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6.231 DYNAMIC PROGRAMMING
 

LECTURE 1
 

LECTURE OUTLINE
 

• Problem Formulation 

• Examples 

• The Basic Problem 

• Significance of Feedback 



DP AS AN OPTIMIZATION METHODOLOGY 

•	 Basic optimization problem 

min g(u) 
u∈U 

where u is the optimization/decision variable, g(u) 
is the cost function, and U is the constraint set 

•	 Categories of problems: 

− Discrete (U is finite) or continuous 

− Linear (g is linear and U is polyhedral) or 
nonlinear 

− Stochastic or deterministic: In stochastic prob
lems the cost involves a stochastic parame
ter w, which is averaged, i.e., it has the form 

�	 � 
g(u) =  Ew G(u, w) 

where w is a random parameter. 

• DP can deal with complex stochastic problems 
where information about w becomes available in 
stages, and the decisions are also made in stages 
and make use of this information. 



� �


BASIC STRUCTURE OF STOCHASTIC DP
 

• Discrete-time system 

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N  − 1 

− k: Discrete time 

− xk: State; summarizes past information that 
is relevant for future optimization 

− uk: Control; decision to be selected at time 
k from a given set 

− wk: Random parameter (also called distur
 
bance or noise depending on the context)
 

− N : Horizon or number of times control is
 
applied 

• Cost function that is additive over time 

N−1 �
 
E gN (xN ) +  gk(xk, uk, wk) 

k=0 



� 

� � � � � 

INVENTORY CONTROL EXAMPLE
 

Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk + 1 = xk + uk - wk 

uk 
Cost of Period k 

cuk + r (xk  + uk - wk) 

• Discrete-time system 

xk+1 = fk(xk, uk, wk) = xk + uk − wk 

• Cost function that is additive over time � �
 
N−1 

E gN (xN ) +  gk(xk, uk, wk)

k=0


N−1 

= E cuk + r(xk + uk − wk) 
k=0 

• Optimization over policies: Rules/functions uk = 
µk(xk) that map states to controls 



ADDITIONAL ASSUMPTIONS
 

• The set of values that the control uk can take 
depend at most on xk and not on prior x or u 

• Probability distribution of wk does not depend 
on past values wk−1, . . . , w0, but may depend on 
xk and uk 

−	 Otherwise past values of w or x would be 
useful for future optimization 

•	 Sequence of events envisioned in period k: 

− xk occurs according to 

�	 � 
xk	 = fk−1 xk−1, uk−1, wk−1 

− uk is selected with knowledge of xk, i.e., 

uk	 ∈ U(xk) 

−	 wk is random and generated according to a 
distribution 

Pwk (xk, uk) 



CDA 

DETERMINISTIC FINITE-STATE PROBLEMS
 

• Scheduling example: Find optimal sequence of 
operations A, B, C, D 

• A must precede B, and C must precede D 

• Given startup cost SA and SC , and setup tran
sition cost Cmn from operation m to operation n 

AB 

ABC 

ACB 

CBC 

A 

SA 

CCB 

CAB 

CAC 
AC 

ACDCCD 

CCD 

CBD 

CDB 

CAD 

CA 

CAD 

CDA 

CCD CD 

CAB 
CAB 

CCA 

CBD 

C 

Initial
State 

SC 

CDB 

CAB 



STOCHASTIC FINITE-STATE PROBLEMS
 

• Example: Find two-game chess match strategy 

• Timid play draws with prob. pd > 0 and loses 
with prob. 1 − pd. Bold play wins with prob. pw < 
1/2 and loses with prob. 1 − pw 

0 - 0 

0.5-0.5 

0 - 1 

pd 

1 - pd 

0 - 0 

1 - 0 

0 - 1 

1 - pw 

pw 

1st Game / Timid Play 1st Game / Bold Play 

1 - 0 

0.5-0.5 

0 - 1 

2 - 0 

1.5-0.5 

1 - 1 

0.5-1.5 

0 - 2 

pd 

pd 

pd 

1 - pd 

1 - pd 

1 - pd 

pw 

1 - pw 

1 - 0 

0.5-0.5 

0 - 1 

2 - 0 

1.5-0.5 

1 - 1 

0.5-1.5 

0 - 2 

1 - pw 

1 - pw 

pw 

pw 

2nd Game / Timid Play 2nd Game / Bold Play 



� � � 

BASIC PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1 

• Control contraints uk ∈ U(xk) 

• Probability distribution Pk(· |xk, uk) of wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and is such 
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) = E gN (xN ) +  gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) = minJπ(x0)
π 

• Optimal policy π∗ satisfies 

Jπ∗ (x0) = J∗(x0) 

When produced by DP, π∗ is independent of x0.
 



SIGNIFICANCE OF FEEDBACK 

• Open-loop versus closed-loop policies

 System 
xk + 1 = fk(xk,uk,wk) 

µk 

uk =  µk(xk) xk 

wk 

• In deterministic problems open loop is as good 
as closed loop 

• Chess match example; value of information 

Timid Play 

1 - pd 

pd 

Bold Play 

0 - 0 

1 - 0 

0 - 1 

1 - pw 

pw 

1.5-0.5 

1 - 1 

1 - 1 

0 - 2 

1 - pw 

pw 
Bold Play 



A NOTE ON THESE SLIDES
 

• These slides are a teaching aid, not a text 

• Don’t expect a rigorous mathematical develop
ment or precise mathematical statements 

• Figures are meant to convey and enhance ideas, 
not to express them precisely 

• Omitted proofs and a much fuller discussion can 
be found in the text, which these slides follow 



6.231 DYNAMIC PROGRAMMING 

LECTURE 2 

LECTURE OUTLINE 

• Principle of optimality 

• DP example: Deterministic problem 

• DP example: Stochastic problem 

• The general algorithm 

• State augmentation 



� � � 

BASIC PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1 

• Control contraints uk ∈ U(xk) 

• Probability distribution Pk(· |xk, uk) of wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and is such 
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) = E gN (xN ) +  gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) = minJπ(x0)
π 

• Optimal policy π∗ is one that satisfies 

Jπ∗ (x0) = J∗(x0) 



� � � � � 

PRINCIPLE OF OPTIMALITY
 

• Let π∗ = {µ0 
∗ , µ1 

∗ , . . . , µ  ∗ } be an optimal pol-N−1 
icy 

• Consider the “tail subproblem” whereby we are 
at xi at time i and wish to minimize the “cost-to-go” 
from time i to time N 

N−1 

E gN (xN ) +  gk xk, µk(xk), wk 

k=i 

and the “tail policy” {µi 
∗ , µi 

∗ 
+1, . . . , µ  ∗ }N−1 

xi Tail Subproblem 

0 i N 

• Principle of optimality : The tail policy is optimal 
for the tail subproblem 

• DP first solves all tail subroblems of final stage 

• At the generic step, it solves all tail subproblems 
of a given time length, using the solution of the tail 
subproblems of shorter time length 



DETERMINISTIC SCHEDULING EXAMPLE
 

• Find optimal sequence of operations A, B, C, D 
(A must precede B and C must precede D) 

ABC 

3 

A 

AB 

AC 

2 

8 
3 

4 

9 
ACB 

ACD 

6 

1 

C 

Initial 
State 

4 

CA 

CD 

CAB 

CAD 

6 

2 

3 4 

5 3 

3 
5 5 6 

1 0  
1 

3 

3 
7 

CDA 2 

• Start from the last tail subproblem and go back
wards 

• At each state-time pair, we record the optimal 
cost-to-go and the optimal decision 



� 

� 

� 
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STOCHASTIC INVENTORY EXAMPLE
 

Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk + 1 = xk + uk - wk 

uk 
Cost of Period k 

cuk + r (xk  + uk - wk) 

• Tail Subproblems of Length 1: 

JN−1(xN−1) =  min  E cuN−1 
uN−1≥0 wN−1 

+ r(xN−1 + uN−1 − wN−1) 

• Tail Subproblems of Length N − k: 

Jk(xk) =  min  E cuk + r(xk + uk − wk) 
uk ≥0 wk 

+ Jk+1(xk + uk − wk) 



� 
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DP ALGORITHM
 

• Start with 

JN (xN ) = gN (xN ), 

and go backwards using 

Jk(xk) =  min  E gk(xk, uk, wk) 
uk∈Uk (xk) wk 

+ Jk+1 fk(xk, uk, wk) , k  = 0, 1, . . . , N  − 1. 

• Then J0(x0), generated at the last step, is equal 
to the optimal cost J∗(x0). Also, the policy 

π∗ = {µ ∗ 
0, . . . , µ  ∗ 

N−1} 

where µ ∗ 
k(xk) minimizes in the right side above for 

each xk and k, is optimal. 

• Justification: Proof by induction that Jk(xk) is 
equal to Jk 

∗(xk), defined as the optimal cost of the 
tail subproblem that starts at time k at state xk. 

• Note that ALL the tail subproblems are solved in 
addition to the original problem, and the intensive 
computational requirements. 



� � 

� � � 

� � � 
� 

� � �� � � � 

� � ��


PROOF OF THE INDUCTION STEP 

• Let πk = µk, µk+1, . . . , µN−1 denote a tail 
policy from time k onward 

• Assume that Jk+1(xk+1) = Jk 
∗ 
+1(xk+1). Then 

Jk 
∗ (xk) =  min  E gk xk, µk(xk), wk 

(µk ,πk+1) wk ,...,wN−1 

N−1 

+ gN (xN ) +  gi xi, µi(xi), wi 

i=k+1 �
 � �
 
= min  E gk xk, µk(xk), wk
 

µk wk
 

N−1 

+ min  E gN (xN ) +  gi xi, µi(xi), wi
 
πk+1 wk+1,...,wN−1
 

i=k+1
 � � � � � ��� ∗ = min  E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk
 
µk wk
 � � � � � ��� 

= min  E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk
 
µk wk
 

= min E gk(xk, uk, wk) + Jk+1 fk(xk, uk, wk) 
uk∈Uk(xk) wk 

= Jk(xk)
 



� � 
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LINEAR-QUADRATIC ANALYTICAL EXAMPLE
 

Initial 
Temperature x0 

Temperature 
u0 

Oven 1 x1 

Final 
Oven 2 Temperature x2 

Temperature 
u1 

• System 

xk+1 = (1 − a)xk + auk, k = 0, 1, 

where a is given scalar from the interval (0, 1). 

• Cost 
r(x2 − T )2 + u0

2 + u1
2 

where r is given positive scalar. 

• DP Algorithm: 

J2(x2) = r(x2 − T )2 

J1(x1) = min  u1
2 + r 

� 
(1 − a)x1 + au1 − T 

�2 

u1 

J0(x0) = min  u0
2 + J1 (1 − a)x0 + au0 

u0 



� 

� � � 

STATE AUGMENTATION
 

• When assumptions of the basic problem are 
violated (e.g., disturbances are correlated, cost is 
nonadditive, etc) reformulate/augment the state. 

• Example: Time lags 

xk+1 = fk(xk, xk−1, uk, wk) 

• Introduce additional state variable yk = xk−1. 
New system takes the form 

� � � �
 
xk+1 = 

fk(xk, yk, uk, wk) 
yk+1 xk 

View x̃k = (xk, yk) as the new state. 

• DP algorithm for the reformulated problem: 

Jk(xk, xk−1) =  min  E gk(xk, uk, wk)
 
uk∈Uk(xk ) wk
 

+ Jk+1 fk(xk, xk−1, uk, wk), xk 



6.231 DYNAMIC PROGRAMMING 

LECTURE 3 

LECTURE OUTLINE 

• Deterministic finite-state DP problems 

• Backward shortest path algorithm 

• Forward shortest path algorithm 

• Shortest path examples 

• Alternative shortest path algorithms 



DETERMINISTIC FINITE-STATE PROBLEM
 

. . . 

. . . 

. . . 

Initial State 
s 

t 
Artificial Terminal 
Node 

Terminal Arcs 
with Cost Equal 
to Terminal Cost 

Stage 0 Stage 1 Stage 2 . . . Stage N - 1 Stage N 

• States <==> Nodes 

• Controls <==> Arcs 

• Control sequences (open-loop) <==> paths from 
initial state to terminal states 

• k : Cost of transition from state i ∈ Sk to state aij 
j ∈ Sk+1 at time k (view it as “length” of the arc) 

N• ait : Terminal cost of state i ∈ SN 

• Cost of control sequence <==> Cost of the cor
responding path (view it as “length” of the path) 



� � 

� � 

BACKWARD AND FORWARD DP ALGORITHMS 

• DP algorithm: 

JN (i) = aN , i ∈ SN ,it 

Jk(i) =  min  ak +Jk+1(j) , i  ∈ Sk, k  = 0, . . . , N−1. 
j∈Sk+1 

ij 

The optimal cost is J0(s) and is equal to the length 
of the shortest path from s to t. 

• Observation: An optimal path s → t is also
 
an optimal path t → s in a “reverse” shortest
 
path problem where the direction of each arc is
 
reversed and its length is left unchanged.
 

• Forward DP algorithm (= backward DP algo
 
rithm for the reverse problem):
 

J̃N (j) = asj 
0 , j  ∈ S1, 

˜ � 
N−k ˜ �
 

Jk(j) =  min  aij + Jk+1(i) , j  ∈ SN−k+1

i∈SN−k


˜ N ˜The optimal cost is J0(t) = mini∈SN ait + J1(i) . 

• View J̃k(j) as optimal cost-to-arrive to state j

from initial state s. 




A NOTE ON FORWARD DP ALGORITHMS
 

• There is no forward DP algorithm for stochastic 
problems. 

• Mathematically, for stochastic problems, we can
not restrict ourselves to open-loop sequences, so 
the shortest path viewpoint fails. 

• Conceptually, in the presence of uncertainty, 
the concept of “optimal-cost-to-arrive” at a state 
xk does not make sense. The reason is that it may 
be impossible to guarantee (with prob. 1) that any 
given state can be reached. 

• By contrast, even in stochastic problems, the 
concept of “optimal cost-to-go” from any state xk 

makes clear sense. 



� � 

GENERIC SHORTEST PATH PROBLEMS 

• {1, 2, . . . , N, t}: nodes of a graph (t: the desti
nation) 

• aij : cost of moving from node i to node j 

• Find a shortest (minimum cost) path from each 
node i to node t 

• Assumption: All cycles have nonnegative length. 
Then an optimal path need not take more than N 
moves 

• We formulate the problem as one where we 
require exactly N moves but allow degenerate 
moves from a node i to itself with cost aii = 0. 

Jk(i) = optimal cost of getting from i to t in N−k moves 

J0(i): Cost of the optimal path from i to t. 

• DP algorithm: 

Jk(i) =  min  aij +Jk+1(j) , k = 0, 1, . . . , N−2, 
j=1,...,N 

with JN−1(i) = ait, i = 1, 2, . . . , N. 
  



� � 

EXAMPLE 


State i
 

Destination
 

2 
7 5 

2
5 5 

6 1 

3 

0.5 
32 

1 4 

5 
5 

4 

3 

2 

1 

3 3 3 3 

4 4 4 5 

4.5 4.5 5.5 7 

2 2 2 2 

0 1 2 3 4 Stage k 

(a) (b) 

JN−1(i) = ait, i = 1, 2, . . . , N,  

Jk(i) =  min  aij +Jk+1(j) , k = 0, 1, . . . , N−2. 
j=1,...,N 



STATE ESTIMATION / HIDDEN MARKOV MODELS
 

• Markov chain with transition probabilities pij 

• State transitions are hidden from view 

• For each transition, we get an (independent) 
observation 

• r(z; i, j): Prob. the observation takes value z 
when the state transition is from i to j 

• Trajectory estimation problem: Given the ob
servation sequence ZN = {z1, z2, . . . , zN }, what 
is the “most likely” state transition sequence X̂N = 
{x̂0, x̂1, . . . , x̂N } [one that maximizes p(XN | ZN ) 
over all XN = {x0, x1, . . . , xN }]. 

s x0 x1 x2 xN - 1 xN t 

. . . 

. . . 

. . . 



� 
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VITERBI ALGORITHM 

• We have 

p(XN | ZN ) =  
p(XN , ZN ) 

p(ZN ) 

where p(XN , ZN ) and p(ZN ) are the unconditional 
probabilities of occurrence of (XN , ZN ) and ZN 

• Maximizing p(XN | ZN ) is equivalent with max
imizing ln(p(XN , ZN )) 

• We have 

N 

p(XN , ZN ) =  πx0 pxk−1xk r(zk; xk−1, xk) 
k=1 

so the problem is equivalent to 

N 

minimize − ln(πx0 ) − ln pxk−1xk r(zk; xk−1, xk) 
k=1 

over all possible sequences {x0, x1, . . . , xN }. 

• This is a shortest path problem 



GENERAL SHORTEST PATH ALGORITHMS
 

• There are many nonDP shortest path algo
rithms. They can all be used to solve deterministic 
finite-state problems 

• They may be preferable than DP if they avoid 
calculating the optimal cost-to-go of EVERY state 

• This is essential for problems with HUGE state 
spaces. Such problems arise for example in com
binatorial optimization 

ABC ABD ACB ACD ADB ADC 

ABCD 

AB AC AD 

ABDC ACBD ACDB ADBC ADCB 

Origin Node sA 

1 

11 

20 20 

2020 

44 

4 4 

15 
15 5 

5 

3 3 

5 

33 

15 

Artificial Terminal Node t 

5 1 15 

5 20 4 

1  20  3 

15 4 3 



LABEL CORRECTING METHODS
 

•	 Given: Origin s, destination t, lengths aij ≥ 0. 

• Idea is to progressively discover shorter paths 
from the origin s to every other node i 

•	 Notation: 
−	 di (label of i): Length of the shortest path 

found (initially ds = 0, di = ∞ for i =� s) 

− UPPER: The label dt of the destination 

− OPEN list: Contains nodes that are currently 
active in the sense that they are candidates 
for further examination (initially OPEN={s}) 

Label Correcting Algorithm 

Step 1 (Node Removal): Remove a node i 
from OPEN and for each child j of i, do step 2. 

