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12.010 Homework #2 Solution Due Tuesday, October 14, 2008 

Question (1): (25-points) (a) Write, compile and run a fortran program that generates
two tables of the Gamma function. The Gamma function satisfies the following equation 

"(z) = % t z#1 
e #tdt 

0 

where z is the argument of the gamma function and can be complex. (See 
(See http://mathworld.wolfram.com/GammaFunction.html for information on the 
Gamma function). Gamma functions are rarely computed by directly integrating the 
equation above. Generally they are evaluated by series expansions.
For one table, table will be generated for z between 1 and 10 in increment of 1 when z is
an integer. This table should give values of Γ(z), Γ(z+1/3), Γ(z+1/2) and Γ(z+2/3). 
For the second table, Γ(z) should be generated for z between -1 and +1 in increments of 
0.1. Results should be tabulated with at least 6-significant digits. 

The submission should include 
(a) A discussion of the algorithms used in the program with rationales for the choices 
(b) The tables generated by the program and 
(c) The fortran source code. 

Solution: 
The Gamma function can be computed in a variety of ways and the reason for the two 
types of tables (one using integer arguments with specific rational offsets and the other 
using non-integer values is that the methods of computing Gamma functions with these
two types of arguments are very different.
There are a number of sources of information on computing Gamma functions and the 
one I like to use (for this and may other numerical functions and applications) is:
M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Wiley, New York, 1970. This book is available online 
at http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP and the specific 
information on Gamma functions is at: 
http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP?Res=150&Page=255
Specifically for integer arguments we use: 
"(n + 1) = n! 

1.4.7.10....(3n # 2)
"(n + 1 3) = "(1 3) "(1 3) = 2.6789385347077479 (6.1.11) 

3
n 

1.3.5.7....(2n #1) 
"(n + 1 2) = "(1 2) "(1 2) = 1.7724538509055161 (6.1.12) 

2
n 

2.5.8.11...(3n #1) 
"(n + 2 3) = "(2 3) "(2 3) = 1.3541179394264005 (6.1.13) 

3
n 

These equations may be easily coded and maintaining accuracy in the calculation is easy.
The only caution is that n! grow rapidly and 13! will overflow integer*4 maximize size
and so factorials are normally computed as real*8 values. 

http://mathworld.wolfram.com/GammaFunction.html
http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP
http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP?Res=150&Page=255
http:1.4.7.10...
http:2.5.8.11..
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The calculation of Gamma for arbitrary arguments is more difficult because of the slow
convergence of the standard formulas for this calculation. In the home work solution we 
implement three different methods for this calculation: Euler's Formula, Euler's infinite
product and Series expansion originally published in 1933. 
Euler's formula 6.1.2 

n!nz 
"(z) = lim (z % 0,&1,&2,..) 

n#$ z(z + 1)(z + 2)....(z + n) 

Euler's Infinite product  6.1.3 

1 "(z) = ze 'z . *1+ 
z 
-e &z /n ( z < $)

) n,n=1 

Series expansion 6.1.34 (page 256) 

1 "(z) = /ck z
k 

k=1 

The ck  coefficients are in the text (and ocr entries at the bottom of the web page) 

In the code the equation 6.1.2 was modified so that it could be computed for increasing 
values of n. Using this method, the change in the estimates of Gamma(z) could be
monitored to see if the answer had converged with the desired accuracy. Both (6.1.2) 
and (6.1.3) are very slowing converging and by experimentation it was found that when 
the increments to the zero 10-6 times smaller than the tolerance set (1.e-6), the series had 
converged to the tolerance. The tolerance is a settable parameter (eps) in the code and 
this can be changed to experiment with the accuracy of the code (eg., eps = 1.d-7 makes 
all the entries the same in the output. 

In the output we also used the extended ASCII table to output the ± symbol. This might 
not generate the same symbol on all systems.


