding tree metrics into low dimensional euclidean spaces. In STOC,
pages 694-700, 1999. 60, 82

[50] Anupam Gupta, Mohammad T. Hajiaghayi, and Harald Rscke. Oblivious network design.

In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
SODA '06, pages 970-979, New York, NY, USA, 2006. ACM. 20, 21, 22

[51] Bernhard Haeupler and David Karger. Faster information dissemination in dynamic net-

works via network coding. In Proceedings of the 30th annual ACM SIGACT-SIGOPS

symposium on Principles of distributed computing, PODC '11, pages 381-390, New York,
NY, USA, 2011. ACM. 16

[52] M.T. Hajiaghayi, R.D. Kleinberg, T. Leighton, and H. Rdcke. New lower bounds for

oblivious routing in undirected graphs. In Proceedings of the seventeenth annual A CM-
SIAM symposium on Discrete algorithm, pages 918-927. ACM New York, NY, USA, 2006.
34, 42

[53] Harel and Tarjan. Fast algorithms for finding nearest common ancestors. SICOMP: SIAM

Journal on Computing, 13, 1984. 71

[54] Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition

to minimize congestion. In Proceedings of the fifteenth annual ACM symposium on Parallel

algorithms and architectures, SPAA '03, pages 34-43, New York, NY, USA, 2003. ACM.
16, 25

[55] P. Harsha, T.P. Hayes, H. Narayanan, H. Ricke, and J. Radhakrishnan. Minimizing

average latency in oblivious routing. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 200-207. Society for Industrial and Applied

Mathematics Philadelphia, PA, USA, 2008. 33

[56] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete

Math., pages 369-384, 1991. 22

[57] James Renegar. A mathematical view of interior-point methods in convex optimization.

2001. 32

[58] S. Kale, Y. Peres, and C. Seshadhri. Noise Tolerance of Expanders and Sublinear Expander

Reconstruction. In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations

of Computer Science- Volume 00, pages 719-728. IEEE Computer Society Washington, DC,
USA, 2008. 57

[59] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless net-

works. In MOBICOM, pages 243-254, 2000. 62

113

[60] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS),
page 565, Washington, DC, USA, 2000. IEEE Computer Society. 90

[61] Svetlana Katok. Fuchsian groups. Chicago Lectures in Mathematics. University of Chicago
Press, Chicago, IL, 1992. 68, 69

[62] Jonathan Kelner and Petar Maymounkov. Electric routing and concurrent flow cutting.
Theor. Comput. Sci., 412:4123-4135, July 2011. 22, 28, 29

[63] David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossip and resource location pro-
tocols. In Proceedings of the thirty-third Annual ACM Symposium on Theory of Computing
(STOC), pages 163-172, New York, NY, USA, 2001. ACM. 91

[64] David Kempe and Jon M. Kleinberg. Protocols and impossibility results for gossip-based
communication mechanisms. In Proceedings of the 43rd Symposium on Foundations of
Computer Science (FOCS), pages 471-480, Washington, DC, USA, 2002. IEEE Computer
Society. 91

[65] Jon Kleinberg. The small-world phenomenon: an algorithm perspective. In Proceedings
of the thirty-second annual ACM symposium on Theory of computing, STOC '00, pages
163-170, New York, NY, USA, 2000. ACM. 16

[66] Robert Kleinberg. Geographic routing using hyperbolic space. To appear in Proc. 32nd
IEEE INFOCOM (INFOCOM 2007), 2007. 60, 62, 68, 70, 71, 73

[67] A. Kostochka. Lower bound of the hadwiger number of graphs by their average degree.
Combinatorica, 4:307-316, 1984. 10.1007/BF02579141. 100

[68] Robert Krauthgamer and James Lee. Algorithms on negatively curved spaces. In FOCS,
2006. 68

[69] Fabian Kuhn and Thomas Moscibroda. Distributed approximation of capacitated domi-
nating sets. Theor. Comp. Sys., 47:811-836, November 2010. 91

[70] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-
sighted. In Proceedings of the seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 980-989, New York, NY, USA, 2006. ACM. 91

[71] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc
routing: of theory and practice. In PODC, pages 63-72, 2003. 62

[72] G. Lawler and H. Narayanan. Mixing times and lP bounds for Oblivious routing. In
Workshop on Analytic Algorithmics and Combinatorics, (ANAL C009). 22, 28, 29, 33

[73] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM (JA CM), 46(6):787-832, 1999.