Step 2 (Node Insertion Test): If di + aij < 
min{dj , UPPER}, set dj = di + aij and set i to 
be the parent of j. In addition, if j �= t, place j in 
OPEN if it is not already in OPEN, while if j = t, 
set UPPER to the new value di + ait of dt. 

Step 3 (Termination Test): If OPEN is empty, 
terminate; else go to step 1. 



VISUALIZATION/EXPLANATION
 

• Given: Origin s, destination t, lengths aij ≥ 0. 

• di (label of i): Length of the shortest path found 
thus far (initially ds = 0, di = ∞ for i =� s). The 
label di is implicitly associated with an s → i path. 

• UPPER: The label dt of the destination 

• OPEN list: Contains “active” nodes (initially 
OPEN={s}) 

i j 

REMOVE 

Is di + aij < dj ? 
(Is the path s --> i --> j 
better than the 
current path s --> j ?) 

Is di + aij < UPPER ? 

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?) 

YES 

YES 

INSERT 

OPEN 

Set dj = di + aij 



EXAMPLE
 

AB AC 7 AD 

Origin Node sA1 

15 15 

1 02
 

ABC ABD 

20 4 

ACB ACD 

20 3 

ADB ADC 

4 3
 

5
 8
3
 

3 3 4 4 20 20 

4
 ADBC ADCB9
6
 

15 15
 
15 5
 

ABCD ABDC ACBD ACDB 

1 

Artificial Terminal Node t 

Iter. No. Node Exiting OPEN OPEN after Iteration
 UPPER 

1
 

2, 7,10
 

3, 5, 7, 10
 

4, 5, 7, 10
 

∞
∞
∞
∞


0
 -
 

1
 1
 

2
 2
 

3
 3
 

4
 4
 5, 7, 10
 43
 

5
 5
 6, 7, 10
 43
 

6
 6
 7, 10
 13
 

7
 7
 8, 10
 13
 

8
 8
 9, 10
 13
 

9
 9
 10
 13
 

10
 10
 Empty
 13
 

Note that some nodes never entered OPEN 
•




VALIDITY OF LABEL CORRECTING METHODS
 

Proposition: If there exists at least one path from 
the origin to the destination, the label correcting 
algorithm terminates with UPPER equal to the 
shortest distance from the origin to the destina
tion. 

Proof: (1) Each time a node j enters OPEN, 
its label is decreased and becomes equal to the 
length of some path from s to j 

(2) The number of possible distinct path lengths 
is finite, so the number of times a node can enter 
OPEN is finite, and the algorithm terminates 

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and 
let d∗ be the shortest distance. If UPPER > d∗ 

at termination, UPPER will also be larger than the 
length of all the paths (s, j1, . . . , jm), m = 1, . . . , k, 
throughout the algorithm. Hence, node jk will 
never enter the OPEN list with djk equal to the 
shortest distance from s to jk. Similarly node jk−1 

will never enter the OPEN list with djk−1 equal to 
the shortest distance from s to jk−1. Continue to 
j1 to get a contradiction. 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 4
 

LECTURE OUTLINE
 

• Label correcting methods for shortest paths 

• Variants of label correcting methods 

• Branch-and-bound as a shortest path algorithm 



LABEL CORRECTING METHODS
 

• Origin s, destination t, lengths aij that are ≥ 0. 

• di (label of i): Length of the shortest path found 
thus far (initially di = ∞ except ds = 0). The label 
di is implicitly associated with an s → i path. 

• UPPER: Label dt of the destination 

• OPEN list: Contains “active” nodes (initially 
OPEN={s}) 

i j 

REMOVE 

Is di + aij < dj ? 
(Is the path s --> i --> j 
better than the 
current path s --> j ?) 

Is di + aij < UPPER ? 

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?) 

YES 

YES 

INSERT 

OPEN 

Set dj = di + aij 



VALIDITY OF LABEL CORRECTING METHODS
 

Proposition: If there exists at least one path from 
the origin to the destination, the label correcting 
algorithm terminates with UPPER equal to the 
shortest distance from the origin to the destina
tion. 

Proof: (1) Each time a node j enters OPEN, 
its label is decreased and becomes equal to the 
length of some path from s to j 

(2) The number of possible distinct path lengths 
is finite, so the number of times a node can enter 
OPEN is finite, and the algorithm terminates 

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and 
let d∗ be the shortest distance. If UPPER > d∗ 

at termination, UPPER will also be larger than the 
length of all the paths (s, j1, . . . , jm), m = 1, . . . , k, 
throughout the algorithm. Hence, node jk will 
never enter the OPEN list with djk equal to the 
shortest distance from s to jk. Similarly node jk−1 

will never enter the OPEN list with djk−1 equal to 
the shortest distance from s to jk−1. Continue to 
j1 to get a contradiction. 



MAKING THE METHOD EFFICIENT
 

• Reduce the value of UPPER as quickly as pos
sible 

−	 Try to discover “good” s → t paths early in 
the course of the algorithm 

•	 Keep the number of reentries into OPEN low 

− Try to remove from OPEN nodes with small 
label first. 

− Heuristic rationale: if di is small, then dj 

when set to di +aij will be accordingly small, 
so reentrance of j in the OPEN list is less 
likely. 

• Reduce the overhead for selecting the node to 
be removed from OPEN 

• These objectives are often in conflict. They give 
rise to a large variety of distinct implementations 

• Good practical strategies try to strike a compro
mise between low overhead and small label node 
selection. 



NODE SELECTION METHODS
 

• Depth-first search: Remove from the top of OPEN 
and insert at the top of OPEN. 

−	 Has low memory storage properties (OPEN 
is not too long). Reduces UPPER quickly. 

Origin Node s 

1 

2	 1 0  

3 6 1 1  1 2  

4 5 7 8 9 1 3  1 4 
  

Destination Node t 

• Best-first search (Djikstra): Remove from OPEN 
a node with minimum value of label. 

− Interesting property: Each node will be in
serted in OPEN at most once. 

− Many implementations/approximations 



ADVANCED INITIALIZATION
 

• Instead of starting from di = ∞ for all i �= s, 
start with 

di	 = length of some path from s to i (or di = ∞) 

OPEN = {i �=	t | di < ∞} 

• Motivation: Get a small starting value of UP
PER. 

• No node with shortest distance ≥ initial value 
of UPPER will enter OPEN 

•	 Good practical idea: 

− Run a heuristic (or use common sense) to 
get a “good” starting path P from s to t 

−	 Use as UPPER the length of P , and as di 

the path distances of all nodes i along P 

• Very useful also in reoptimization, where we 
solve the same problem with slightly different data 



VARIANTS OF LABEL CORRECTING METHODS
 

• If a lower bound hj of the true shortest distance 
from j to t is known, use the test 

di + aij + hj < UPPER 

for entry into OPEN, instead of 

di + aij < UPPER 

• If an upper bound mj of the true shortest dis
tance from j to t is known, then if dj + mj < 
UPPER, reduce UPPER to dj + mj 

• Important use: Branch-and-bound algorithm 
for discrete optimization can be viewed as an im
plementation of this last variant 



BRANCH-AND-BOUND METHOD
 

• Problem: Minimize f(x) over a finite set of 
feasible solutions X. 

• Idea of branch-and-bound: Partition the feasi
ble set into smaller subsets, and then calculate 
certain bounds on the attainable cost within some 
of the subsets to eliminate from further consider
ation other subsets. 

Bounding Principle 

Given two subsets Y1 ⊂ X and Y2 ⊂ X, suppose 
that we have bounds 

f ≤ min f(x), f2 ≥ min f(x). 
1 x∈Y1 x∈Y2 

Then, if f2 ≤ f , the solutions in Y1 may be dis
1 

regarded since their cost cannot be smaller than 
the cost of the best solution in Y2. 

• The B+B algorithm can be viewed as a la
bel correcting algorithm, where lower bounds de
fine the arc costs, and upper bounds are used to 
strengthen the test for admission to OPEN 



SHORTEST PATH IMPLEMENTATION
 

• Acyclic graph/partition of X into subsets (typi
cally a tree). The leafs consist of single solutions. 

• Upper/Lower bounds f and fY for the mini-
Y 

mum cost over each subset Y can be calculated. 

• The lower bound of a leaf/single solution {x} is 
the true value f(x) 

• Each arc (Y, Z) has length f − f 
Z Y 

• Shortest distance from X to Y = f − f 
Y X 

• Distance from origin X to a leaf {x} is f(x)−f 
X 

• Shortest path from X to the set of leafs gives 
the optimal cost and optimal solution 

{1,2,3,4,5} 

{1,2,3} {4,5} 

{3} {4} {5}{1,2,} 

{1} {2} 



BRANCH-AND-BOUND ALGORITHM
 

Step 1: Remove a node Y from OPEN. For each 
child Yj of Y , do the following: If f 

Y j  
< UPPER, 

then place Yj in OPEN. If in addition fY j  < UP
PER, then set UPPER = fY j , and if Yj consists 
of a single solution, mark that solution as being 
the best solution found so far. 

Step 2: (Termination Test) If OPEN is nonempty, 
go to step 1. Otherwise, terminate; the best solu
tion found so far is optimal. 

• It is neither practical nor necessary to generate 
a priori the acyclic graph (we generate it as we 
go). 

•	 Keys to branch-and-bound: 

− Generate as sharp as possible upper and 
lower bounds at each node 

−	 Have a good partitioning and node selection 
strategy 

• Method involves a lot of art, may be prohibitively 
time-consuming, but is guaranteed to find an op
timal solution. 
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LECTURE 5
 

LECTURE OUTLINE
 

• Linear-quadratic problems 

• Inventory control 



�


� 

LINEAR-QUADRATIC PROBLEMS 

•	 System: xk+1 = Akxk + Bkuk + wk 

•	 Quadratic cost �	 � 
N−1 

E	 x′
N




QN xN +
 (x
 ′
k



Qkxk + u′

k




Rkuk)
 

wk
 
k=0,1,...,N−1	 k=0 

where Qk ≥ 0 and Rk > 0 (in the positive (semi)definite 
sense). 

•	 wk are independent and zero mean 

•	 DP algorithm: 
JN (xN ) = x′

 QN xN ,
N
 �
 

Jk(xk) = min

E
 x′
k




Qkxk + u′

k




Rkuk
 

uk


+	Jk+1(Akxk + Bkuk + wk) 

•	 Key facts: 

− Jk(xk) is quadratic 

− Optimal policy {µ
0
∗ , . . . , µN

∗
−1
} is linear:
 

µ∗
k




(xk) = Lkxk
 

− Similar treatment of a number of variants
 



� 

� 

DERIVATION
 

• By induction and straightforward calculation, 
verify that 

µ ∗ 
k(xk) = Lkxk, 

where the matrices Lk are given by 

Lk = −(Bk 
′ Kk+1Bk + Rk)−1Bk 

′ Kk+1Ak, 

and where the symmetric positive semidefinite ma
trices Kk are given by the algorithm 

KN = QN , 

Kk = A′ 
k Kk+1 − Kk+1Bk(Bk 

′ Kk+1Bk 

+ Rk)−1Bk 
′ Kk+1 Ak + Qk. 

• This is called the discrete-time Riccati equation. 

• Just like DP, it starts at the terminal time N and 
proceeds backwards. 

• Certainty equivalence holds (optimal policy is 
the same as when wk is replaced by its expected 
value E{wk} = 0). 



ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION
 

• Assume time-independent system and cost per 
stage, and some technical assumptions: contro
lability of (A, B) and observability of (A, C) where 
Q = C ′C 

• The Riccati equation converges limk→−∞ Kk = 
K, where K is the unique positive semidefinite 
solution of the algebraic Riccati equation 

� �
 
K = A′ K − KB(B′KB + R)−1B′K A + Q 

• The corresponding steady-state controller µ ∗(x) =  
Lx, where 

L = −(B′KB + R)−1B′KA, 

is stable in the sense that the matrix (A + BL) of 
the closed-loop system 

xk+1 = (A + BL)xk + wk 

satisfies limk→∞(A + BL)k = 0. 



� � 

GRAPHICAL PROOF FOR SCALAR SYSTEMS
 

A 
2 
R 

B 
2 + Q 

P 0 

Q 

F(P) 

450 

PPk Pk + 1 
P* 

-
R 

B 
2 

• Riccati equation (with Pk = KN−k): 

B2P 2 

Pk+1 = A2 Pk − k + Q,
B2Pk + R 

or Pk+1 = F (Pk), where 

A2RP 
F (P ) =  + Q.

B2P + R 

• Note the two steady-state solutions, satisfying 
P = F (P ), of which only one is positive. 



� 

RANDOM SYSTEM MATRICES
 

• Suppose that {A0, B0}, . . . , {AN−1, BN−1} are 
not known but rather are independent random ma
trices that are also independent of the wk 

• DP algorithm is 

JN (xN ) = x′ QN xN ,N 

Jk(xk) = min E 
� 
xk 
′ Qkxk 

uk wk,Ak,Bk 

+ uk 
′ Rkuk + Jk+1(Akxk + Bkuk + wk) 

� 

•	 Optimal policy µk 
∗ (xk) = Lkxk, where 

Lk = − 
� 
Rk + E{B′ Kk+1Bk} 

�−1 
E{B′ Kk+1Ak},k k 

and where the matrices Kk are given by 

KN = QN , 

Kk = E{A′ 
kKk+1Ak} − E{A′ 

kKk+1Bk} 

Rk + E{Bk 
′ Kk+1Bk} 

�−1 
E{Bk 

′ Kk+1Ak} + Qk 



PROPERTIES
 

•	 Certainty equivalence may not hold 

• Riccati equation may not converge to a steady-
state 

Q 

450 

0 P 

F (P) 

R 
-
E{B 

2} 

•	 We have Pk+1 = F̃ (Pk), where 

F̃ (P ) =  
E{A2}RP 

+ Q + 
TP  2 

,
E{B2}P + R E{B2}P + R 

� �2� �2 
T = E{A2}E{B2} −  E{A} E{B} 



� � � � � 

� � �� 

INVENTORY CONTROL
 

• xk: stock, uk: inventory purchased, wk: de
mand 

xk+1 = xk + uk − wk, k = 0, 1, . . . , N  − 1 

• Minimize 

N−1 

E cuk + r(xk + uk − wk) 
k=0 

where, for some p > 0 and h > 0, 

r(x) =  p max(0,−x) +  h max(0, x) 

• DP algorithm: 

JN (xN ) = 0, 

Jk(xk) = min cuk+H(xk+uk)+E Jk+1(xk+uk−wk) , 
uk≥0 

where H(x + u) =  E{r(x + u − w)}.
 



�	 � 

� 

OPTIMAL POLICY
 

• DP algorithm can be written as 

JN (xN ) = 0, 

Jk(xk) = min Gk(xk + uk) − cxk, 
uk≥0 

where 

Gk(y) = cy + H(y) + E Jk+1(y − w) . 

• If Gk is convex and lim|x|→∞ Gk(x) → ∞, we  
have 

µk 
∗ (xk) = 	

Sk − xk if xk < Sk, 
0 if xk ≥ Sk, 

where Sk minimizes Gk(y). 

• This is shown, assuming that c < p, by showing 
that Jk is convex for all k, and 

lim Jk(x) → ∞  
|x|→∞ 



JUSTIFICATION
 

• Graphical inductive proof that Jk is convex.
 

y 

H(y) 

cy + H(y) 

SN - 1 

cSN - 1 

- cy
 

JN - 1(xN - 1) 

SN - 1 xN - 1- cy 
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LECTURE OUTLINE
 

• Stopping problems 

• Scheduling problems 

• Other applications 



PURE STOPPING PROBLEMS
 

•	 Two possible controls: 

− Stop (incur a one-time stopping cost, and 
move to cost-free and absorbing stop state) 

−	 Continue [using xk+1 = fk(xk, wk) and in
curring the cost-per-stage] 

• Each policy consists of a partition of the set of 
states xk into two regions: 

− Stop region, where we stop
 

− Continue region, where we continue
 

STOP 
REGION 

CONTINUE 
REGION 

Stop State 



� 

EXAMPLE: ASSET SELLING
 

• A person has an asset, and at k = 0, 1, . . . , N−1 
receives a random offer wk 

• May accept wk and invest the money at fixed 
rate of interest r, or reject wk and wait for wk+1. 
Must accept the last offer wN−1 

• DP algorithm (xk: current offer, T : stop state): 

= T ,
JN (xN ) = 	  

xN if xN � 
0 if xN = T , 

� �	 � �� 
Jk(xk) = 	 max (1 + r)N−kxk, E  Jk+1(wk) if xk �= T , 

0  if  xk = T . 

• Optimal policy; 

accept the offer xk if xk > αk, 

reject the offer xk if xk < αk, 

where	 � � 
E Jk+1(wk)

αk =	 .
(1 + r)N−k 



� � � � 

� � 

FURTHER ANALYSIS
 

ACCEPT 

REJECT 

_1 

_N - 1 

_2 

0 1 2 N - 1 N k 

• Can show that αk ≥ αk+1 for all k 

• Proof: Let Vk(xk) = Jk(xk)/(1 + r)N−k for xk �=
T.  Then the DP algorithm is VN (xN ) = xN and 

Vk(xk) = max  xk, (1 + r)−1 E Vk+1(w) . 
w 

We have αk = Ew Vk+1(w) /(1 + r), so it is enough 
to show that Vk(x) ≥ Vk+1(x) for all x and k. Start 
with VN−1(x) ≥ VN (x) and use the monotonicity 
property of DP. 

• We can also show that αk → a as k → −∞. 
Suggests that for an infinite horizon the optimal 
policy is stationary. 



� � 

� ��� 

� � � � � � �� 

GENERAL STOPPING PROBLEMS 

• At time k, we may stop at cost t(xk) or choose 
a control uk ∈ U(xk) and continue 

JN (xN ) = t(xN ), 

Jk(xk) = min  t(xk), min E g(xk, uk, wk)
 
uk∈U(xk)
 

+ Jk+1 f(xk, uk, wk) 

• Optimal to stop at time k for states x in the set 

Tk = x � t(x) ≤ min E g(x, u, w) +  Jk+1 f (x, u, w) 
u∈U(x) 

• Since JN−1(x) ≤ JN (x), we  have  Jk(x) ≤ 
Jk+1(x) for all k, so  

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1. 

