MIT OpenCourseWare http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 Dynamic Programming

Approximate Dynamic Programming Lectures Outline

- ▼ Lecture 1: Overview of main approaches
 - ▼ Problem approximation
 - Simplification Aggregation
 - Use in limited lookahead
 - ▼ Approximation in value space
 - Rollout
 - Approximate policy iteration
 - Q-Learning
 - Bellman error approach
 - Approximate linear programming
 - ▼ Approximation in policy space
 - Direct parametrization
 - Indirect parametrization through the cost
- ▼ Lecture 2: Cost approximation Discounted cost (Section 6.2, Vol. II)
 - Policy evaluation Policy improvement
 - Actor-critic paradigm
 - Direct policy evaluation using cost samples
 - Batch and incremental methods
 - TD(1) and TD(lambda)
 - Regular and optimistic versions
 - Q-Factor evaluation
 - The problem of exploration
- ▼ Lecture 3: Projected equation methods (Section 6.3, Vol. II + Refs)
 - The projected Bellman equation
 - Contraction properties and error bounds
 - Direct solution and projected value iteration
 - Simulation-based versions LSTD(0) and LSPE(0)
 - LSTD(lambda), LSPE(lambda), and TD(lambda)

▼ Lecture 4: More on projected equations - Q-learning (Sections 6.3, 6.4, Vol. II + Refs)

- Basis function selection and tuning
- Practical aspects
- Convergence analysis
- Bellman error alternatives
- Q-Learning

- Optimal stopping
- ▼ Lecture 5: Extensions to SSP and average cost (Section 6.5, 6.6, Vol. II + Refs)
 - Contraction properties for SSP
 - Approximation policy iteration for SSP
 - Q-Learning for SSP
 - Average cost approximations
 - Approximation policy iteration for average cost
 - Q-Learning for average cost

▼ Lecture 6: Gradient methods for approximation in policy space (Section 6.7, Vol. II + Refs)

- Problem formulations
- Gradient formulas
- Gradient evaluation using simulation
- Feature selection
- Comparison of approximation in value and policy space