The solution is implemented in HW02_01.f and the results are:

% gfortran HW02_01.f -o HW02_01

% HW02_01


Table of gamma functions of positive n integers


n 
1 

gamma(n)
1. 

gamma(n+1/3)
0.892980 

gamma(n+1/2)
0.886227 

gamma(n+2/3)
0.902745

 2 1. 1.190639 1.329340 1.504575
 3 2. 2.778158 3.323351 4.012201
 4 6. 9.260528 11.631728 14.711405
 5 24. 40.128956 52.342778 68.653222
 6 120. 214.021098 287.885278 389.034926
 7 720. 1355.466952 1871.254306 2593.566175
 8 5040. 9940.090984 14034.407293 19884.007341
 9 40320. 82834.091537 119292.461995 172328.063626

 10 362880. 773118.187683 1133278.388949 1665837.948385 

Table of gamma functions for non-integer arguments


Three methods are used here:

Eulers formula GammaEul




   

  
              

                           
                           
                 
                           
                           
                           
                           
                           
                           
                           

 

 

Eulers infinite product GammaInf

Asymptotic series expansion GammaSer

Tolerance on calculation is 0.100E-05


 z GammaEul(z) GammaInf(z) GammaSer(z)

-1.00 ±Infinity ±Infinity ±Infinity

-0.90 -10.570565 -10.570542 -10.570564 

-0.80 -5.738555 -5.738547 -5.738555 

-0.70 -4.273671 -4.273666 -4.273670 

-0.60 -3.696933 -3.696930 -3.696933 

-0.50 -3.544908 -3.544905 -3.544908 

-0.40 -3.722981 -3.722979 -3.722981 

-0.30 -4.326852 -4.326849 -4.326851 

-0.20 -5.821149 -5.821147 -5.821149 

-0.10 -10.686288 -10.686285 -10.686287 

0.00 ±Infinity ±Infinity ±Infinity

0.10 9.513507 9.513506 9.513508 

0.20 4.590843 4.590842 4.590844 

0.30 2.991568 2.991568 2.991569 

0.40 2.218159 2.218159 2.218160 

0.50 1.772453 1.772453 1.772454 

0.60 1.489191 1.489191 1.489192 

0.70 1.298054 1.298055 1.298055 

0.80 1.164229 1.164229 1.164230 

0.90 1.068628 1.068628 1.068629 

1.00 0.999999 0.999999 1.000000 


Question (2): (25-points).

Write a program that reads a file containing text, determines


(1) The average and root-mean-square (RMS) scatter about the mean of the number 
of characters per word and 

(2) The average and root-mean-square (RMS) scatter about the mean of the number 
of words per sentence. A sentence can end with a period or question mark. 

The text below is contained in the file Q2_text.txt. 

The basic analysis of spacecraft tracking data requires relating the 

position and velocity of the spacecraft to the position and velocity of

the tracking system. The coordinate system used in spacecraft

navigation is shown in Figure 1. The basic measurements are of r and 

its time derivative and sequences of these measurements, combined with 

knowledge of the tracking station location and equations of motions of

the spacecraft, allow the position of the spacecraft denoted here by

distance r, right ascension, a, and declination, d, and its velocity to

be determined as a function of time. In addition to knowing the

coordinates of the spacecraft in an inertial coordinate system, the

coordinates of solar system bodies are also needed in this frame.

Tracking data collected on spacecraft near planets can also be used to

improve the ephemerides the planets through the gravitational

perturbations of the spacecraft motions. Large combined analysis of

tracking data and direct measurements of planets (radar and optical

positions) are used to generate planetary ephemeredes. 


Hints:

Remember if reads are coded as read(*,'(a)') then the file Q2_text.txt can be re-directed 




 
  

 
  

into the program using:

Q2F < Q2text.txt where Q2F is the name of the program (you can call the program any

name you like).