• Interesting case is when all the Tk are equal (to 
TN−1, the set where it is better to stop than to go 
one step and stop). Can be shown to be true if 

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u  ∈ U(x), w.  



SCHEDULING PROBLEMS
 

• Set of tasks to perform, the ordering is subject 
to optimal choice. 

•	 Costs depend on the order 

• There may be stochastic uncertainty, and prece
dence and resource availability constraints 

• Some of the hardest combinatorial problems 
are of this type (e.g., traveling salesman, vehicle 
routing, etc.) 

• Some special problems admit a simple quasi-
analytical solution method 

−	 Optimal policy has an “index form”, i.e., each 
task has an easily calculable “index”, and 
it is optimal to select the task that has the 
maximum value of index (multi-armed bandit 
problems - to be discussed later) 

−	 Some problems can be solved by an “inter
change argument”(start with some sched
ule, interchange two adjacent tasks, and see 
what happens) 



� � 

� � 

EXAMPLE: THE QUIZ PROBLEM 

• Given a list of N questions. If question i is an
swered correctly (given probability pi), we receive 
reward Ri; if not the quiz terminates. Choose or
der of questions to maximize expected reward. 

• Let i and j be the kth and (k + 1)st questions 
in an optimally ordered list 

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1) 

E {reward of L} = E reward of {i0, . . . , ik−1} 

+ pi0 · · · pik−1 (piRi + pipj Rj ) 

+ pi0 · · · pik−1 pipj E reward of {ik+2, . . . , iN−1} 

Consider the list with i and j interchanged 

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1) 

Since L is optimal, E{reward of L} ≥ E{reward of L′}, 
so it follows that piRi +pipj Rj ≥ pj Rj +pj piRi or 

piRi/(1 − pi) ≥ pj Rj /(1 − pj ).
 



� 

MINIMAX CONTROL
 

• Consider basic problem with the difference that 
the disturbance wk instead of being random, it is 
just known to belong to a given set Wk(xk, uk). 

•	 Find policy π that minimizes the cost 

�
 
Jπ(x0) =  max 	  gN (xN ) 

wk∈Wk(xk,µk(xk))
 
k=0,1,...,N−1
 

N−1	 � � �	 � 
+	 gk xk, µk(xk), wk 

k=0 

•	 The DP algorithm takes the form 

JN (xN ) = gN (xN ), 

Jk(xk) =  min  max gk(xk, uk, wk)
 
uk∈U(xk) wk∈Wk(xk,uk)
 �	 �� 

+	Jk+1 fk(xk, uk, wk) 

(Exercise 1.5 in the text, solution posted on the 
www). 



� 

�


� 

UNKNOWN-BUT-BOUNDED CONTROL
 

• For each	k, keep the xk of the controlled system 

�	 � 
xk+1 = fk xk, µk(xk), wk 

inside a given set Xk, the target set at time k. 

• This is a minimax control problem, where the 
cost at stage k is 

0 if xk ∈ Xk, 
gk(xk) = 	  

1 if xk ∈/ Xk. 

• We must reach at time k the set 

�	 � 
Xk = xk | Jk(xk) = 0  

in order to be able to maintain the state within the 
subsequent target sets. 

• Start with	XN = XN , and for k = 0, 1, . . . , N−1, 

Xk = xk ∈ Xk | there exists uk ∈ Uk(xk) such that 

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk) 
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LECTURE OUTLINE
 

• Deterministic continuous-time optimal control 

• Examples 

• Connection with the calculus of variations 

• The Hamilton-Jacobi-Bellman equation as a 
continuous-time limit of the DP algorithm 

• The Hamilton-Jacobi-Bellman equation as a suf
ficient condition 

• Examples 



� � 

� � � � 

� � 

� � � � 

� � � �


PROBLEM FORMULATION
 

• We have a continuous-time dynamic system 

ẋ(t) =  f x(t), u(t) , 0 ≤ t ≤ T,  x(0) : given, 

where 
n− x(t) ∈ �  is the state vector at time t 

m− u(t) ∈ U ⊂ �  is the control vector at time 
t, U is the control constraint set 

− T is the terminal time. 

• Any admissible control trajectory u(t) | t ∈ [0, T ] 
(piecewise continuous function u(t) | t ∈ [0, T ] 
with u(t) ∈ U for all t ∈ [0, T ]), uniquely deter
mines x(t) | t ∈ [0, T ] . 

• Find an admissible control trajectory u(t) | t ∈ 
[0, T ] and corresponding state trajectory x(t) | t ∈ 
[0, T ] , that minimizes a cost function of the form 

� T 

h x(T ) + g x(t), u(t) dt
 
0 

• f, h, g are assumed continuously differentiable.
 



� � 

� � 

� � 

� � � � � � 

EXAMPLE I
 

• Motion control: A unit mass moves on a line 
under the influence of a force u. 

• x(t) =  x1(t), x2(t) : position and velocity of 
the mass at time t 

• Problem: From a given x1(0), x2(0) , bring 
the mass “near” a given final position-velocity pair 
(x1, x2) at time T in the sense: 

minimize �� x1(T ) − x1 
�2 + �� x2(T ) − x2 

�2 

subject to the control constraint 

|u(t)| ≤ 1, for all t ∈ [0, T ]. 

• The problem fits the framework with 

ẋ 1(t) =  x2(t), ẋ 2(t) =  u(t), 

h 
� 
x(T ) 

� 
= 

� 
x1(T ) − x1 

�2 + 
� 
x2(T ) − x2 

�2 
, 

g x(t), u(t) = 0, for all t ∈ [0, T ].




� � 

EXAMPLE II
 

• A producer with production rate x(t) at time t 
may allocate a portion u(t) of his/her production 
rate to reinvestment and 1 − u(t) to production of 
a storable good. Thus x(t) evolves according to 

ẋ(t) =  γu(t)x(t),
 

where γ >  0 is a given constant. 

• The producer wants to maximize the total amount 
of product stored 

� T 

1 − u(t) x(t)dt 
0 

subject to 

0 ≤ u(t) ≤ 1, for all t ∈ [0, T ]. 

• The initial production rate x(0) is a given positive 
number. 



� 

EXAMPLE III (CALCULUS OF VARIATIONS)
 

T 

Length = 0 1 + (u(t))2 dt 
0 . 

_ 
Given 

x(t) 

x(t) = u(t) 

GivenPoint 
Line 

0 T t 

• Find a curve from a given point to a given line 
that has minimum length. 

• The problem is 

� T �
 
minimize 1 +  

� 
ẋ(t) 

�2 
dt 

0 

subject to x(0) = α. 

• Reformulation as an optimal control problem: 

� T �
 
minimize 1 +  u(t) 

�2 
dt 

0
 

subject to ẋ(t) =  u(t), x(0) = α.
 



� 

� � �� 

HAMILTON-JACOBI-BELLMAN EQUATION I
 

• We discretize [0, T ] at times 0, δ, 2δ, . . . , Nδ, 
where δ = T/N , and we let 

xk = x(kδ), uk = u(kδ), k = 0, 1, . . . , N.  

• We also discretize the system and cost: 

N−1 

xk+1 = xk +f(xk, uk)·δ, h(xN )+ g(xk, uk)·δ. 
k=0 

• We write the DP algorithm for the discretized 
problem 

J̃∗(Nδ, x) =  h(x), 

J̃∗(kδ, x) = min  g(x, u)·δ+J̃∗ (k+1)·δ, x+f(x, u)·δ . 
u∈U 

• Assume J̃∗ is differentiable and Taylor-expand:
 

J̃∗ (kδ, x) = min 
� 
g(x, u) · δ + J̃∗ (kδ, x) +  ∇tJ̃

∗ (kδ, x) · δ 
u∈U 

+ ∇xJ̃∗ (kδ, x)′f(x, u) · δ + o(δ) 
� 
. 



� � 

HAMILTON-JACOBI-BELLMAN EQUATION II
 

• Let J∗(t, x) be the optimal cost-to-go of the con
tinuous problem. Assuming the limit is valid 

lim J̃∗(kδ, x) =  J∗(t, x), for all t, x, 
k→∞, δ→0, kδ=t 

we obtain for all t, x, 

0 = min  g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u) 
u∈U 

with the boundary condition J∗(T, x) =  h(x). 

• This is the Hamilton-Jacobi-Bellman (HJB) equa
tion – a  partial differential equation, which is sat
isfied for all time-state pairs (t, x) by the cost-to-go 
function J∗(t, x) (assuming J∗ is differentiable and 
the preceding informal limiting procedure is valid). 

• It is hard to tell a priori if J∗(t, x) is differentiable. 

• So we use the HJB Eq. as a verification tool; if 
we can solve it for a differentiable J∗(t, x), then: 

− J∗ is the optimal-cost-to-go function 

− The control µ ∗(t, x) that minimizes in the RHS 
for each (t, x) defines an optimal control 



� � 

� � � � 

� � 

VERIFICATION/SUFFICIENCY THEOREM
 

• Suppose V (t, x) is a solution to the HJB equa
tion; that is, V is continuously differentiable in t 
and x, and is such that for all t, x, 

0 = min  g(x, u) + ∇tV (t, x) + ∇xV (t, x)′f(x, u) , 
u∈U 

V (T, x) = h(x), for all x. 

• Suppose also that µ ∗(t, x) attains the minimum 
above for all t and x. 

• Let x ∗(t) | t ∈ [0, T  ] and u ∗(t) = µ ∗ t, x∗(t) , 
t ∈ [0, T  ], be the corresponding state and control 
trajectories. 

• Then 

V (t, x) = J∗(t, x), for all t, x, 

and u ∗(t) | t ∈ [0, T  ] is optimal. 



� � 

� � � � � � 

� � � � � � 

� � � � � � 

PROOF
 

Let {(û(t), x̂(t)) | t ∈ [0, T ]} be any admissible control
state trajectory. We have for all t ∈ [0, T ] � � � � � �′ � � 
0 ≤ g x̂(t), û(t) +∇tV t, x̂(t) +∇xV t, x̂(t) f x̂(t), û(t) . 

Using the system equation ẋ̂(t) =  f x̂(t), û(t) , 
the RHS of the above is equal to � � d � � 

g x̂(t), û(t) + V (t, x̂(t))
dt
 

Integrating this expression over t ∈ [0, T ], 

� T 

0 ≤ g x̂(t), û(t) dt+ V T, x̂(T ) − V 0, x̂(0) . 
0 

Using V (T, x) =  h(x) and x̂(0) = x(0), we have  � T 

V 0, x(0) ≤ h x̂(T ) + g x̂(t), û(t) dt. 
0 

If we use u ∗(t) and x ∗(t) in place of û(t) and x̂(t), 
the inequalities becomes equalities, and � T 

V 0, x(0) = h x∗(T ) + g x ∗(t), u  ∗(t) dt. 
0 



� � 

� � 

� � 

� � � � 

EXAMPLE OF THE HJB EQUATION
 

Consider the scalar system ẋ(t) = u(t), with |u(t)| ≤
1 and cost (1/2) 

� 
x(T ) 

�2 
. The HJB equation is 

0 =  min  ∇tV (t, x) +∇xV (t, x)u , for all t, x, 
|u|≤1 

with the terminal condition V (T, x) = (1/2)x2. 

• Evident candidate for optimality: µ ∗(t, x) =  
−sgn(x). Corresponding cost-to-go 

1� � ��2 
J∗(t, x) =  max 0, |x| − (T − t) .

2 

• We verify that J∗ solves the HJB Eq., and that 
u = −sgn(x) attains the min in the RHS. Indeed, 

∇tJ∗(t, x) = max  0, |x| − (T − t) , 

∇xJ∗(t, x) = sgn(x) · max 0, |x| − (T − t) . 

Substituting, the HJB Eq. becomes 

0 =  min  1 + sgn(x) · u max 0, |x| − (T − t) 
|u|≤1 



� � 

LINEAR QUADRATIC PROBLEM
 

Consider the n-dimensional linear system 

ẋ(t) = Ax(t) + Bu(t), 

and the quadratic cost 

� T 

x(T )′QT x(T ) +  x(t)′Qx(t) + u(t)′Ru(t) dt 
0 

The HJB equation is 

0 = min 
� 
x ′Qx+u ′Ru+∇tV (t, x)+∇xV (t, x)′(Ax+Bu) 

� 
, 

u∈�m 

with the terminal condition V (T, x) = x′QT x. We 
try a solution of the form 

V (t, x) = x′K(t)x, K(t) : n × n symmetric, 

and show that V (t, x) solves the HJB equation if 

K̇(t) = −K(t)A−A′K(t)+K(t)BR−1B′K(t)−Q 

with the terminal condition K(T ) = QT . 
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• Deterministic continuous-time optimal control 

• From the HJB equation to the Pontryagin Mini
mum Principle 

• Examples 



( ) 

[ ] 

THE HJB EQUATION
 

• Continuous-time dynamic system 

ẋ(t) =  f x(t), u(t) , 0 ≤ t ≤ T,  x(0) : given 

• Cost function ∫ T ( ) ( )
 
h x(T ) + g x(t), u(t) dt
 

0 

• J∗(t, x): optimal cost-to-go from x at time t 

• HJB equation: For all (t, x) 

0 = min  g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u) 
u∈U 

with the boundary condition J∗(T, x) =  h(x). 

• Verification theorem: If we can find a solution, it 
must be equal to the optimal cost-to-go function. 
Also a (closed-loop) policy µ ∗(t, x) such that 

µ ∗(t, x) attains the min for each (t, x) 

is optimal. 



} 

( ) 

HJB EQ. ALONG AN OPTIMAL TRAJECTORY
 

• Observation I: An optimal control-state trajec
tory pair {(u ∗(t), x  ∗(t)) | t ∈ [0, T  ] satisfies for all 
t ∈ [0, T  ] 

∗ 
[ ( ∗ 

) ∗( ∗ 
)′ ( ∗ 

)] 
u (t) = arg min g x (t), u  +∇xJ t, x (t) f x (t), u  . 

u∈U 

(1) 

• Observation II: To obtain an optimal control tra}
 
jectory {u ∗(t) | t ∈ [0, T  ] via this equation, we 
don’t need to know ∇xJ∗(t, x) for all (t, x) - only 
the time function 

p(t) =  ∇xJ∗ t, x∗(t) , t ∈ [0, T  ]. 

• It turns out that calculating p(t) is often easier 
than calculating J∗(t, x) or ∇xJ∗(t, x) for all (t, x). 

• Pontryagin’s minimum principle is just Eq. (1) to
gether with an equation for calculating p(t), called 
the adjoint equation. 

• Also, Pontryagin’s minimum principle is valid 
much more generally, even in cases where J∗(t, x) 
is not differentiable and the HJB has no solution. 



{ } ( ) 

{ } ( ) 

DERIVING THE ADJOINT EQUATION 

• The HJB equation holds as an identity for all 
(t, x), so it can be differentiated [the gradient of 
the RHS with respect to (t, x) is identically 0]. 

• We need a tool for differentiation of “minimum” 
functions. 

Lemma: Let F (t, x, u) be a continuously differ-
mentiable function of t ∈ �, x ∈ �n, and u ∈ �  , 

mand let U be a convex subset of � . Assume 
that µ ∗(t, x) is a continuously differentiable func
tion such that 

µ ∗(t, x) = arg  min  F (t, x, u), for all t, x. 
u∈U 

Then 

∇t min F (t, x, u) = ∇tF t, x, µ∗(t, x) , for all t, x, 
u∈U 

∇x min F (t, x, u) = ∇xF t, x, µ∗(t, x) , for all t, x. 
u∈U 



( ) 

( ) 

( ) 

DIFFERENTIATING THE HJB EQUATION I 


• We set to zero the gradient with respect to x 
and t of the function 

g 
( 
x, µ ∗(t, x) 

) 
+∇tJ∗(t, x)+∇xJ∗ 

( 
t, x 

)′ 
f 
( 
x, µ ∗(t, x) 

)


and we rely on the Lemma to disregard the terms 
involving the derivatives of µ ∗(t, x) with respect to 
t and x. 

• We obtain for all (t, x), 

0 = ∇xg x, µ ∗ (t, x) + ∇xt
2 J ∗ (t, x) 

+ ∇2 ∗ 
( ∗ 

) ( ∗ 
) ∗ 

xxJ (t, x)f x, µ (t, x) + ∇xf x, µ (t, x) ∇xJ (t, x) 

0 = ∇2 J∗(t, x) + ∇2 J∗(t, x)′f x, µ ∗(t, x) ,tt xt 

where ∇xf x, µ ∗(t, x) is the matrix 

 ∂f1 ∂fn  · · ·  ∂x1 ∂x1  . . .
 ∇xf =  . . .  . . . 
∂f1 ∂fn· · ·  ∂xn ∂xn 



{( ) } ( ) 

( ) 

( ) ( ) ( ) 

DIFFERENTIATING THE HJB EQUATION II
 

• The preceding equations hold for all (t, x). We  
specialize them along an optimal state and con
trol trajectory x ∗(t), u  ∗(t) | t ∈ [0, T  ] , where 
u ∗(t) = µ ∗ t, x∗(t) for all t ∈ [0, T  ]. 

• We have ẋ∗(t) = f x ∗(t), u  ∗(t) , so the terms 

∇2 J∗ + ∇2 x ∗(t, x∗(t) xxJ∗ t, x∗(t) f t), u  ∗(t)xt 

∇2 J∗ 
( 
t, x∗(t) 

) 
+ ∇2 J∗ 

( 
t, x∗(t) 

)′ 
f 
( 
x ∗(t), u  ∗(t) 

) 
tt xt 

are equal to the total derivatives 

d ( ( )) d ( ( )) ∇xJ∗ t, x∗(t) , ∇tJ∗ t, x∗(t) ,
dt dt 

and we have 

( ) ( ))
∗ d ∗( ∗ 0 = ∇xg x, u (t) + ∇xJ t, x (t)
 
dt ( ) ∗ 

)∗ 
( ∗ + ∇xf x, u (t) ∇xJ t, x (t) 

d ( ( )) 
0 =  ∇tJ∗ t, x∗(t) . 

dt 



( ) 

( ) 

( ) ( ) 

( ) ( ) 

( )


CONCLUSION FROM DIFFERENTIATING THE HJB
 

• Define 
p(t) = ∇xJ∗ t, x∗(t) 

and 
p0(t) = ∇tJ∗ t, x∗(t) 

• We have the adjoint equation 

ṗ(t) = −∇xf x ∗(t), u  ∗(t) p(t)−∇xg x ∗(t), u  ∗(t) 

and 
ṗ0(t) = 0  

or equivalently, 


p0(t) = constant, for all t ∈ [0, T ].