114

[74] Linial, Magen, and Saks. Trees and euclidean metrics. In STOC: ACM Symposium on

Theory of Computing (STOC), 1998. 71

[75] Michael Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing, 15(4):1036-1053, 1986. 87

[76] W. Mader. Homomorphieeigenschaften und mittlere kantendichte von graphen. Mathe-

matische Annalen, 174:265-268, 1967. 10.1007/BF01364272. 100

[77] Hiroshi Maehara. Space graphs and sphericity. Discrete Appl. Math., 7:55-64, 1984. 67

[78] B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Westermann. Exploiting locality

for data management in systems of limited bandwidth. In Proceedings of the 38th Annual

Symposium on Foundations of Computer Science, pages 284-, Washington, DC, USA,
1997. IEEE Computer Society. 22

[79] J. Matousek. On embedding trees into uniformly convex banach spaces, 1999. 71

[80] Jiri Matousek. Geometric computation and the art of sampling. In IEEE Symposium on

Foundations of Computer Science, page 2, 1998. 71

[81] Damon Mosk-Aoyama and Devavrat Shah. Computing separable functions via gossip.

In Proceedings of the twenty-fifth Annual ACM Symposium on Principles of Distributed

Computing (PODC), pages 113-122, New York, NY, USA, 2006. ACM. 87, 89, 90

[82] Papadimitriou and Ratajczak. On a conjecture related to geometric routing. TCS: Theo-

retical Computer Science, 345, 2005. 60, 62

[83] Christos H. Papadimitriou and David Ratajczak. On a conjecture related to geometric

routing. Theor. Comput. Sci., 344:3-14, November 2005. 16

[84] D. Peleg and A.A. Schsffer. Graph spanners. Journal of graph theory, 13(1):99-116, 1989.
104, 106

[85] David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000. 83

[86] David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000. 87, 91

[87] S. Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-
tributed Computing, 22(3):147-166, 2010. 90, 105

[88] Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6:7:1-
7:22, December 2009. 88, 90, 105, 106

[89] H. Rscke. Optimal hierarchical decompositions for congestion minimization in networks. In

Proceedings of the 40th annual A CM symposium on Theory of computing, pages 255-264.
ACM New York, NY, USA, 2008. 16, 22, 25, 26, 28, 29, 33, 59

115

[90] Harald Ricke. Minimizing congestion in general networks. In Proceedings of the 43rd
Symposium on Foundations of Computer Science, FOCS '02, pages 43-52, Washington,
DC, USA, 2002. IEEE Computer Society. 16, 25

[91] Ananth Rao, Christos Papadimitriou, Scott Shenker, and Ion Stoica. Geographic routing
without location information. In MobiCom '03: Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 96-108, New York, NY, USA, 2003.
ACM Press. 62

[92] Robert Freund. Interior-point theory for convex optimization. 2007. 32

[93] Tim Roughgarden. The price of anarchy is independent of the network topology. J.
Comput. Syst. Sci., 67:341-364, September 2003. 22

[94] Tim Roughgarden and Eva Tardos. How bad is selfish routing? J. ACM, 49:236-259,
March 2002. 22

[95] Thomas Sauerwald and Alexandre Stauffer. Rumor spreading and vertex expansion on
regular graphs. In Dana Randall, editor, SODA, pages 462-475. SIAM, 2011. 87

[96] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symmetry
breaking. In Proceeding of the 29th ACM SIGA CT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pages 257-266, New York, NY, USA, 2010. ACM. 91

[97] Alistair Sinclair. Algorithms for random generation and counting: a Markov chain ap-
proach. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993. 93

[98] Sleator, Tarjan, and Thurston. Rotation distance, triangulations, and hyperbolic geometry.
JAMS: Journal of the American Mathematical Society, 1, 1988. 68

[99] D.A. Spielman. Graphs and networks, Lecture Notes. 35

[100] D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the 40th annual ACM symposium on Theory of computing, pages 563-568. ACM
New York, NY, USA, 2008. 43

[101] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. CoRR,
abs/0808.4134, 2008. 95

[102] M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the thirteenth
annual ACM symposium on Parallel algorithms and architectures, pages 1-10. ACM New
York, NY, USA, 2001. 33

[103] M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM (JA CM),
52(1):1-24, 2005. 33

116

[104] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the thirteenth

annual ACM symposium on Parallel algorithms and architectures, SPAA '01, pages 1-10,
New York, NY, USA, 2001. ACM. 17, 59

[105] W. P. Thurston. Three-Dimensional Geometry and Topology, volume 35 of Princeton

Mathematical Series. Princeton University Press, 1997. 68, 69

[106] L G Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350-361, 1982. 16

[107] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In

Proceedings of the thirteenth annual ACM symposium on Theory of computing, STOC '81,
pages 263-277, New York, NY, USA, 1981. ACM. 16

117

