
24.09 Minds and Machines spring 2007

- the Churchlands on today's On Point (WBUR)
- Lewis, 'Mad pain...' in ereadings
 - you need to read this for Pset 5

Figure by MIT OCW.

multiple realization

Image removed due to copyright restrictions.

The [identity theorist] has to specify a physical-chemical state such that any organism (not just a mammal) is in pain if and only if (a) it possesses a brain of a suitable physical-chemical structure; and (b) its brain is in that physical-chemical state...it must be a state of the brain of any extra-terrestrial life that may be found that will be capable of feeling pain...

(Putnam, 77)

"replacement" scenarios

Image removed due to copyright restrictions. RoboCop movie poster.

- a gradual replacement, one neuron at a time, with a chip that has the same input-output profile
- is this any worse than a cochlear implant?

Image removed due to copyright restrictions. The Six Million Dollar Man movie poster.

lesson (?)

- minded creatures can in principle be made out of anything, provided certain structural constraints are met
- you couldn't make a mind out of Jello, but you could make one out of silicon chips

the Turing test

Image removed due to copyright restrictions. Photograph of Alan Turing (1912-1954).

- see "<u>Computing</u> <u>machinery and</u> <u>intelligence</u>" (1950)
- is passing the test sufficient for having a mind/being intelligent/etc.?
- the question is underdescribed
- who are the judges?
- how long is the test?
- what's the subject matter?

the Turing test

- the claim that passing the test is sufficient for having a mind (etc.) should strike us as suspect
- it seems to conflate:

(a) we have/could have excellent evidence for p

with

(b) p is true

 recall the distinction between "metaphysics" and "epistemology", and the problem with behaviorism

the Turing test

- in any event, for any Turing test, no matter how demanding, there is a machine that can pass it that seems <u>not</u> to have a mind
- this is shown by Block's "Aunt Bubbles" example

the Aunt Bubbles machine

The machine works as follows. The judge goes first. Whatever the judge types in (typos and all) is one of $A_1...A_n$. The machine locates the particular A, say A_{2398} , and then spits back B₂₃₉₈, a reply chosen by the programmers to be appropriate to A_{2398} . The judge types another message, and the machine again finds it in the list of Cs that sprout below B₂₃₉₈, and then spits back the pre-recorded reply (which takes into account what was said in A₂₃₉₈ and B₂₃₉₈). And so on. Though the machine can do as well in the one hour Turing Test as Aunt Bubbles, it has the intelligence of a juke-box. Every clever remark it produces was specifically thought of by the programmers as a response to the previous remark of the judge in the context of the previous conversation.

inside the Aunt Bubbles machine

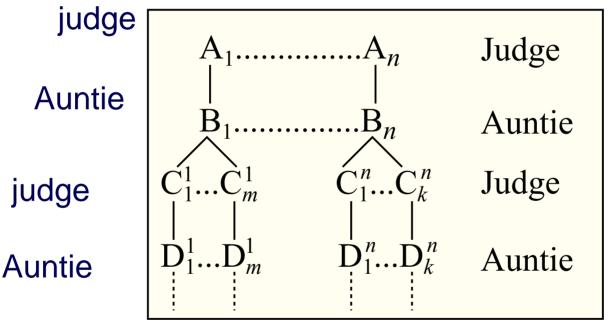


Figure by MIT OCW.

lesson (?)

 minded creatures must have a certain sort of internal structure—being a giant lookup table isn't enough

lessons (?) from our discussion of behaviorism

- mental states are the inner causes of behavior
- the correspondence between mental states and behavior is many-many
- (a) mental state M may produce different sorts of behavior, depending on the creature's other mental states
- (b) the same behavior may be produced by different mental states

the mousetrap

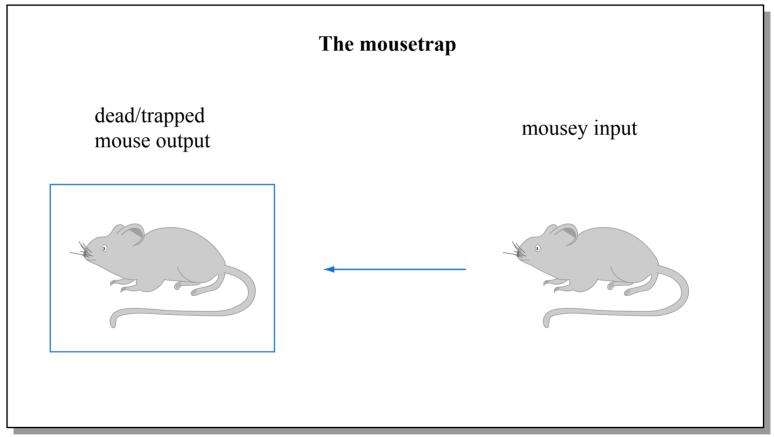


Figure by MIT OCW.

mousetraps can be "multiply realized"

Images removed due to copyright restrictions. Mousetrap.

the mousetrap

- the simplest sort of <u>functional kind</u>
- since no constraints are placed on its inner organization, it is also a <u>behavioral</u> <u>kind</u>

the 3-Coke vending machine

Figure by MIT OCW.

initial state	$M_3 I_0$	$M_2 I_0$	$M_1 I_0$	$M_3 I_1$	$M_2 I_1$	$M_1 I_1$
s output for 25¢ input	" <mark>25¢</mark> "	"25¢"	"25¢"	Coke	Coke	Coke
next states	$M_3 I_1$	$M_2 I_1$	$M_1 I_1$	$M_2 I_0$	$M_1 I_0$	shut down

Figure by MIT OCW.

the 3-Coke vending machine

- it can be multiply realized
- a functional but not behavioral kind
- what <u>are</u> the states M₃, I₂, etc?
 —the table tells the whole story

a toy functionalist theory of pain input toestubbing icepack on toe

Figure by MIT OCW.

PP, "Ow!"R,
"Phew!"RP, "Ow!"R, no
output

the toy functionalist theory

- the state of being in pain (or being in a state of relief) just is being in P (R)
- S is in P iff S is in the first of two states X, Y, that are related to one another and to the possible inputs and outputs of S as follows:

being in X and stubbing its toe causes S to remain in X and emit "Ow!"; being in Y and stubbing its toe causes S be in X and emit "Ow!"; being in X and having an icepack on the toe causes S to be in Y and emit "Phew!"; being in Y and having an icepack on the toe causes S to remain in Y and produce no output

functionalism

 the view that mental states are functional states—states specified in terms of their causal relations to inputs, outputs, and other states

functionalism and the lessons (?)

- mental states can be multiply realized
- input-output isn't enough: it's what's in between that matters (recall the Aunt Bubbles machine)
- mental states are the inner causes of behavior
- the correspondence between mental states and behavior is many-many
- functionalism accommodates all the above

Minds and Machines spring 2007

 read Block,
 'Troubles...' for next time

Figure by MIT OCW.