• Note also that, by definition J∗ T, x∗(T ) = 
h x∗(T ) , so we have the following boundary con
dition at the terminal time: 

p(T ) = ∇h x∗(T )




( ) 

[ ( )]


( ) 

( ) 

NOTATIONAL SIMPLIFICATION 


• Define the Hamiltonian function 

H(x, u, p) = g(x, u) + p′f(x, u) 

• The adjoint equation becomes 

ṗ(t) = −∇xH x∗(t), u  ∗(t), p(t) 

• The HJB equation becomes 

0 = min  H x∗(t), u, p(t) + p0(t) 
u∈U 

= H x∗(t), u  ∗(t), p(t) + p0(t) 

so since p0(t) = constant, there is a constant C 
such that 

H x∗(t), u  ∗(t), p(t) = C, for all t ∈ [0, T ]. 



{ } { } 

( ) 

( ) 

( ) 

( ) 

PONTRYAGIN MINIMUM PRINCIPLE
 

• The preceding (highly informal) derivation is 
summarized as follows: 

Minimum Principle: Let u ∗(t) | t ∈ [0, T ] be 
an optimal control trajectory and let x ∗(t) | t ∈ 
[0, T ] be the corresponding state trajectory. Let 
also p(t) be the solution of the adjoint equation 

ṗ(t) =  −∇xH x∗(t), u  ∗(t), p(t) , 

with the boundary condition 

p(T ) =  ∇h x∗(T ) . 

Then, for all t ∈ [0, T ], 

u ∗(t) = arg  min  H x∗(t), u, p(t) . 
u∈U 

Furthermore, there is a constant C such that 

H x∗(t), u  ∗(t), p(t) = C, for all t ∈ [0, T ]. 



( ) 

( ) 

( ) 

( ) 

2-POINT BOUNDARY PROBLEM VIEW
 

• The minimum principle is a necessary condition 
for optimality and can be used to identify candi
dates for optimality. 

• We need to solve for x ∗(t) and p(t) the differen
tial equations 

ẋ∗(t) = f x∗(t), u  ∗(t) 

ṗ(t) = −∇xH x∗(t), u  ∗(t), p(t) , 

with split boundary conditions: 

x ∗(0) : given, p(T ) = ∇h x∗(T ) . 

• The control trajectory is implicitly determined 
from x ∗(t) and p(t) via the equation 

u ∗(t) = arg minH x∗(t), u, p(t) . 
u∈U 

• This 2-point boundary value problem can be
 
addressed with a variety of numerical methods.
 



ANALYTICAL EXAMPLE I
 

∫ T √
 
minimize 1 +  

( 
u(t) 

)2 
dt 

0 

subject to 

ẋ(t) = u(t), x(0) = α.
 

• Hamiltonian is 

√
 
H(x, u, p) =  1 + u2 + pu, 

and adjoint equation is ṗ(t) = 0 with p(T ) = 0. 

• Hence, p(t) = 0 for all t ∈ [0, T  ], so minimization 
of the Hamiltonian gives 

√ 
u ∗(t) = arg min  1 + u2 = 0, for all t ∈ [0, T  ]. 

u∈� 

Therefore, ẋ∗(t) = 0 for all t, implying that x ∗(t) is 
constant. Using the initial condition x ∗(0) = α, it  
follows that x ∗(t) = α for all t. 



{ 

ANALYTICAL EXAMPLE II
 

•	 Optimal production problem 

∫	 T (	 ) 
maximize 1 − u(t) x(t)dt 

0 

subject to 0 ≤ u(t) ≤ 1 for all t, and 

ẋ(t) = γu(t)x(t), x(0) > 0 : given. 

•	 Hamiltonian: H(x, u, p) = (1 − u)x + pγux. 

•	 Adjoint equation is 

ṗ(t) = −γu∗(t)p(t) − 1 + u ∗(t), p(T ) = 0. 

•	 Maximization of the Hamiltonian over u ∈ [0, 1]: 

0 if p(t) < 1 , 
u ∗(t) =  

1 if p(t) ≥ 
γ

γ 
1 . 

Since p(T ) = 0, for  t close to T , p(t) < 1/γ and 
u ∗(t) = 0. Therefore, for t near T the adjoint equa
tion has the form ṗ(t) = −1. 



ANALYTICAL EXAMPLE II (CONTINUED)
 

• For t = T − 1/γ, p(t) is equal to 1/γ, so  u ∗(t) 
changes to u ∗(t) = 1. 

• Geometrical construction 

T t0 

p(t) 

T - 1/a 

1/a 

T t0 

p(t) 

T - 1/a 

1/a 

T t0 T - 1/a 

u *(t) 

u *(t) = 1 u *(t) = 0 
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• Free terminal time 

• Examples 

• Discrete-Time Minimum Principle 



� � 

� � 

� 

� � 

REVIEW
 

• Continuous-time dynamic system 

ẋ(t) =  f x(t), u(t) , 0 ≤ t ≤ T,  x(0) : given 

• Cost function � � � T � �
 
h x(T ) + g x(t), u(t) dt
 

0 

• J∗(t, x): optimal cost-to-go from x at time t 

• HJB equation/Verification theorem: For all (t, x) 

0 = min  g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u) 
u∈U 

with the boundary condition J∗(T, x) =  h(x). 

• Adjoint equation/vector: To compute an op
timal state-control trajectory {(u ∗(t), x  ∗(t)) it is 
enough to know 

p(t) =  ∇xJ∗ t, x∗(t) , t ∈ [0, T  ]. 

• Pontryagin theorem gives an equation for p(t).
 



� � � � 

� � 

� � 

� � 

� �


NEC. CONDITION: PONTRYAGIN MIN. PRINCIPLE
 

• Define the Hamiltonian function 

H(x, u, p) = g(x, u) + p′f(x, u). 

• Minimum Principle: Let u ∗(t) | t ∈ [0, T ] 
be an optimal control trajectory and let x ∗(t) | t ∈ 
[0, T ] be the corresponding state trajectory. Let 
also p(t) be the solution of the adjoint equation 

ṗ(t) = −∇xH x∗(t), u  ∗(t), p(t) , 

with the boundary condition 

p(T ) = ∇h x∗(T ) .


Then, for all t ∈ [0, T ], 


u ∗(t) = arg minH x∗(t), u, p(t) . 
u∈U 

Furthermore, there is a constant C such that
 

H x∗(t), u  ∗(t), p(t) = C, for all t ∈ [0, T ].




� 

� � 

VARIATIONS: FIXED TERMINAL STATE
 

• Suppose that in addition to the initial state x(0), 
the final state x(T ) is given. 

• Then the informal derivation of the adjoint equa
tion still holds, but the terminal condition J∗(T, x) ≡ 
h(x) of the HJB equation is not true anymore. 

• In effect, 

J∗(T, x) = 	  0 if x = x(T ) 
∞ otherwise. 

So J∗(T, x) cannot be differentiated with respect 
to x, and the terminal boundary condition p(T ) =  
∇h x∗(T ) for the adjoint equation does not hold. 

• As compensation, we have the extra condition 

x(T ) : given, 

thus maintaining the balance between boundary 
conditions and unknowns. 

• Generalization: Some components of the ter
minal state are fixed. 



� 

EXAMPLE WITH FIXED TERMINAL STATE
 

• Consider finding the curve of minimum length 
connecting two points (0, α) and (T, β). We  have  

ẋ(t) = u(t), x(0) = α, x(T ) = β,
 

and the cost is 
� 
0 
T 1 +  

� 
u(t) 

�2 
dt.


x*(t) ` 

_ 

0 T t 

•	 The adjoint equation is ṗ(t) = 0, implying that 

p(t) = constant, for all t ∈ [0, T ]. 
√ • Minimizing the Hamiltonian 1 + u2 + p(t)u: 

u ∗(t) = constant, for all t ∈ [0, T ].
 

�	 � 
So optimal x ∗(t) | t ∈ [0, T ] is a straight line. 




�� � � 

� � � � 

VARIATIONS: FREE TERMINAL TIME
 

• Initial state and/or the terminal state are given, 
but the terminal time T is subject to optimization. 

• Let x ∗(t), u  ∗(t) | t ∈ [0, T ] be an optimal 
state-control trajectory pair and let T ∗ be the opti
mal terminal time. Then x ∗(t), u  ∗(t) would still be 
optimal if T were fixed at T ∗, so  

� �
 
u ∗(t) = arg  min  H x∗(t), u, p(t) , for all t ∈ [0, T ∗] 

u∈U 

where p(t) is given by the adjoint equation. 

• In addition: H(x ∗(t), u  ∗(t), p(t)) = 0 for all t 
[instead of H(x ∗(t), u  ∗(t), p(t)) ≡ constant]. 

• Justification: We have 

∇tJ∗ t, x∗(t) 
t=0 

= 0  

Along the optimal, the HJB equation is 

� � � � ∇tJ∗ t, x∗(t) = −H x∗(t), u  ∗(t), p(t) , for all t 

� �
 
so H x∗(0), u  ∗(0), p(0) = 0. 




�	 � 

MINIMUM-TIME EXAMPLE I
 

• Unit mass moves horizontally: ÿ(t) =  u(t), 
where y(t): position, u(t): force, u(t) ∈ [−1, 1]. 

• Given the initial position-velocity (y(0), ẏ(0)), 
bring the object to (y(T ), ẏ(T )) = (0, 0) so that 
the time of transfer is minimum. Thus, we want to 

� T 

minimize T = 1dt. 
0 

• Let the state variables be 

x1(t) =  y(t), x2(t) =  ̇y(t), 

so the system equation is 

ẋ 1(t) =  x2(t), ẋ 2(t) =  u(t). 

•	 Initial state x1(0), x2(0) : given and 

x1(T ) = 0, x2(T ) = 0.
 



� � 

� � 

� 

� � 

MINIMUM-TIME EXAMPLE II
 

• If u ∗(t) | t ∈ [0, T ] is optimal, u ∗(t) must min
imize the Hamiltonian for each t, i.e., 

u ∗(t) = arg  min  1 + p1(t)x2
∗(t) + p2(t)u . 

−1≤u≤1 

Therefore 

1 if p2(t) < 0, 
u ∗(t) =  −1 if p2(t) ≥ 0. 

• The adjoint equation is 

ṗ1(t) = 0, ṗ2(t) = −p1(t), 

so 
p1(t) = c1, p2(t) = c2 − c1t, 

where c1 and c2 are constants. 

• So p2(t) | t ∈ [0, T ] switches at most once in 
going from negative to positive or reversely. 



0 

MINIMUM-TIME EXAMPLE III
 

p2(t) p2(t) p2(t) p2(t) 

TT t 0 T t 0 T t 0 t 

(a) 

u*(t) u*(t) u*(t) u*(t) 

1 1 1 

0 T t 0 T t 0 T t 0 T t 

-1 -1 -1 

(b) 

• For u(t) ≡ ζ, where ζ = ±1, the system evolves 
according to 

ζ 
x1(t) =  x1(0)+x2(0)t+ t2 , x2(t) =  x2(0)+ζt. 

2 

Eliminating the time t, we see that for all t 

1 � �2 1 � �2 
x1(t) − x2(t) = x1(0) − x2(0) .

2ζ 2ζ
 



MINIMUM-TIME EXAMPLE IV
 

• For intervals where u(t) ≡ 1, the system moves 
along the curves 

1� �2 
x1(t) − x2(t) : constant.

2 

• For intervals where u(t) ≡ −1, the system 
moves along the curves 

1� �2 
x1(t) +  x2(t) : constant.

2 

x1 

x2 

u(t) > 1 

0 x1 

x2 

0 

u(t) > -1 

(a) (b) 



MINIMUM-TIME EXAMPLE V
 

• To bring the system from the initial state x(0) 
to the origin with at most one switch, we use the 
following switching curve. 

x1 

x2 

u*(t) > 1 

u*(t) > -1 

0 

(x1(0),x2(0)) 

(a) If the initial state lies above the switching curve, 
use u ∗(t) ≡ −1 until the state hits the switch
ing curve; then use u ∗(t) ≡ 1. 

(b) If the initial state lies below the switching curve, 
use u ∗(t) ≡ 1 until the state hits the switch
ing curve; then use u ∗(t) ≡ −1. 

(c) If the initial state lies on the top (bottom) 
part of the switching curve, use u ∗(t) ≡ −1 
[u ∗(t) ≡ 1, respectively]. 



� � 

DISCRETE-TIME MINIMUM PRINCIPLE 

�N−1 • Minimize J(u) =  gN (xN ) + k=0 gk(xk, uk), 
subject to uk ∈ Uk ⊂ 	m, with Uk: convex, and 

xk+1 = fk(xk, uk), k  = 0, . . . , N−1, x0 : given.  

• Introduce Hamiltonian function 

Hk(xk, uk, pk+1) = gk(xk, uk) + p′ k+1fk(xk, uk) 

• Suppose {(uk
∗ , x  ∗ ) | k = 0, . . . , N  − 1} arek+1 

optimal. Then for all k, 


∇uk Hk 
� 
x∗ 

k, u∗ 
k, pk+1 

�′(uk−u∗ 
k) ≥ 0, for all uk ∈ Uk,


where p1, . . . , pN are obtained from 


pk = ∇xk fk · pk+1 + ∇xk gk, 

with the terminal condition pN x ∗ ).= ∇gN ( N 

• If, in addition, the Hamiltonian Hk is a convex 
function of uk for any fixed xk and pk+1, we have  

u ∗ 
k = arg  min  Hk x ∗ 

k, uk, pk+1 , for all k. 
uk∈Uk 



DERIVATION
 

• We develop an expression for the gradient ∇J(u). 
We have, using the chain rule, 

∇uk J(u) = ∇uk fk · ∇xk+1 fk+1 · · ·∇xN−1 fN−1 · ∇gN 

+ ∇uk fk · ∇xk+1 fk+1 · · ·∇xN−2 fN−2 · ∇xN−1 gN−1 

· · ·  

+ ∇uk fk · ∇xk+1 gk+1 

+	∇uk gk, 

where all gradients are evaluated along u and the 
corresponding state trajectory. 

•	 Iintroduce the discrete-time adjoint equation 

pk = ∇xk fk · pk+1 +∇xk gk, k = 1, . . . , N  − 1, 

with terminal condition pN = ∇gN . 

•	 Verify that, for all k, 

∇uk J(u0, . . . , uN−1) = ∇uk Hk(xk, uk, pk+1) 
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• Problems with imperfect state info 

• Reduction to the perfect state info case 

• Machine repair example 



BASIC PROBLEM WITH IMPERFECT STATE INFO
 

• Same as basic problem of Chapter 1 with one 
difference: the controller, instead of knowing xk, 
receives at each time k an observation of the form 

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k  ≥ 1 

• The observation zk belongs to some space Zk. 

• The random observation disturbance vk is char
acterized by a probability distribution 

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0) 

• The initial state x0 is also random and charac
terized by a probability distribution Px0 . 

• The probability distribution P (· | xk, uk) of wkwk 

is given, and it may depend explicitly on xk and 
uk but not on w0, . . . , wk−1, v0, . . . , vk−1. 

• The control uk is constrained to a given subset 
Uk (this subset does not depend on xk, which is 
not assumed known). 



� � � � � 

� �


INFORMATION VECTOR AND POLICIES 

• Denote by Ik the information vector , i.e., the 
information available at time k: 

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k  ≥ 1, 

I0 = z0. 

• We consider policies π = {µ0, µ1, . . . , µN−1}, 
where each function µk maps the information vec
tor Ik into a control uk and 

µk(Ik) ∈ Uk, for all Ik, k  ≥ 0. 

• We want to find a policy π that minimizes 

N−1 

Jπ = E gN (xN ) +  gk xk, µk(Ik), wk 
x0,wk,vk
 

k=0,...,N−1 k=0
 

subject to the equations 

� �
 
xk+1 = fk xk, µk(Ik), wk , k ≥ 0, 

z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k  ≥ 1




EXAMPLE: MULTIACCESS COMMUNICATION I
 

• Collection of transmitting stations sharing a com
mon channel, are synchronized to transmit pack
ets of data at integer times. 

• xk: backlog at the beginning of slot k. 

• ak: random number of packet arrivals in slot k. 

• tk: the number of packets transmitted in slot k. 

xk+1 = xk + ak − tk, 

• At kth slot, each of the xk packets in the system 
is transmitted with probability uk (common for all 
packets). If two or more packets are transmitted 
simultaneously, they collide. 

• So tk = 1 (a success) with probability xkuk(1− 
uk)xk−1, and tk = 0 (idle or collision) otherwise. 

• Imperfect state info: The stations can observe 
the channel and determine whether in any one 
slot there was a collision (two or more packets), a 
success (one packet), or an idle (no packets). 



� 

EXAMPLE: MULTIACCESS COMMUNICATION II 

• Information vector at time k: The entire history
 
(up to k) of successes, idles, and collisions. Math
 
ematically, zk+1, the observation at the end of the
 
kth slot, is
 

zk+1 = vk+1 

where vk+1 yields an idle with probability (1 −
 
uk)xk , a success with probability xkuk(1−uk)xk−1,
 
and a collision otherwise.
 

• If we had perfect state information, the DP al
 
gorithm would be
 

Jk(xk) =  gk(xk)+ min E p(xk, uk)Jk+1(xk + ak − 1) 
0≤uk≤1 ak � � �
 
+ 1 − p(xk, uk) Jk+1(xk + ak) , 

p(xk, uk) is the success probability xkuk(1−uk)xk−1. 

• The optimal (perfect state information) policy 

would be to select the value of uk that maximizes 

p(xk, uk), so  µk(xk) =  1 , for all xk ≥ 1. 
xk 

• Imperfect state info problem is much harder. 