Solution 
This problem is one of careful booking keeping and thinking about the how to detect end 
of words and ends of sentences. It is also a case where the example text did not contain 
all possible scenarios and so a good code will check for sentence structures that are not in
the example text. Specifically the punctuation elements that are missing are : ; and ?
Only the last of these will have an impact on determining the end of a sentence. The 
other element missing was a hyphenated word that straddles a line back (the common
place the hyphenate). The homework solution does take into account these missing 
elements. The ambiguous part of the sample text is what to do with the numeric 1 value 
in the text. The question asks for character counts, which could be interpreted as only 
letters or letters and numeric values. The homework solution only counts letters and not
number but either solution is acceptable. It is common when implementing an algorithm
to have ambiguous statements about what is needed and one complexity of implementing 
different possible options needs to be considered.
The homework solution reads the text from a file and the name of file is passed in the
runstring. The Fortran library function getarg is used to do this. There can be differences 
between implementations of this function in that in some cases argument 0 is the program
name (as it is in C) and in other cases argument 1 is the program name. The C-style 
implementation is used here. 

The solution is implemented in HW02_02.f and the output is: 
When only letters are counted:
% HW02_02 Q2_text.txt 

12.010 HW02_02: In file Q2_text.txt there are:

Mean chacters per word 5.38 with RMS 3.15 in 166 words;

Mean words per sentence 27.67 with RMS 15.87 in 6 sentences

When the numeric 1 is counted as a character the result is: 
% HW02_02 test.txt

12.010 HW02_02: In file test.txt there are:

Mean chacters per word 5.35 with RMS 3.16 in 167 words;

Mean words per sentence 27.83 with RMS 15.66 in 6 sentences


Question (3): (50-points) Write a Fortran program that will compute the motions of a set
of particles undergoing mutual gravitational attraction. The program should generate the
trajectories of each of the particles with an error tolerance that is proportional to the
separation of the particles. The program should be able to handle large numbers of
particles and thought should be given as to how to input the initial positions and 
velocities of particles when there are a large number of particles. 

As a test of your program: Evaluate the trajectories of the 6 particles below with an error 
tolerance of 1.e-6. (This case is similar to the collision of two Sun-Earth-Moon systems) 
The integration should be run for 515-days and the positions and velocities at the end of 
515 days should be included in the output. 



The values below give the mass (kg), X and Y position (km) and X and Y velocities

(km/s) of the 6 particles to be evaluated.

2.0e+30 kg XY 0.0e+00 0.0e+00 (km) VXY 0.000e+00 0.000e+00 (km/sec)

8.8e+28 kg XY 1.5e+08 0.0e+00 (km) VXY 0.000e+00 2.857e+01 (km/sec)

7.3e+22 kg XY 1.5e+08 1.0e+07 (km) VXY -2.424e+01 2.857e+01 (km/sec)

2.0e+30 kg XY -1.0e+09 0.0e+00 (km) VXY 1.000e+01 0.000e+00 (km/sec)

8.8e+28 kg XY -8.5e+08 0.0e+00 (km) VXY 1.000e+01 2.857e+01 (km/sec)

7.3e+22 kg XY -8.5e+08 1.0e+07 (km) VXY -1.424e+01 2.857e+01 (km/sec)


Your answer to this question should include:

(a) The algorithms used and the design of your program 
(b) The Fortran program source code (I will compile and run your programs). If you 

program does not run or takes more than few minutes to run, let me know so that I
will treat it with caution. 

(c) The results from the test case above with positions and velocities at the end of 515
days. You could also explore the effects of changing the accuracy tolerance on 
the results. 