� � � � 
� � 

� �


REFORMULATION AS A PERFECT INFO PROBLEM
 

• We have 

Ik+1 = (Ik, zk+1, uk), k  = 0, 1, . . . , N−2, I0 = z0. 

View this as a dynamic system with state Ik, con
trol uk, and random disturbance zk+1. 

• We have 

P (zk+1 | Ik, uk) = P (zk+1 | Ik, uk, z0, z1, . . . , zk), 

since z0, z1, . . . , zk are part of the information vec
tor Ik. Thus the probability distribution of zk+1 

depends explicitly only on the state Ik and control 
uk and not on the prior “disturbances” zk, . . . , z0. 

• Write 

E gk(xk, uk, wk) = E E gk(xk, uk, wk) | Ik, uk 
xk,wk 

so the cost per stage of the new system is
 

g̃k(Ik, uk) =  E gk(xk, uk, wk) | Ik, uk 
xk,wk 



� � 

� � � � 

� 
� 

� � 

DP ALGORITHM
 

• Writing the DP algorithm for the (reformulated) 
perfect state info problem and doing the algebra: 

� �
 
Jk(Ik) = min E gk(xk, uk, wk) 

uk∈Uk xk, wk, zk+1 

+ Jk+1(Ik, zk+1, uk) | Ik, uk 

for k = 0, 1, . . . , N  − 2, and for k = N − 1, 

JN−1(IN−1) =  min  
uN−1∈UN−1 

E gN fN−1(xN−1, uN−1, wN−1) 
xN−1, wN−1 

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 , 

• The optimal cost J∗ is given by
 

J∗ = E J0(z0) . 
z0 



MACHINE REPAIR EXAMPLE I
 

• A machine can be in one of two states denoted 
P (good state) and P (bad state). 

• At the end of each period the machine is in
spected. 

• Two possible inspection outcomes: G (probably 
good state) and B (probably bad state). 

• Transition probabilities: 

GP P 

B 

1/4 

1/3 

2/3 3/4 

3/41 

1/4 

P P 

State Transition Inspection 

• Possible actions after each inspection: 

C : Continue operation of the machine. 

S : Stop the machine, determine its state, and if 
in P bring it back to the good state P . 

• Cost per stage: 

g(P, C) = 0, g(P, S) = 1, g(P , C) = 2, g(P , S) = 1.
 



� 

� 

MACHINE REPAIR EXAMPLE II
 

•	 The information vector at times 0 and 1 is 

I0 = z0, I1 = (z0, z1, u0), 

and we seek functions µ0(I0), µ1(I1) that minimize 

�	 � � � �� 
E g x0, µ0(z0) +g x1, µ1(z0, z1, µ0(z0)) . 

x0, w0, w1 
v0, v1 

• DP algorithm: Start with J2(I2) = 0. For  k = 
0, 1, take the min over the two actions, C and S, 

Jk(Ik) = min  P (xk = P | Ik)g(P, C) 

+	P (xk = P | Ik)g(P , C) �	 � 
+	 E Jk+1(Ik, C, zk+1) | Ik, C  , 

zk+1 

P (xk = P | Ik)g(P, S) 

+ P (xk = P | Ik)g(P , S) �	 � 
+	 E Jk+1(Ik, S, zk+1) | Ik, S  

zk+1 



� � 

MACHINE REPAIR EXAMPLE III
 

• Last Stage: Compute J1(I1) for each of the eight 
possible information vectors I1 = (z0, z1, u0). We  
have 

cost of C = 2 · P (x1 = P | I1), cost of S = 1, 

and therefore J1(I1) = min  2P (x1 = P | I1), 1 . 
The probabilities P (x1 = P | I1) are computed 
using Bayes’ rule: 

(1) For I1 = (G, G, S) 

x1
P (x1 = P | G, G, S) =  

P ( = P , G, G  | S) 
P (G, G | S) � �
 

1 1 2 3 1 1
 
3 ·
4 ·
 3 ·
 4 +


3
 ·
4
 1
 
= �
 �2
 = .
 

2
 3
 1
 1
 7
·
 +
 ·

3
 4
 3
 4
 

Hence 

2 ∗J1(G, G, S) =  , µ1(G, G, S) = C.
7 



MACHINE REPAIR EXAMPLE IV 

(2) For I1 = (B, G, S) 

1 
P (x1 = P | B, G, S) = P (x1 = P | G, G, S) =  ,

7 

2 
J1(B, G, S) = 


7
, µ∗ 
1
(B, G, S) = C.
 

(3) For I1 = (G, B, S)


P (x1 = P , G, B, S)

P (x1 = P | G, B | S) =  

P (G, B | S) � �
 
1 3 2 3 1
 1
·
 ·
 ·
 +
 ·


=
 � 3 4 3 � �  4 3
 4
 �
 
2
 1
 1
 3
 2
 3
 1
 1
·
 +
 ·
 ·
 +
 ·
3
 4
 3 4 3 4 3
 4
 

3 
= 

5
, 

J1(G, B, S) = 1,
 µ∗ 
1
 
(G, B, S) = S.
 

• Similarly, for all possible I1, we compute J1(I1), 
and µ∗ 
1(I1), which is to continue (u1 = C) if the
 
last inspection was G, and to stop otherwise.
 



� � 

� � 

� � 

MACHINE REPAIR EXAMPLE V
 

• First Stage: Compute J0(I0) for each of the two 
possible information vectors I0 = (G), I0 = (B). 
We have 

cost of C = 2P (x0 = P | I0) +  E J1(I0, z1, C) | I0, C  
z1 

= 2P (x0 = P | I0) +  P (z1 = G | I0, C)J1(I0, G, C) 

+ P (z1 = B | I0)J1(I0, B, C), 

cost of S = 1 + E J1(I0, z1, S) | I0, S  
z1 

= 1 + P (z1 = G | I0)J1(I0, G, S) 
+ P (z1 = B | I0)J1(I0, B, S), 

using the values of J1 from the previous stage. 

• We have 

J0(I0) = min  cost of C, cost of S 

• The optimal cost is 

J∗ = P (G)J0(G) + P (B)J0(B). 
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LECTURE 11
 

LECTURE OUTLINE
 

• Review of DP for imperfect state info 

• Linear quadratic problems 

• Separation of estimation and control 



REVIEW: PROBLEM WITH IMPERFECT STATE INFO
 

•	 Instead of knowing xk, we receive observations 

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k  ≥ 1 

• Ik: information vector available at time k: 

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k  ≥ 1 

• Optimization over policies π = {µ0, µ1, . . . , µN−1}, 
where µk(Ik) ∈ Uk, for all Ik and k. 

• Find a policy π that minimizes �	 � 
N−1 � �	 � 

Jπ = E gN (xN ) +  gk xk, µk(Ik), wk 
x0,wk,vk
 

k=0,...,N−1 k=0
 

subject to the equations 

�	 �
 
xk+1 = fk xk, µk(Ik), wk , k ≥ 0, 

�	 � 
z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k  ≥ 1




� � 

� � � � 

� 
� 

� � 

DP ALGORITHM
 

• Reformulate to perfect state info problem, and 
write the DP algorithm: 

� �
 
Jk(Ik) = min E gk(xk, uk, wk) 

uk∈Uk xk, wk, zk+1 

+ Jk+1(Ik, zk+1, uk) | Ik, uk 

for k = 0, 1, . . . , N  − 2, and for k = N − 1, 

JN−1(IN−1) =  min  
uN−1∈UN−1 

E gN fN−1(xN−1, uN−1, wN−1) 
xN−1, wN−1 

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 , 

• The optimal cost J∗ is given by
 

J∗ = E J0(z0) . 
z0 



� 

LINEAR-QUADRATIC PROBLEMS 

•	 System: xk+1 = Akxk + Bkuk + wk 

•	 Quadratic cost �	 � 
N−1 

E	 x′ 
N QN xN + (x′ 

kQkxk + u′ 
kRkuk) 

wk 
k=0,1,...,N−1 k=0 

where Qk ≥ 0 and Rk > 0. 

•	 Observations 

zk = Ckxk + vk, k = 0, 1, . . . , N  − 1. 

•	 w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean 

•	 Key fact to show: 

− Optimal policy {µ0 
∗ , . . . , µ  ∗ } is of the form: N−1 

µ ∗ (Ik) = LkE{xk | Ik}k 

Lk: same as for the perfect state info case 

− Estimation problem and control problem can 
be solved separately 



� � 

� � 

� 

DP ALGORITHM I
 

• Last stage N − 1 (supressing index N − 1): 

JN−1(IN−1) =  min  ExN−1,wN−1 xN 
′

−1QxN−1 
uN−1 

+ u ′ RuN−1 + (AxN−1 + BuN−1 + wN−1)′ N−1 

· Q(AxN−1 + BuN−1 + wN−1) | IN−1, uN−1 

• Since E{wN−1 | IN−1} = E{wN−1} = 0, the 
minimization involves 

min uN 
′

−1(B
′QB + R)uN−1
 

uN−1
 

+ 2E{xN−1 | IN−1}′A′QBuN−1 

� 

The minimization yields the optimal µ ∗ :N−1 

u ∗ = µ ∗ (IN−1) = LN−1E{xN−1 | IN−1}N−1 N−1 

where 

LN−1 = −(B′QB + R)−1B′QA 



DP ALGORITHM II 

•	 Substituting in the DP algorithm 

�	 � 
JN−1(IN−1) =  E x′ KN−1xN−1 | IN−1N−1 

xN−1 ��	 �′+	 E xN−1 − E{xN−1 | IN−1}
 
xN−1
 �	 � � · PN−1 xN−1 − E{xN−1 | IN−1} | IN−1 

+ E {w′ QN wN−1},N−1 
wN−1 

where the matrices KN−1 and PN−1 are given by 

PN−1 = A′ QN BN−1(RN−1 + B′ QN BN−1)−1 
N−1 N−1 

· B′ QN AN−1,N−1 

KN−1 = A′ QN AN−1 − PN−1 + QN−1.N−1 

• Note the structure of JN−1: in addition to the 
quadratic and constant terms, it involves a quadratic 
in the estimation error 

xN−1 − E{xN−1 | IN−1} 



� 

� 

� � 

� �� 

� � � 

DP ALGORITHM III
 

• DP equation for period N − 2: 

JN−2(IN−2) =  min  E {x ′ N−2QxN−2 
uN−2 xN−2,wN−2,zN−1 

+ u ′ RuN−2 + JN−1(IN−1) | IN−2, uN−2}N−2 

= E x ′ QxN−2 | IN−2N−2 

+ min  u ′ RuN−2 + x ′ KN−1xN−1 | IN−2N−2 N−1 
uN−2 �� �′
 

+ E xN−1 − E{xN−1 | IN−1}
 

· PN−1 xN−1 − E{xN−1 | IN−1} | IN−2, uN−2 

′
+ EwN−1 {wN−1QN wN−1}.
 

• Key point: We have excluded the next to last 
term from the minimization with respect to uN−2. 

• This term turns out to be independent of uN−2. 



QUALITY OF ESTIMATION LEMMA
 

• For every k, there is a function Mk such that we 
have 

xk−E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk), 

independently of the policy being used. 

• The following simplified version of the lemma 
conveys the main idea. 

• Simplified Lemma: Let r, u, z be random vari
ables such that r and u are independent, and let 
x = r + u. Then 

x − E{x | z, u} = r − E{r | z}.
 

• Proof: We have 

x − E{x | z, u} = r + u − E{r + u | z, u} 

= r + u − E{r | z, u} − u 

= r − E{r | z, u} 

= r − E{r | z}. 



APPLYING THE QUALITY OF ESTIMATION LEMMA
 

•	 Using the lemma,
 

xN−1 − E{xN−1 | IN−1} = ξN−1,
 

where 

ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1 

• Since ξN−1 is independent of uN−2, the condi
tional expectation of ξ′ PN−1ξN−1 satisfiesN−1 

E{ξ′	 PN−1ξN−1 | IN−2, uN−2}N−1 

= E{ξ′ PN−1ξN−1 | IN−2}N−1
 

and is independent of uN−2.
 

• So minimization in the DP algorithm yields 

u ∗ =	µ ∗ (IN−2) = LN−2E{xN−2 | IN−2}N−2	 N−2 



FINAL RESULT
 

• Continuing similarly (using also the quality of 
estimation lemma) 

µ ∗ (Ik) = LkE{xk | Ik},k 

where Lk is the same as for perfect state info: 

Lk = −(Rk + Bk 
′ Kk+1Bk)−1Bk 

′ Kk+1Ak, 

with Kk generated from KN = QN , using 

Kk = A′ 
kKk+1Ak − Pk + Qk, 

Pk = A′ 
kKk+1Bk(Rk + Bk 

′ Kk+1Bk)−1Bk 
′ Kk+1Ak 

xk + 1 = Akxk + Bkuk + wk 

Lk 

uk 

wk 

xk 
zk = Ckxk + vk 

Delay 

Estimator 
E{xk |Ik} 

uk - 1 

zk 

vk 

zkuk 



SEPARATION INTERPRETATION
 

• The optimal controller can be decomposed into 

(a) An estimator , which uses the data to gener
ate the conditional expectation E{xk | Ik}. 

(b) An actuator , which multiplies E{xk | Ik} by 
the gain matrix Lk and applies the control 
input uk = LkE{xk | Ik}. 

• Generically the estimate x̂ of a random vector x 
given some information (random vector) I, which 
minimizes the mean squared error 

Ex{‖x − x̂‖2 | I} = ‖x‖2 − 2E{x | I}x̂ + ‖x̂‖2 

is E{x | I} (set to zero the derivative with respect 
to x̂ of the above quadratic form). 

• The estimator portion of the optimal controller 
is optimal for the problem of estimating the state 
xk assuming the control is not subject to choice. 

• The actuator portion is optimal for the control 
problem assuming perfect state information. 



STEADY STATE/IMPLEMENTATION ASPECTS 

• As N → ∞, the solution of the Riccati equation 
converges to a steady state and Lk → L. 

• If x0, wk, and vk are Gaussian, E{xk | Ik} is 
a linear function of Ik and is generated by a nice 
recursive algorithm, the Kalman filter. 

• The Kalman filter involves also a Riccati equa
tion, so for N → ∞, and a stationary system, it 
also has a steady-state structure. 

• Thus, for Gaussian uncertainty, the solution is 
nice and possesses a steady state. 

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is 
typically used. 

• Most common suboptimal controller: Replace 
E{xk | Ik} by the estimate produced by the Kalman 
filter (act as if x0, wk, and vk are Gaussian). 

• It can be shown that this controller is optimal 
within the class of controllers that are linear func
tions of Ik. 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 12
 

LECTURE OUTLINE
 

• DP for imperfect state info 

• Sufficient statistics 

• Conditional state distribution as a sufficient statis
tic 

• Finite-state systems 

• Examples 



REVIEW: PROBLEM WITH IMPERFECT STATE INFO
 

•	 Instead of knowing xk, we receive observations 

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k  ≥ 0 

• Ik: information vector available at time k: 

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k  ≥ 1 

• Optimization over policies π = {µ0, µ1, . . . , µN−1}, 
where µk(Ik) ∈ Uk, for all Ik and k. 

• Find a policy π that minimizes {	 } 
N−1 ∑ (	 ) 

Jπ = E gN (xN ) +  gk xk, µk(Ik), wk 
x0,wk,vk
 

k=0,...,N−1 k=0
 

subject to the equations 

(	 )
 
xk+1 = fk xk, µk(Ik), wk , k ≥ 0, 

(	 ) 
z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k  ≥ 1




} ] 

[ { ( ) 

} 
] 

{ } 

DP ALGORITHM
 

• DP algorithm: 

[ {
 
Jk(Ik) = min E gk(xk, uk, wk) 

uk∈Uk xk, wk, zk+1 

+ Jk+1(Ik, zk+1, uk) | Ik, uk 

for k = 0, 1, . . . , N  − 2, and for k = N − 1, 

JN−1(IN−1) =  min  
uN−1∈UN−1 

E gN fN−1(xN−1, uN−1, wN−1) 
xN−1, wN−1 

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 

• The optimal cost J∗ is given by 

J∗ = E J0(z0) . 
z0 



( ) 

( ) 

SUFFICIENT STATISTICS
 

• Suppose that we can find a function Sk(Ik) such 
that the right-hand side of the DP algorithm can 
be written in terms of some function Hk as 

min Hk Sk(Ik), uk . 
uk∈Uk 

• Such a function Sk is called a sufficient statistic. 

• An optimal policy obtained by the preceding 
minimization can be written as 

µ ∗ 
k(Ik) = µk Sk(Ik) , 

where µk is an appropriate function. 

• Example of a sufficient statistic: Sk(Ik) = Ik 

• Another important sufficient statistic 

Sk(Ik) = Pxk|Ik 



( ) 

[ { 

( ) } ] 

DP ALGORITHM IN TERMS OF PXK |IK 

• It turns out that Pxk|Ik 
is generated recursively 

by a dynamic system (estimator) of the form 

Pxk+1|Ik+1 
= Φk Pxk|Ik 

, uk, zk+1 

for a suitable function Φk 

• DP algorithm can be written as 

Jk(Pxk|Ik 
) =  min  E gk(xk, uk, wk) 

uk∈Uk xk,wk,zk+1 

+ Jk+1 Φk(Pxk|Ik 
, uk, zk+1) | Ik, uk 

uk xk 

Delay 

Estimator 

uk - 1 

uk - 1 

vk 

zk 

zk 

wk 

qk  - 1 

Actuator 

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk) 

System Measurement 

P x 
k 

| I 
k 

µk 



EXAMPLE: A SEARCH PROBLEM
 

• At each period, decide to search or not search 
a site that may contain a treasure. 

• If we search and a treasure is present, we find 
it with prob. β and remove it from the site. 

• Treasure’s worth: V . Cost of search: C 

• States: treasure present & treasure not present 

• Each search can be viewed as an observation 
of the state 

• Denote 

pk : prob. of treasure present at the start of time k 

with p0 given. 

• pk evolves at time k according to the equation 

  pk if not search, 
= 0 if search and find treasure, pk+1  pk(1−β) if search and no treasure. pk(1−β)+1−pk 



[ 

( ) ] 

SEARCH PROBLEM (CONTINUED) 


• DP algorithm 

Jk(pk) = max  0, −C + pkβV 

pk(1 − β)
+ (1 − pkβ)Jk+1 , 

pk(1 − β) + 1 − pk 

with JN (pN ) = 0. 

• Can be shown by induction that the functions 
Jk satisfy 

C 
Jk(pk) = 0, for all pk ≤ 

βV 

• Furthermore, it is optimal to search at period k 
if and only if 

pkβV ≥ C 

(expected reward from the next search ≥ the cost 
of the search) 



FINITE-STATE SYSTEMS
 

• Suppose the system is a finite-state Markov 
chain, with states 1, . . . , n. 

• Then the conditional probability distribution Pxk|Ik 

is a vector 

( )
 
P (xk = 1 | Ik), . . . , P (xk = n | Ik) 

• The DP algorithm can be executed over the n
dimensional simplex (state space is not expanding 
with increasing k) 

• When the control and observation spaces are 
also finite sets, it turns out that the cost-to-go func
tions Jk in the DP algorithm are piecewise linear 
and concave (Exercise 5.7). 

• This is conceptually important and also (mod
erately) useful in practice. 



INSTRUCTION EXAMPLE
 

• Teaching a student some item. Possible states 
are L: Item learned, or L: Item not learned. 

• Possible decisions: T : Terminate the instruc
tion, or T : Continue the instruction for one period 
and then conduct a test that indicates whether the 
student has learned the item. 

• The test has two possible outcomes: R: Student 
gives a correct answer, or R: Student gives an 
incorrect answer. 

• Probabilistic structure 

L L R 

rt 

1 1 

1 - r1 - t 
L RL 

• Cost of instruction is I per period 

• Cost of terminating instruction; 0 if student has 
learned the item, and C > 0 if not. 



{ 

[ ] { ( )} 

[ ] 

INSTRUCTION EXAMPLE II
 

• Let pk: prob. student has learned the item given 
the test results so far 

pk = P (xk|Ik) = P (xk = L | z0, z1, . . . , zk). 

• Using Bayes’ rule we can obtain 

pk+1 = Φ(pk, zk+1) 
1−(1−t)(1−pk) if zk+1 = R, 

= 1−(1−t)(1−r)(1−pk) 

0 if zk+1 = R. 

• DP algorithm: 

Jk(pk) = min  (1 − pk)C, I + E Jk+1 Φ(pk, zk+1) . 
zk+1 

starting with 

JN−1(pN−1) = min (1−pN−1)C, I+(1−t)(1−pN−1)C . 



[ ] 

( ) 

( ) 

INSTRUCTION EXAMPLE III
 

• Write the DP algorithm as 

Jk(pk) = min  (1 − pk)C, I + Ak(pk) , 

where 

Ak(pk) =  P (zk+1 = R | Ik)Jk+1 Φ(pk, R) 

+ P (zk+1 = R | Ik)Jk+1 Φ(pk, R) 

• Can show by induction that Ak(p) are piecewise 
linear, concave, monotonically decreasing, with 

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1]. 

0 p 

C 

I 

I + AN - 1(p) 

I + AN - 2(p) 

I + AN - 3(p) 

1I_N - 1 _N - 2 _N - 3 1 
C 
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LECTURE OUTLINE
 

• Suboptimal control 

• Certainty equivalent control 

• Implementations and approximations 

• Issues in adaptive control 



PRACTICAL DIFFICULTIES OF DP
 

•	 The curse of modeling 

•	 The curse of dimensionality 

− Exponential growth of the computational and 
storage requirements as the number of state 
variables and control variables increases 

− Quick explosion of the number of states in 
combinatorial problems 

−	 Intractability of imperfect state information 
problems 

•	 There may be real-time solution constraints 

− A family of problems may be addressed. The 
data of the problem to be solved is given with 
little advance notice 

−	 The problem data may change as the system 
is controlled – need for on-line replanning 



� � � 

� � 

CERTAINTY EQUIVALENT CONTROL (CEC)
 

• Replace the stochastic problem with a deter
ministic problem 

• At each time k, the uncertain quantities are fixed 
at some “typical” values 

• Implementation for an imperfect info problem. 
At each time k: 

(1) Compute a state estimate xk(Ik) given the 
current information vector Ik. 

(2) Fix the wi, i ≥ k, at some wi(xi, ui). Solve 
the deterministic problem: 

N−1 

minimize gN (xN )+  gi xi, ui, wi(xi, ui) 
i=k 

subject to xk = xk(Ik) and for i ≥ k, 

ui ∈ Ui, xi+1 = fi xi, ui, wi(xi, ui) . 

(3) Use as control the first element in the optimal 
control sequence found. 



ALTERNATIVE IMPLEMENTATION
 

� �
 • Let µd(x0), . . . , µd (xN−1) be an optimal 0 N−1

controller obtained from the DP algorithm for the 
deterministic problem 

N−1 

minimize gN (xN ) +  
� 

gk 

� 
xk, µk(xk), wk(xk, uk) 

� 

k=0 

subject to xk+1 = fk 

� 
xk, µk(xk), wk(xk, uk) 

� 
, µk(xk) ∈ Uk 

The CEC applies at time k the control input 

� �
 
µ̃k(Ik) = µk

d xk(Ik) 

xk 

Delay 

Estimator 

uk - 1 

uk - 1 

vk 

zk 

zk 

wk 

Actuator 

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk) 

System Measurement 

µ k 
d 

u k =µk 
d (xk) 

xk(Ik) 



CEC WITH HEURISTICS
 

• Solve the “deterministic equivalent” problem us
ing a heuristic/suboptimal policy 

• Improved version of this idea: At time k minimize 
the stage k cost and plus the heuristic cost of the 
remaining stages, i.e., apply at time k a control ũk 

that minimizes over uk ∈ Uk(xk) 

� � � � �� 
gk xk, uk, wk(xk, uk) +Hk+1 fk xk, uk, wk(xk, uk) 

where Hk+1 is the cost-to-go function correspond
ing to the heuristic. 

• This an example of an important suboptimal 
control idea: 

Minimize at each stage k the sum of approxima
tions to the current stage cost and the optimal 
cost-to-go. 

• This is a central idea in several other suboptimal 
control schemes, such as limited lookahead, and 
rollout algorithms. 



� � 

PARTIALLY STOCHASTIC CEC
 

• Instead of fixing all future disturbances to their 
typical values, fix only some, and treat the rest as 
stochastic. 

• Important special case: Treat an imperfect state 
information problem as one of perfect state infor
mation, using an estimate xk(Ik) of xk as if it were 
exact. 

• Multiaccess Communication Example: Con
sider controlling the slotted Aloha system (dis
cussed in Ch. 5) by optimally choosing the proba
bility of transmission of wating packets. This is a 
hard problem of imperfect state info, whose per
fect state info version is easy. 

• Natural partially stochastic CEC: 

1 
µ̃k(Ik) = min  1, , 

xk(Ik) 

where xk(Ik) is an estimate of the current packet 
backlog based on the entire past channel history 
of successes, idles, and collisions (which is Ik). 



� � 

SYSTEMS WITH UNKNOWN PARAMETERS
 

• Let the system be of the form 

xk+1 = fk(xk, θ, uk, wk), 

where θ is a vector of unknown parameters with a 
given a priori probability distribution. 

• To formulate this into the standard framework, 
introduce a state variable yk = θ and the system 

� � � �
 
xk+1 fk(xk, yk, uk, wk)= , 
yk+1 yk 

and view x̃k = (xk, yk) as the new state. 

• Since yk = θ is unobservable, we have a prob
lem of imperfect state information even if the con
troller knows the state xk exactly. 

• Consider a partially stochastic CEC. If for a fixed 
parameter vector θ, we can compute the corre
sponding optimal policy µ ∗(I0, θ), . . . , µ  ∗ (IN−1, θ)0 N−1 

∗a partially stochastic CEC applies µk(Ik, θ̂k), where 
θ̂k is some estimate of θ. 



THE PROBLEM OF IDENTIFIABILITY
 

•	 Suppose we consider two phases: 

− A parameter identification phase (compute 
an estimate θ̂ of θ) 

−	 A control phase (apply control that would be 
optimal if θ̂ were true). 

• A fundamental difficulty: the control process 
may make some of the unknown parameters in
visible to the identification process. 

•	 Example: Consider the scalar system 

xk+1 = axk + buk + wk, k = 0, 1, . . . , N  − 1, �	 � �Nwith the cost E k=1(xk)2 . If a and b are known, 

the optimal control law is µk 
∗ (xk) = −(a/b)xk. 

• If a and b are not known and we try to esti
mate them while applying some nominal control 
law µ̃k(xk) = γxk, the closed-loop system is 

xk+1 = (a + bγ)xk + wk, 

so identification can at best find (a + bγ) but not 
the values of both a and b. 



� � 

� � 

CEC AND IDENTIFIABILITY I
 

• Suppose we have P{xk+1 | xk, uk, θ} and we 
use a control law µ ∗ that is optimal for known θ: 

µ̂k(Ik) = µ ∗(xk, θ̂  
k), with θ̂  

k: estimate of θ 

There are three systems of interest: 
(a) The system (perhaps falsely) believed by the 

controller to be true, which evolves proba
bilistically according to 

P xk+1 | xk, µ  ∗(xk, θ̂  
k), θ̂  

k . 

(b) The true closed-loop system, which evolves 
probabilistically according to 

P xk+1 | xk, µ  ∗(xk, θ̂  
k), θ  . 

(c) The optimal closed-loop system that corre
sponds to the true value of the parameter, 
which evolves probabilistically according to 

� �
 
P xk+1 | xk, µ  ∗(xk, θ), θ  . 



� � � � 

CEC AND IDENTIFIABILITY II
 

System Believed to beTrue 

P{xk + 1  | xk,µ *(xk, k), k } 

Optimal Closed-Loop System 

P{xk + 1  | xk,µ *(xk,e),e } 

True Closed-Loop System 

P{xk + 1  | xk,µ *(xk, k),e } 

e 
^ 
e 
^ 

e 
^ 

• There is a built-in mechanism for the parameter 
estimates to converge to a wrong value 

• Assume that for some θ̂  �= θ and all xk+1, xk, 

P xk+1 | xk, µ  ∗(xk, θ̂), θ̂ = P xk+1 | xk, µ  ∗(xk, θ̂), θ  

i.e., there is a false value of parameter for which 
the system under closed-loop control looks ex
actly as if the false value were true. 

• Then, if the controller estimates at some time 
the parameter to be θ̂, subsequent data will tend 
to reinforce this erroneous estimate. 
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• Limited lookahead policies 

• Performance bounds 

• Computational aspects 

• Problem approximation approach 

• Vehicle routing example 

• Heuristic cost-to-go approximation 

• Computer chess 



� � �� 

LIMITED LOOKAHEAD POLICIES
 

• One-step lookahead (1SL) policy : At each k and 
state xk, use the control µk(xk) that 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 
uk∈Uk(xk) 

where 

− J̃N = gN . 

− J̃k+1: approximation to true cost-to-go Jk+1 

• Two-step lookahead policy : At each k and xk, 
use the control µ̃k(xk) attaining the minimum above, 
where the function J̃k+1 is obtained using a 1SL 
approximation (solve a 2-step DP problem). 

• If J̃k+1 is readily available and the minimization 
above is not too hard, the 1SL policy is imple
mentable on-line. 

• Sometimes one also replaces Uk(xk) above with 
a subset of “most promising controls” Uk(xk). 

• As the length of lookahead increases, the re
quired computation quickly explodes. 



� �� 

PERFORMANCE BOUNDS
 

• Let Jk(xk) be the cost-to-go from (xk, k) of the 
1SL policy, based on functions J̃k. 

• Assume that for all (xk, k), we have  

Ĵk(xk) ≤ J̃k(xk), (*) 

where ĴN = gN and for all k, 

ˆ �
 
Jk(xk) =  min  E gk(xk, uk, wk)
 

uk∈Uk(xk)
 

+ J̃k+1 fk(xk, uk, wk) , 

[so Ĵk(xk) is computed along with µk(xk)]. Then 

Jk(xk) ≤ Ĵk(xk), for all (xk, k). 

• Important application: When J̃k is the cost-to
go of some heuristic policy (then the 1SL policy is 
called the rollout policy). 

• The bound can be extended to the case where 
there is a δk in the RHS of (*). Then 

Jk(xk) ≤ J̃k(xk) + δk + · · · + δN−1 



COMPUTATIONAL ASPECTS
 

• Sometimes nonlinear programming can be used 
to calculate the 1SL or the multistep version [par
ticularly when Uk(xk) is not a discrete set]. Con
nection with the methodology of stochastic pro
gramming. 

• The choice of the approximating functions J̃k is 
critical, and is calculated with a variety of methods. 

• Some approaches: 

(a)	 Problem Approximation: Approximate the op
timal cost-to-go with some cost derived from 
a related but simpler problem 

(b)	 Heuristic Cost-to-Go Approximation: Approx
imate the optimal cost-to-go with a function 
of a suitable parametric form, whose param
eters are tuned by some heuristic or system
atic scheme (Neuro-Dynamic Programming) 

(c)	 Rollout Approach: Approximate the optimal 
cost-to-go with the cost of some suboptimal 
policy, which is calculated either analytically 
or by simulation 



PROBLEM APPROXIMATION
 

•	 Many (problem-dependent) possibilities 

− Replace uncertain quantities by nominal val
ues, or simplify the calculation of expected 
values by limited simulation 

− Simplify difficult constraints or dynamics 

• Example of enforced decomposition: Route m 
vehicles that move over a graph. Each node has 
a “value.” The first vehicle that passes through the 
node collects its value. Max the total collected 
value, subject to initial and final time constraints 
(plus time windows and other constraints). 

• Usually the 1-vehicle version of the problem is 
much simpler. This motivates an approximation 
obtained by solving single vehicle problems. 

• 1SL scheme: At time k and state xk (position 
of vehicles and “collected value nodes”), consider 
all possible kth moves by the vehicles, and at the 
resulting states we approximate the optimal value
to-go with the value collected by optimizing the 
vehicle routes one-at-a-time 



HEURISTIC COST-TO-GO APPROXIMATION
 

• Use a cost-to-go approximation from a paramet
ric class J̃(x, r) where x is the current state and 
r = (r1, . . . , rm) is a vector of “tunable” scalars 
(weights). 

• By adjusting the weights, one can change the 
“shape” of the approximation J̃ so that it is reason
ably close to the true optimal cost-to-go function. 

•	 Two key issues: 

− The choice of parametric class J̃(x, r) (the 
approximation architecture). 

−	 Method for tuning the weights (“training” the 
architecture). 

• Successful application strongly depends on how 
these issues are handled, and on insight about the 
problem. 

• Sometimes a simulator is used, particularly 
when there is no mathematical model of the sys
tem. 
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APPROXIMATION ARCHITECTURES
 

• Divided in linear and nonlinear [i.e., linear or 
nonlinear dependence of J̃(x, r) on r]. 

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer. 

• Architectures based on feature extraction 

State x 
Feature Extraction 
Mapping 

Cost Approximator w/ 
Parameter Vector r 

Feature 
Vector y 

Cost Approximation 

J (y,r ) 

• Ideally, the features will encode much of the 
nonlinearity that is inherent in the cost-to-go ap
proximated, and the approximation may be quite 
accurate without a complicated architecture. 

• Sometimes the state space is partitioned, and 
“local” features are introduced for each subset of 
the partition (they are 0 outside the subset). 

• With a well-chosen feature vector y(x), we can 
use a linear architecture 

J̃(x, r) = Ĵ y(x), r  = riyi(x) 
i 



COMPUTER CHESS I
 

• Programs use a feature-based position evalua
tor that assigns a score to each move/position 

Feature 
Extraction 

Weighting 
of Features 

Score 

Features: 
Material balance, 
Mobility, 
Safety, etc 

Position Evaluator 

• Most often the weighting of features is linear but 
multistep lookahead is involved. 

•	 Most often the training is done by trial and error. 

•	 Additional features: 

− Depth first search 

− Variable depth search when dynamic posi
tions are involved
 

− Alpha-beta pruning
 



COMPUTER CHESS II 

• Multistep lookahead tree 

P  (White to Move) 

M 2 

(+16) 

(+16) (+20) 

(+8) (+16) (+20) (+8) 

(+16) 

(+11) 

(+11) 

(+11) Black to 
Move 

Black to Move 

White to Move 

M 1 

P 2 

P 1 

P 3 

P 4 

_ Cutoff _ Cutoff 

_ Cutoff 

` Cutoff 

+8 +20 +18 +16 +24 +20 +10 +12 -4 +8 +21 +11 -5 +10 +32 +27 +10 +9 +3 

• Alpha-beta pruning: As the move scores are 
evaluated by depth-first search, branches whose 
consideration (based on the calculations so far) 
cannot possibly change the optimal move are ne
glected 
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• Rollout algorithms 

• Cost improvement property 

• Discrete deterministic problems 

• Sequential consistency and greedy algorithms 

• Sequential improvement 
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ROLLOUT ALGORITHMS


• One-step lookahead policy : At each k and state 
xk, use the control µk(xk) that 

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 
uk∈Uk(xk) 

where 

−	 J̃N = gN . 

−	 J̃k+1: approximation to true cost-to-go Jk+1 

• Rollout algorithm: When J̃k is the cost-to-go of 
some heuristic policy (called the base policy) 

• Cost improvement property (to be shown): The 
rollout algorithm achieves no worse (and usually 
much better) cost than the base heuristic starting 
from the same state. 

• Main difficulty: Calculating J̃k(xk) may be com
putationally intensive if the cost-to-go of the base 
policy cannot be analytically calculated. 

−	 May involve Monte Carlo simulation if the 
problem is stochastic. 

− Things improve in the deterministic case. 



EXAMPLE: THE QUIZ PROBLEM


• A person is given N questions; answering cor
rectly question i has probability pi, with reward vi. 

•	 Quiz terminates at the first incorrect answer. 

• Problem: Choose the ordering of questions so 
as to maximize the total expected reward. 