Solution 
This problem is a N-body orbital problem where the error tolerance on the integration is
specified. Error tolerances of this nature are a fractional error (sometimes called relative
error) and quantify the ratio of the error to a spatial scale in the problem. These types of
definitions are often vague as to the spatial scale to be used. If we look at the initial
coordinates, they are of order 109 km and 10-6 of this scale is 1000 km. In the homework 
implementation we use as the spatial scale the closest pair of bodies and ensure that their
relative positions are known to the 10-6 tolerance. After day 490 of the integration, the
bodies to come very close together and as a result meeting the 10-6 accuracy requirement 
becomes very difficult. We also specify a minimum step size (about 1-second) and when 
the bodies are close, step size smaller than this are needed to maintain the accuracy. The
way we evaluate accuracy is to integrate each time step twice: Once with the nominal
step size and the other in two steps with half the step size. The difference is used to test 
whether the step size should be halved or doubled. If the tolerance is not meet, the step 
halved and the procedure repeated until we meet the tolerance or the minimum size is 
reached. If the tolerance is exceeded by at least a factor of 40 the step size is doubled.
The reason for the factor of forty is that a 4th order Runge-Kutta integration is used and so 
halving the step size should improve the accuracy by a factor of 32. If we did not test for 
a ratio larger than 32, then the algorithm was bounce back and forth between the two step 
sizes. The code does include a counter of the number of times the step is changed at each 
integration step and if this exceeds a tolerance than the iteration is stopped. This limit is
reached in the current problem when the bodies are very close to each other. 

The integrator used in this solution is a 4th order Runge-Kutta algorithm given at
http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP?Res=150&Page=897
equation 25.5.20 and is from Abramowitz and Stegun. 

http://www.convertit.com/Go/Convertit/Reference/AMS55.ASP?Res=150&Page=897
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Solution to y"" = f (x, y, y") for a step in x (time) of h 

1 5
yn +1 = yn + h[y" n + (k1 + k2 + k3)] + O(h ) 

6

1


yn 
" 

+1 = y" n + [k1 + 2k2 + 2k3 + k4 ] 
6 

k1 = hf (xn , yn, y" n ) 

k2 = hf (xn + h /2, yn + hyn " /2 + hk1 /8, y" n + k1 /2) 

k3 = hf (xn + h /2, yn + hy" n /2 + hk1 /8, y" n + k2 /2) 

k4 = hf (xn + h, yn + hyn " + hk3 /2, y" n + k3) 

To implement this integration we need to compute the acceleration (function f) at four 
locations given by the above calculations. Notice also here that this integration is valid
when the acceleration depends on velocity as well as position. While the standard 
gravitational problem depends only on position, this implementation of the integrator
allows to easily added drag type forces the equations if we wanted to. These types of 
forces could be useful in allowing capture of bodies in the problem. 

The basic modules in the program are:
read_runstring – allows the name of the file with body definitions, the duration of the
integration and the accuracy tolerance on the integrator to given in the runstring of the 
program.
read_nbody – reads the body definitions in the form of mass, position x and y, and 
velocity x and y. The implementation in this routine only interprets lines that start with a 
space. All other lines are interpreted as comments.
report_ICS – routine to write out the position and velocities of the bodies are specified 
times. A character string is also passed to annotate the type output. 
int_step – this subroutine advances the integration by one time step using the integrator
discussed above. 
eval_step – this subroutine evaluates if the current time is adequate for the precision 
needed and determines if the step size should be increased or decreased. 
get_accel – this subroutine compures the accelerations of all the bodies given the
positions passed in its arguments list. Time and velocity are also passed but these are 
needed in the gravitational only model. Drag type forces could be easily added to this 
routine. 
Animate – this is simple routine that uses VT100 escapes sequences to plot the motions
of the bodies on a 85 by 45 grid. See for example:
http://pegasus.cs.csubak.edu/Tables_Charts/VT100_Escape_Codes.html
report_error – subroutine that reports IOSTAT errors during the run. 

The main program calls most of the routines above and loops over time, using the
dynamically set time step, until the end time is reached. Because the time step can 
change, the last time step may send the integrator across the desired time step and so 
there is a check and re-calculation of the time step at the end of the integration. 

http://pegasus.cs.csubak.edu/Tables_Charts/VT100_Escape_Codes.html


      
       

                     

                     

               

                

                

          

    
          
                

          

                

          

            

            

  

    
          
          

Communication in the program is through a combination of an included common block 
and variables passed into and out of routines (remember on Fortran, pointers as normally 
passed to functions and subroutines). 