• Assuming no other constraints, it is optimal to 
use the index policy : Questions should be an
swered in decreasing order of the “index of pref
erence” pivi/(1 − pi). 

• With minor changes in the problem, the index 
policy need not be optimal. Examples: 

− A limit (< N ) on the maximum number of 
questions that can be answered. 

−	 Time windows, sequence-dependent rewards, 
precedence constraints. 

• Rollout with the index policy as base policy: 
Convenient because at a given state (subset of 
questions already answered), the index policy and 
its expected reward can be easily calculated. 



COST IMPROVEMENT PROPERTY


•	 Let 

Jk(xk): Cost-to-go of the rollout policy 

Hk(xk): Cost-to-go of the base policy 

• We claim that Jk(xk) ≤ Hk(xk) for all xk and k 

• Proof by induction: We have JN (xN ) = HN (xN ) 
for all xN . Assume that 

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1. 

Then, for all xk � �	 � � � ��� 
Jk(xk) = E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk � �	 � � � ��� 

≤ E	 gk xk, µk(xk), wk + Hk+1 fk xk, µk(xk), wk � �	 � � � ��� 
≤ E	 gk xk, µk(xk), wk + Hk+1 fk xk, µk(xk), wk 

= Hk(xk)




EXAMPLE: THE BREAKTHROUGH PROBLEM


root 

• Given a binary tree with N stages. 

• Each arc is either free or is blocked (crossed 
out in the figure). 

• Problem: Find a free path from the root to the 
leaves (such as the one shown with thick lines). 

• Base heuristic (greedy): Follow the right branch 
if free; else follow the left branch if free. 

• For large N and given prob. of free branch: 
the rollout algorithm requires O(N) times more 
computation, but has O(N) times larger prob. of 
finding a free path than the greedy algorithm. 



DISCRETE DETERMINISTIC PROBLEMS


• Any discrete optimization problem (with finite 
number of choices/feasible solutions) can be rep
resented as a sequential decision process by us
ing a tree. 

• The leaves of the tree correspond to the feasible 
solutions. 

• The problem can be solved by DP, starting from 
the leaves and going back towards the root. 

• Example: Traveling salesman problem. Find a 
minimum cost tour that goes exactly once through 
each of N cities. 

ABC 

A Origin Node s 

AB AC AD 

ABD ACB ACD ADB ADC 

ABCD ABDC ACBD ACDB ADBC ADCB 

Traveling salesman problem with four cities A, B, C, D 



A CLASS OF GENERAL DISCRETE PROBLEMS


•	 Generic problem: 

− Given a graph with directed arcs 

− A special node s called the origin 

− A set of terminal nodes, called destinations, 
and a cost g(i) for each destination i. 

− Find min cost path starting at the origin, end
ing at one of the destination nodes. 

• Base heuristic: For any nondestination node i, 
constructs a path (i, i1, . . . , im, i) starting at i and 
ending at one of the destination nodes i. We call 
i the projection of i, and we denote H(i) = g(i). 

• Rollout algorithm: Start at the origin; choose 
the successor node with least cost projection 

j1	 p(j1) 

j2 p(j )2

j3 p(j )
s i i i 3

1 m-1 m 

j4 p(j )4

Neighbors of im 
Projections of 

Neighbors of im 



EXAMPLE: ONE-DIMENSIONAL WALK


• A person takes either a unit step to the left or a 
unit step to the right. Minimize the cost g(i) of the 
point i where he will end up after N steps. 

(0,0) 

_
(N,-N) (N,0) i (N,N) 

g(i) 

-N 0 N - 2 N i 
_ 
i 

• Base heuristic: Always go to the right. Rollout 
finds the rightmost local minimum. 

• Base heuristic: Compare always go to the right 
and always go the left. Choose the best of the 
two. Rollout finds a global minimum. 



SEQUENTIAL CONSISTENCY


• The base heuristic is sequentially consistent if 
for every node i, whenever it generates the path 
(i, i1, . . . , im, i) starting at i, it also generates the 
path (i1, . . . , im, i) starting at the node i1 (i.e., all 
nodes of its path have the same projection). 

• Prime example of a sequentially consistent heuris
tic is a greedy algorithm. It uses an estimate F (i) 
of the optimal cost starting from i. 

• At the typical step, given a path (i, i1, . . . , im), 
where im is not a destination, the algorithm adds 
to the path a node im+1 such that 

im+1 = arg  min  F (j) 
j∈N(im) 

• If the base heuristic is sequentially consistent, 
the cost of the rollout algorithm is no more than 
the cost of the base heuristic. In particular, if 
(s, i1, . . . , im̄ ) is the rollout path, we have 

H(s) ≥ H(i1) ≥ · · · ≥ H(im−1) ≥ H(i ¯ )¯ m

where H(i) = cost of the heuristic starting from i. 



SEQUENTIAL IMPROVEMENT


• We say that the base heuristic is sequentially 
improving if for every non-destination node i, we  
have 

H(i) ≥	 min H(j)

j is neighbor of i 

• If the base heuristic is sequentially improving, 
the cost of the rollout algorithm is no more than 
the cost of the base heuristic, starting from any 
node. 

•	 Fortified rollout algorithm: 

− Simple variant of the rollout algorithm, where 
we keep the best path found so far through 
the application of the base heuristic. 

− If the rollout path deviates from the best path 
found, then follow the best path. 

− Can be shown to be a rollout algorithm with 
sequentially improving base heuristic for a 
slightly modified variant of the original prob
lem.


− Has the cost improvement property.
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• More on rollout algorithms 

• Simulation-based methods 

• Approximations of rollout algorithms 

• Rolling horizon approximations 

• Discretization issues 

• Other suboptimal approaches 
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ROLLOUT ALGORITHMS
 

• Rollout policy : At each k and state xk, use the 
control µk(xk) that 

min Qk(xk, uk), 
uk∈Uk(xk) 

where 

Qk(xk, uk) =  E gk(xk, uk, wk)+Hk+1 fk(xk, uk, wk) 

and Hk+1(xk+1) is the cost-to-go of the heuristic. 

• Qk(xk, uk) is called the Q-factor of (xk, uk), and 
for a stochastic problem, its computation may in
volve Monte Carlo simulation. 

• Potential difficulty: To minimize over uk the Q-
factor, we must form Q-factor differences Qk(xk, u)− 
Qk(xk, u). This differencing often amplifies the 
simulation error in the calculation of the Q-factors. 

• Potential remedy: Compare any two controls u 
and u by simulating Qk(xk, u) − Qk(xk, u) directly. 



� � �� 

� � 

� � 

� �


Q-FACTOR APPROXIMATION 

• Here, instead of simulating the Q-factors, we 
approximate the costs-to-go Hk+1(xk+1). 

• Certainty equivalence approach: Given xk, fix  
future disturbances at “typical” values wk+1, . . . , wN−1 
and approximate the Q-factors with 

Q̃ 
k(xk, uk) =  E gk(xk, uk, wk)+H̃ 

k+1 fk(xk, uk, wk) 

where H̃k+1 fk(xk, uk, wk) is the cost of the heuris
tic with the disturbances fixed at the typical values. 

• This is an approximation of Hk+1 fk(xk, uk, wk) 
by using a “single sample simulation.” 

• Variant of the certainty equivalence approach: 
Approximate Hk+1 fk(xk, uk, wk) by simulation 
using a small number of “representative samples” 
(scenarios). 

• Alternative: Calculate (exact or approximate) 
values for the cost-to-go of the base policy at a 
limited set of state-time pairs, and then approx
imate Hk+1 using an approximation architecture 
and a “least-squares fit.” 



ROLLING HORIZON APPROACH
 

• This is an l-step lookahead policy where the 
cost-to-go approximation is just 0. 

• Alternatively, the cost-to-go approximation is the 
terminal cost function gN . 

• A short rolling horizon saves computation. 

• “Paradox”: It is not true that a longer rolling 
horizon always improves performance. 

• Example: At the initial state, there are two con
trols available (1 and 2). At every other state, there 
is only one control. 

Optimal Trajectory 

Current 
State 

... ... 

... ... 

1 

2 

High Low Highl Stages 
Cost Cost Cost 



ROLLING HORIZON COMBINED WITH ROLLOUT
 

• We can use a rolling horizon approximation in 
calculating the cost-to-go of the base heuristic. 

• Because the heuristic is suboptimal, the ratio
nale for a long rolling horizon becomes weaker. 

• Example: N -stage stopping problem where the 
stopping cost is 0, the continuation cost is either 
−ε or 1, where 0 < ε <  1/N , and the first state 
with continuation cost equal to 1 is state m. Then 
the optimal policy is to stop at state m, and the 
optimal cost is −mε. 

0 1 2 m N 

Stopped State 

< ¡  < ¡  1... ... 

• Consider the heuristic that continues at every 
state, and the rollout policy that is based on this 
heuristic, with a rolling horizon of l ≤ m steps. 

• It will continue up to the first m − l + 1  stages, 
thus compiling a cost of −(m − l +1)ε. The rollout 
performance improves as l becomes shorter! 



DISCRETIZATION
 

• If the state space and/or control space is con
tinuous/infinite, it must be replaced by a finite dis
cretization. 

• Need for consistency, i.e., as the discretiza
tion becomes finer, the cost-to-go functions of the 
discretized problem converge to those of the con
tinuous problem. 

• Pitfalls with discretizing continuous time. 

• The control constraint set changes a lot as we 
pass to the discrete-time approximation. 

• Example: 

ẋ1(t) = u1(t), ẋ2(t) = u2(t), 

with the control constraint ui(t) ∈ {−1, 1} for i = 
1, 2. Compare with the discretized version 

x1(t+∆t) =  x1(t)+∆tu1(t), x2(t+∆t) =  x2(t)+∆tu2(t), 

with ui(t) ∈ {−1, 1}. 

• “Convexification effect” of continuous time. 
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GENERAL APPROACH FOR DISCRETIZATION I
 

• Given a discrete-time system with state space 
S, consider a finite subset S; for example S could 
be a finite grid within a continuous state space S. 
Assume stationarity for convenience, i.e., that the 
system equation and cost per stage are the same 
for all times. 

• We define an approximation to the original prob
lem, with state space S, as follows: 

• Express each x ∈ S as a convex combination 
of states in S, i.e., 

x = γi(x)xi where γi(x) ≥ 0, γi(x) = 1  
xi∈S i 

• Define a “reduced” dynamic system with state 
space S, whereby from each xi ∈ S we move to 
x = f(xi, u, w) according to the system equation 
of the original problem, and then move to xj ∈ S 
with probabilities γj (x). 

• Define similarly the corresponding cost per stage 
of the transitions of the reduced system. 



� 

GENERAL APPROACH FOR DISCRETIZATION II
 

• Let Jk(xi) be the optimal cost-to-go of the “re
duced” problem from each state xi ∈ S and time 
k onward. 

• Approximate the optimal cost-to-go of any x ∈ S 
for the original problem by 

J̃k(x) =  γi(x)Jk(xi), 
xi∈S 

and use one-step-lookahead based on J̃k. 

• The choice of coefficients γi(x) is in principle 
arbitrary, but should aim at consistency, i.e., as 
the number of states in S increases, J̃k(x) should 
converge to the optimal cost-to-go of the original 
problem. 

• Interesting observation: While the original prob
lem may be deterministic, the reduced problem is 
always stochastic. 

• Generalization: The set S may be any finite set 
(not a subset of S) as long as the coefficients γi(x) 
admit a meaningful interpretation that quantifies 
the degree of association of x with xi. 



� �� 

� 

OTHER SUBOPTIMAL CONTROL APPROACHES
 

• Minimize the DP equation error: Ap

proximate the optimal cost-to-go functions Jk(xk)

with functions J̃k(xk, rk), where rk is a vector of 

unknown parameters, chosen to minimize some 

form of error in the DP equations. 


• Approximate directly control policies: For 

a subset of states xi, i = 1, . . . , m, find 


�
 
µ̂k(xi) = arg  min  E g(xi, uk, wk)


uk∈Uk(xi)


+ J̃k+1 fk(xi, uk, wk), rk+1 . 

Then find µ̃k(xk, sk), where sk is a vector of pa

rameters obtained by solving the problem 


m 

min ‖µ̂k(xi) − µ̃k(xi, s)‖2 . 
s 

i=1 

• Approximation in policy space: Do not 
bother with cost-to-go approximations. Parametrize 
the policies as µ̃k(xk, sk), and minimize the cost 
function of the problem over the parameters sk. 
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LECTURE OUTLINE 

• Infinite horizon problems 

• Stochastic shortest path problems 

• Bellman’s equation 

• Dynamic programming – value iteration 

• Examples 
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TYPES OF INFINITE HORIZON PROBLEMS
 

•	 Same as the basic problem, but: 

− The number of stages is infinite. 

− The system is stationary. 

•	 Total cost problems: Minimize 

{	 } 
N−1 ∑ (	 ) 

Jπ(x0) = lim E	 αkg xk, µk(xk), wk 
N→∞ wk
 

k=0,1,... k=0
 

− Stochastic shortest path problems (α = 1) 

− Discounted problems (α <  1) with bounded 
cost per stage 

− Discounted and undiscounted problems with 
unbounded cost per stage 

•	 Average cost problems 

{	 } 
1 

N−1 ( ) 
lim E g xk, µk(xk), wk 

N→∞ N wk
 
k=0,1,... k=0
 



{ ( )} 

{ ( )} 

PREVIEW OF INFINITE HORIZON RESULTS 

• Key issue: The relation between the infinite and 
finite horizon optimal cost-to-go functions. 

• Illustration: Let α = 1  and JN (x) denote the 
optimal cost of the N -stage problem, generated 
after N DP iterations, starting from J0(x) ≡ 0 

Jk+1(x) =  min  E g(x, u, w) + Jk f(x, u, w) , ∀ x 
u∈U(x) w 

• Typical results for total cost problems: 

J∗(x) = lim JN (x), ∀ x 
N→∞ 

J∗(x) =  min  E g(x, u, w) + J∗ f(x, u, w) , ∀ x 
u∈U(x) w 

(Bellman’s Equation). If µ(x) minimizes in Bell-
man’s Eq., the policy {µ, µ, . . .} is optimal. 

• Bellman’s Eq. always holds. The other results 
are true for SSP (and bounded/discounted; un
usual exceptions for other problems). 



{ } ∣ 

STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n and 
special cost-free termination state t 

− Transition probabilities pij (u) 
− Control constraints u ∈ U(i)
 
− Cost of policy π = {µ0, µ1, . . .} is
 

N−1 ∣ ∑
 ( ) 
Jπ(i) = lim E g xk, µk(xk) ∣ x0 = i 

N→∞ 
k=0 

− Optimal policy if Jπ(i) =  J∗(i) for all i. 

− Special notation: For stationary policies π = 
{µ, µ, . . .}, we use  Jµ(i) in place of Jπ(i). 

• Assumption: There exists integer m such that 
for every policy and initial state, there is posi
tive probability that the termination state will be 
reached after no more that m stages; for all π, we  
have 

ρπ = max  P{x � = i, π} < 1m = t | x0 
i=1,...,n 



∣ ∣ ∣ 

∑ 

FINITENESS OF POLICY COST-TO-GO FUNCTIONS
 

• Let 
ρ = max ρπ. 

π 

Note that ρπ depends only on the first m compo
nents of the policy π, so that ρ < 1. 

• For any π and any initial state i 

P {x2m =� t |x0 = i, π} = P { = t |xm �x2m � = t, x0 = i, π} 

× P {xm �= t |x0 = i, π} ≤ ρ2 

and similarly 

P{xkm �= t |x0 = i, π} ≤ ρk , i = 1, . . . , n  

• So E{Cost between times km and (k + 1)m − 1 } 

≤ mρk max ∣g(i, u)
i=1,...,n
 

and u∈U(i)
 

∞ ∣ ∣ ∣ ∣ m ∣ ∣ ∣Jπ (i)∣ ≤ mρk max ∣g(i, u)∣ = max ∣g(i, u)∣ 
i=1,...,n 1 − ρ i=1,...,n 

k=0 u∈U(i) u∈U(i)




∑ 

∑ 

∑ { ( )} 

MAIN RESULT
 

• Given any initial conditions J0(1), . . . , J0(n), the 
sequence Jk(i) generated by the DP iteration   

n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 
u∈U(i) 

j=1 

converges to the optimal cost J∗(i) for each i. 

• Bellman’s equation has J∗(i) as unique solution: 

  
n J∗(i) =  min  g(i, u) +  pij (u)J∗(j) , ∀ i 

u∈U(i) 
j=1 

• A stationary policy µ is optimal if and only if 
for every state i, µ(i) attains the minimum in Bell-
man’s equation. 

• Key proof idea: The “tail” of the cost series, 

∞ 

E g xk, µk(xk) 
k=mK 

vanishes as K increases to ∞.
 



∑ ∑ 

∑ ∑ { ( )} 

OUTLINE OF PROOF THAT JN → J∗ 

• Assume for simplicity that J0(i) = 0  for all i, and 
for any K ≥ 1, write the cost of any policy π as 

mK−1 ∞ { ( )} { ( )} 
Jπ (x0) =  E g xk, µk(xk) + E g xk, µk(xk) 

k=0 k=mK 

mK−1 ∞ 

≤ E g xk, µk(xk) + ρk m max |g(i, u)|
i,u 

k=0 k=K 

Take the minimum of both sides over π to obtain 

ρK 
J∗(x0) ≤ JmK (x0) +  m max |g(i, u)|.

1 − ρ i,u 

Similarly, we have 

ρK 
JmK (x0) − m max |g(i, u)| ≤ J∗(x0).1 − ρ i,u 

It follows that limK→∞ JmK (x0) =  J∗(x0). 

• It can be seen that JmK (x0) and JmK+k(x0) 
converge to the same limit for k = 1, . . . , m−1, so  
JN (x0) → J∗(x0) 



∑ 

∑ 

EXAMPLE I
 

•	 Minimizing the E{Time to Termination}: Let 

g(i, u) = 1, ∀ i = 1, . . . , n,  u ∈ U(i) 

• Under our assumptions, the costs J∗(i) uniquely 
solve Bellman’s equation, which has the form 

	 
 
n J∗(i) =  min  1 +  pij (u)J∗(j) , i = 1, . . . , n  

u∈U(i) 
j=1 

• In the special case where there is only one con
trol at each state, J∗(i) is the mean first passage 
time from i to t. These times, denoted mi, are the 
unique solution of the equations 

n 

mi = 1 +  pij mj , i = 1, . . . , n.  
j=1 



EXAMPLE II
 

• A spider and a fly move along a straight line. 