The code here needs to be compiled with fortran90 or gfortran because we use the array 
multiplication and addition features of f90. (All these operations would need to be done 
with do loops in standard f77). G77 will not compile the current code. F90 is available 
on Athena when the add sunsoft command is used (see web page on accessing Fortran on 
Athena).
% ssh -X linerva.mit.edu

athena% add sunsoft

athena% f90 HW02_03.f -o HW02_03

Run the same way as below.


The code is implemented in HW02_03.f with include file NBody.h The data file with the 
test case is NBody.dat

The output of the program as requested in the homework is:


 1 0.200000E+31 

0.0000000E+00


 2 0.880000E+29 

0.2857000E+02


 3 0.730000E+23 

0.2857000E+02


 4 0.200000E+31 

0.0000000E+00


 5 0.880000E+29

0.2857000E+02


 6 0.730000E+23 

0.2857000E+02

…

animation space removed.

…


% HW02_03 Nbody.dat

+ 12.010 HW 02 Q 03: Initial Conditions At time 

Body  Mass (kg) PosX (km) PosY (km)


0.0000000E+00 


0.1500000E+09 


0.1500000E+09 


-0.1000000E+10 


-0.8500000E+09 


-0.8500000E+09 


0.00000 days

VelX (km/s) VelY 


0.0000000E+00 


0.0000000E+00 


0.1000000E+08 


0.0000000E+00 


0.0000000E+00 


0.1000000E+08 


515.00000 days

VelX (km/s) VelY 


4.6801888E+07 


5.7460426E+07 


5.1814765E+07 


6.5313058E+07 


-6.3023788E+07 


-6.4931289E+07 


(km/s)

0.0000000E+00 


0.0000000E+00 


-0.2424000E+02 


0.1000000E+02 


0.1000000E+02 


-0.1424000E+02 


(km/s)

3.1375402E+01 -


-1.3151751E+02 -


7.8372633E+01 


-1.8176899E+01 


6.8824102E+01 


7.8189206E+01 


1 2.000000E+30 

2.0620740E+00


 2 8.800000E+28 

8.7795577E+01


 3 7.300000E+22 

1.0992686E+02


 4 2.000000E+30 

8.0907099E+00


 5 8.800000E+28 

7.9210531E+00


 6 7.300000E+22 

3.3496439E+01


+ 12.010 HW 02 Q 03: Final conditions At time 

Body Mass (kg) PosX (km) PosY (km) 


-1.9270598E+08 


-3.5578701E+08 


-3.4892707E+08 


-3.4720247E+08 


-2.4315337E+08 


-2.3446172E+08 


Smallest step size needed 0.000015 days

Closest approach distance was 1.59785E+04 km Bodies 2 and 4


reasonable. 
+ 12.010 HW 02 Q 03: Final conditions At time 

Body Mass (kg) PosX (km) PosY (km)


1 2.000000E+30 -2.5155546E+08 

1.9141995E+00


 2 8.800000E+28 -3.6875847E+08 


Notice here that step size gets very small during the close encounters of the bodies. If we 
end the integration earlier before the close encounter, the step size remains much more

490.00000 days

VelX (km/s) VelY (km/s)


5.5598413E+07 -4.5449261E+01 


-8.9011141E+06 -1.8474636E+01 




      

                

            

            

  

1.7902116E+01
 3 7.300000E+22 -3.6088590E+08 -2.1983262E+06 -3.4036630E+01 

3.6907956E+01
 4 2.000000E+30 -3.0404683E+08 5.3414822E+07 5.4071950E+01 

7.0407737E-01
 5 8.800000E+28 -3.8601263E+08 -4.9591322E+07 5.9777127E+01 

-2.0268385E+01
 6 7.300000E+22 -3.8033650E+08 -4.0240197E+07 4.1114941E+01 

-6.8645586E+00 
Smallest step size needed 0.500000 days
Closest approach distance was 9.34087E+06 km Bodies 5 and 6 

In this case, the smallest step size was 0.5 days. 