• The fly moves one unit to the left with probability 
p, one unit to the right with probability p, and stays 
where it is with probability 1 − 2p. 

• The spider moves one unit towards the fly if its 
distance from the fly is more that one unit. 

• If the spider is one unit away from the fly, it will 
either move one unit towards the fly or stay where 
it is. 

• If the spider and the fly land in the same position, 
the spider captures the fly. 

• The spider’s objective is to capture the fly in 
minimum expected time. 

• This is an SSP w/ state = the distance between 
spider and fly (i = 1, . . . , n and t = 0 the termina
tion state). 

• There is control choice only at state 1. 



[	 ] 

[	 ] 

EXAMPLE II (CONTINUED) 

•	 For M = move, and M = don’t move 

p11(M) = 2p, p10(M) = 1  − 2p, 

p12(M) =  p, p11(M) = 1  − 2p, p10(M) =  p, 

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2, 

with all other transition probabilities being 0. 

• Bellman’s equation: 

J∗(i) = 1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i  ≥ 2 

J∗(1) = 1+min 2pJ∗(1), pJ∗(2)+ (1 − 2p)J∗(1) 

w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1), 

p (1	− 2p)J∗(1)
J∗(1) = 1+min 2pJ∗(1), +	 .

1 − p	 1 − p 

• Work from here to find that when one unit away 
from the fly it is optimal not to move if and only if 
p ≥ 1/3. 
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LECTURE OUTLINE
 

• Stochastic shortest path problems 

• Policy iteration 

• Linear programming 

• Discounted problems 



{ } ∣ 

STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n and 
special cost-free termination state t 

− Transition probabilities pij (u) 
− Control constraints u ∈ U(i)
 
− Cost of policy π = {µ0, µ1, . . .} is
 

N−1 ∣ ∑
 ( ) 
Jπ(i) = lim E g xk, µk(xk) ∣ x0 = i 

N→∞ 
k=0 

− Optimal policy if Jπ(i) =  J∗(i) for all i. 

− Special notation: For stationary policies π = 
{µ, µ, . . .}, we use  Jµ(i) in place of Jπ(i). 

• Assumption: There exists integer m such that 
for every policy and initial state, there is posi
tive probability that the termination state will be 
reached after no more that m stages; for all π, we  
have 

ρπ = max  P{x � = i, π} < 1m = t | x0 
i=1,...,n 



∑ 

∑ 

∑ { ( )} 

MAIN RESULT
 

• Given any initial conditions J0(1), . . . , J0(n), the 
sequence Jk(i) generated by the DP iteration   

n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 
u∈U(i) 

j=1 

converges to the optimal cost J∗(i) for each i. 

• Bellman’s equation has J∗(i) as unique solution: 

  
n J∗(i) =  min  g(i, u) +  pij (u)J∗(j) , ∀ i 

u∈U(i) 
j=1 

• A stationary policy µ is optimal if and only if 
for every state i, µ(i) attains the minimum in Bell-
man’s equation. 

• Key proof idea: The “tail” of the cost series, 

∞ 

E g xk, µk(xk) 
k=mK 

vanishes as K increases to ∞.
 



( ) ( ) ∑ 

BELLMAN’S EQUATION FOR A SINGLE POLICY
 

• Consider a stationary policy µ 

• Jµ(i), i = 1, . . . , n, are the unique solution of 
the linear system of n equations 

n 

Jµ(i) = g i, µ(i) + pij µ(i) Jµ(j), ∀ i = 1, . . . , n  
j=1 

• Proof: This is just Bellman’s equation for a mod
ified/restricted problem where there is only one 
policy, the stationary policy µ, i.e., the control con
straint set at state i is Ũ(i) = {µ(i)} 

• The equation provides a way to compute Jµ(i), 
i = 1, . . . , n, but the computation is substantial for 
large n [O(n3)] 



( ) ( ) ∑ 

∑ 

POLICY ITERATION
 

• It generates a sequence µ1, µ2 , . . . of stationary 
policies, starting with any stationary policy µ0. 

• At the typical iteration, given µk, we perform a 
policy evaluation step, that computes the Jµk (i) 
as the solution of the (linear) system of equations 

n 

J(i) = g i, µk(i) + pij µk(i) J(j), i = 1, . . . , n,  
j=1 

in the n unknowns J(1), . . . , J(n). We then per
form a policy improvement step, which computes 
a new policy µk+1 as 

  
n µk+1(i) = arg  min  g(i, u) +  pij (u)J k (j) , ∀ i 

u∈U(i) 
µ 

j=1 

• The algorithm stops when Jµk (i) = Jµk+1 (i) for 
all i 

• Note the connection with the rollout algorithm, 
which is just a single policy iteration 



∑ ( ) ( ) 

JUSTIFICATION OF POLICY ITERATION
 

• We can show thatJµk+1 (i) ≤ Jµk (i) for all i, k 

• Fix k and consider the sequence generated by 
n ( ) ∑
 ( )
 

JN+1(i) = g i, µk+1(i) + pij µk+1(i) JN (j)

j=1


where J0(i) = Jµk (i). We  have  
n ( ) ∑
 ( )
 

J0(i) = g i, µk(i) + pij µk(i) J0(j) 
j=1 

n 

≥ g i, µk+1(i) + pij µk+1(i) J0(j) = J1(i) 
j=1 

Using the monotonicity property of DP, 

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i 

Since JN (i) → J µk+1 (i) as N → ∞, we obtain 
Jµk (i) = J0(i) ≥ Jµk+1 (i) for all i. Also if Jµk (i) =  
Jµk+1 (i) for all i, Jµk solves Bellman’s equation 
and is therefore equal to J∗ 

• A policy cannot be repeated, there are finitely 
many stationary policies, so the algorithm termi
nates with an optimal policy 



∑ 

( ) 

∑ 

LINEAR PROGRAMMING
 

• We claim that J∗ is the “largest” J that satisfies 
the constraint 

n 

J(i) ≤ g(i, u) +  pij (u)J(j), (1) 
j=1 

for all i = 1, . . . , n and u ∈ U(i). 

• Proof: If we use value iteration to generate a se
quence of vectors Jk = Jk(1), . . . , Jk(n) starting 
with a J0 such that   

n 

J0(i) ≤ min g(i, u) +  pij (u)J0(j) , ∀ i 
u∈U(i) 

j=1 

Then, Jk(i) ≤ Jk+1(i) for all k and i (monotonicity 
of DP) and Jk → J∗, so that J0(i) ≤ J∗(i) for all i. 

• So J∗ = (J∗(1), . . . , J∗(n)) is the solution of the 
linear program of maximizing 

∑ 
i
n 
=1 J(i) subject to 

the constraint (1). 



LINEAR PROGRAMMING (CONTINUED)
 

J(1) 

J(2) 

0 

J* = (J*(1),J*(2)) 

J(1) = g(1,u 2) +  p 11(u
2)J(1) + p 12(u

2)J(2) 

J(1) = g(1,u1 ) +  p 11(u
1)J(1) + p 12(u 1)J(2) 

J(2) = g(2,u1) +  p 21(u
1)J(1) + p 22(u

1)J(2) 

J(2) = g(2,u 2) +  p 21(u 2)J(1) + p 22(u 2)J(2) 

• Drawback: For large n the dimension of this pro
gram is very large. Furthermore, the number of 
constraints is equal to the number of state-control 
pairs. 



∑ 

∑ 

DISCOUNTED PROBLEMS
 

• Assume a discount factor α <  1. 

• Conversion to an SSP problem. 

pij(u) _ pij(u) 

pii(u) i j _ pjj(u) 

pji(u) 

p jj(u ) _pii(u) 

1 - _ 

i j 

pji(u)_ 
1 - _ 

t 

• Value iteration converges to J∗ for all initial J0: 

  
n Jk+1(i) =  min  g(i, u) + α pij (u)Jk(j) , ∀ i 

u∈U(i) 
j=1 

• J∗ is the unique solution of Bellman’s equation: 

  
n J∗(i) =  min  g(i, u) + α pij (u)J∗(j) , ∀ i 

u∈U(i) 
j=1 



[ ] { } 
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DISCOUNTED PROBLEMS (CONTINUED)
 

• Policy iteration converges finitely to an optimal, 
and linear programming works. 

• Example: Asset selling over an infinite horizon. 
If accepted, the offer xk of period k, is invested at 
a rate of interest r. 

• By depreciating the sale amount to period 0 
dollars, we view (1 + r)−kxk as the reward for 
selling the asset in period k at a price xk, where 
r >  0 is the rate of interest. So the discount factor 
is α = 1/(1 + r). 

• J∗ is the unique solution of Bellman’s equation 

E J∗(w)
J∗(x) = max  x, .

1 + r 

• An optimal policy is to sell if and only if the
 
current offer xk is greater than or equal to ᾱ, where
 

E J∗(w)
ᾱ = .


1 + r 
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• Average cost per stage problems 

• Connection with stochastic shortest path prob
lems 

• Bellman’s equation 

• Value iteration 

• Policy iteration 



∑ 

AVERAGE COST PER STAGE PROBLEM
 

• Stationary system with finite number of states 
and controls 

•	 Minimize over policies π = {µ0, µ1, ...} 

{	 } 
1 

N−1 ( ) 
Jπ(x0) = lim E g xk, µk(xk), wk 

N→∞ N wk
 
k=0,1,... k=0
 

• Important characteristics (not shared by other 
types of infinite horizon problems) 

−	 For any fixed K, the cost incurred up to time 
K does not matter (only the state that we are 
at time K matters) 

−	 If all states “communicate” the optimal cost 
is independent of the initial state [if we can 
go from i to j in finite expected time, we must 
have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for all i. 

−	 Because “communication” issues are so im
portant, the methodology relies heavily on 
Markov chain theory. 



CONNECTION WITH SSP
 

• Assumption: State n is such that for some inte
ger m >  0, and for all initial states and all policies, 
n is visited with positive probability at least once 
within the first m stages. 

• Divide the sequence of generated states into 
cycles marked by successive visits to n. 

• Each of the cycles can be viewed as a state 
trajectory of a corresponding stochastic shortest 
path problem with n as the termination state. 

i j 

pij(u) 

pii(u) pjj(u)pji(u) 

n 
pin(u) pjn(u) 

pnn(u) 

pnj(u)pni(u) 

i j 

pij(u) 

pii(u) pjj(u)pji(u) 

n 

t 

Artificial Termination State 

Special 
State n 

pni(u) 

pin(u) 

pnn(u) 

pnj(u) 

pjn(u) 

• Let the cost at i of the SSP be g(i, u) − λ∗ 

• We will show that 

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl.
 



CONNECTION WITH SSP (CONTINUED)
 

• Consider a minimum cycle cost problem: Find 
a stationary policy µ that minimizes the expected 
cost per transition within a cycle 

Cnn(µ)
 
Nnn(µ)

,
 

where for a fixed µ, 

Cnn(µ) :  E{cost from n up to the first return to n} 

Nnn(µ) :  E{time from n up to the first return to n} 

• Intuitively, optimal cycle cost = λ∗, so  

Cnn(µ) − Nnn(µ)λ∗ ≥ 0, 

with equality if µ is optimal. 

• Thus, the optimal µ must minimize over µ the 
expression Cnn(µ) − Nnn(µ)λ∗, which is the ex
pected cost of µ starting from n in the SSP with 
stage costs g(i, u) − λ∗ . 



∑ 

∑ 

BELLMAN’S EQUATION
 

• Let h∗(i) the optimal cost of this SSP prob
lem when starting at the nontermination states i = 
1, . . . , n. Then, h∗(1), . . . , h∗(n) solve uniquely the 
corresponding Bellman’s equation 

  
n−1 

h∗(i) =  min  g(i, u) − λ∗ + pij (u)h∗(j) , ∀ i 
u∈U(i) 

j=1 

• If µ ∗ is an optimal stationary policy for the SSP 
problem, we have 

h∗(n) = Cnn(µ ∗) − Nnn(µ ∗)λ∗ = 0  

• Combining these equations, we have 

  
n λ∗+h∗(i) =  min  g(i, u) +  pij (u)h∗(j) , ∀ i 

u∈U(i) 
j=1 

∗ • If µ ∗(i) attains the min for each i, µ is optimal. 



MORE ON THE CONNECTION WITH SSP 

• Interpretation of h∗(i) as a relative or differential 
cost : It is the minimum of 

E{cost to reach n from i for the first time}
∗−	E{cost if the stage cost were λ and not g(i, u)} 

• We don’t know λ∗, so we can’t solve the aver
age cost problem as an SSP problem. But similar 
value and policy iteration algorithms are possible. 

•	 Example: A manufacturer at each time: 

− Receives an order with prob. p and no order 
with prob. 1 − p. 

− May process all unfilled orders at cost K >  
0, or process no order at all. The cost per 
unfilled order at each time is c > 0. 

− Maximum number of orders that can remain 
unfilled is n. 

−	 Find a processing policy that minimizes the 
total expected cost per stage. 



[ 
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EXAMPLE (CONTINUED)
 

• State = number of unfilled orders. State 0 is the 
special state for the SSP formulation. 

• Bellman’s equation: For states i = 0, 1, . . . , n−1 

λ∗ + h∗(i) = min  K + (1  − p)h∗(0) + ph∗(1), 

ci + (1  − p)h∗(i) +  ph∗(i + 1)  , 

and for state n 

λ∗ + h∗(n) =  K + (1  − p)h∗(0) + ph∗(1) 

• Optimal policy: Process i unfilled orders if 

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1). 

• Intuitively, h∗(i) is monotonically nondecreas
ing with i (interpret h∗(i) as optimal costs-to-go 
for the associate SSP problem). So a threshold 
policy is optimal: process the orders if their num
ber exceeds some threshold integer m ∗ . 



∑ 

∣ ∣ ∣ ∣ 

VALUE ITERATION
 

• Natural value iteration method: Generate op
timal k-stage costs by DP algorithm starting with 
any J0: 

  
n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 

u∈U(i) 
j=1 

• Result: limk→∞ Jk(i)/k = λ∗ for all i. 

• Proof outline: Let Jk 
∗ be so generated from the 

initial condition J0 
∗ = h∗. Then, by induction, 

Jk 
∗(i) =  kλ∗ + h∗(i), ∀i, ∀ k. 

On the other hand, 

∣Jk(i) − Jk 
∗(i)∣ ≤ max ∣J0(j) − h∗(j)∣, ∀ i 

j=1,...,n 

since Jk(i) and Jk 
∗(i) are optimal costs for two k-

stage problems that differ only in the terminal cost 
functions, which are J0 and h∗ . 



∑ 

∑ 

RELATIVE VALUE ITERATION
 

• The value iteration method just described has 
two drawbacks: 

−	 Since typically some components of Jk di
verge to ∞ or −∞, calculating limk→∞ Jk(i)/k 
is numerically cumbersome. 

−	 The method will not compute a correspond
ing differential cost vector h∗ . 

• We can bypass both difficulties by subtracting a 
constant from all components of the vector Jk, so  
that the difference, call it hk, remains bounded. 

• Relative value iteration algorithm:Pick any state 
s, and iterate according to 	  

n hk+1(i) =  min  g(i, u) +  pij (u)hk(j) 
u∈U(i) 

j=1 	  
n −	 min g(s, u) +  psj (u)hk(j) , ∀ i 

u∈U(s) 
j=1 

• Then we can show hk → h∗ (under an extra 
assumption). 



( ) ( ) ∑ 

∑ 

POLICY ITERATION
 

• At the typical iteration, we have a stationary µk. 

• Policy evaluation: Compute λk and hk(i) of µk, 
using the n + 1 equations hk(n) = 0 and 

n 

λk + hk(i) = g i, µk(i) + pij µk(i) hk(j), ∀ i 
j=1 

• Policy improvement: Find for all i   
n µk+1(i) = arg  min  g(i, u) +  pij (u)hk(j)
 

u∈U(i)
 
j=1 

• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop; 
otherwise, repeat with µk+1 replacing µk. 

• Result: For each k, we either have λk+1 < λk 

or 

λk+1 = λk , hk+1(i) ≤ hk(i), i = 1, . . . , n.  

The algorithm terminates with an optimal policy. 
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LECTURE 20
 

LECTURE OUTLINE
 

• Control of continuous-time Markov chains – 
Semi-Markov problems 

• Problem formulation – Equivalence to discrete-
time problems 

• Discounted problems 

• Average cost problems 



CONTINUOUS-TIME MARKOV CHAINS
 

• Stationary system with finite number of states 
and controls 

• State transitions occur at discrete times 

• Control applied at these discrete times and stays 
constant between transitions 

• Time between transitions is random 

• Cost accumulates in continuous time (may also 
be incurred at the time of transition) 

• Example: Admission control in a system with 
restricted capacity (e.g., a communication link) 

− Customer arrivals: a Poisson process 

− Customers entering the system, depart after 
exponentially distributed time 

− Upon arrival we must decide whether to ad
mit or to block a customer 

− There is a cost for blocking a customer 

− For each customer that is in the system, there 
is a customer-dependent reward per unit time 

− Minimize time-discounted or average cost 



PROBLEM FORMULATION 

• x(t) and u(t): State and control at time t 

• tk: Time of kth transition (t0 = 0) 

• xk = x(tk): We  have  x(t) = xk for tk ≤ t < tk+1. 

• uk = u(tk): We  have  u(t) = uk for tk ≤ t < tk+1. 

• In place of transition probabilities, we have tran
sition distributions 

Qij (τ, u) =  P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u} 

• Two important formulas: 

(1) Transition probabilities are specified by 

pij (u) =  P{xk+1 = j | xk = i, uk = u} = lim Qij (τ, u) 
τ →∞ 

(2) The Cumulative Distribution Function (CDF) of 
τ given i, j, u is (assuming pij (u) > 0) 

Qij (τ, u)
P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} = 

pij (u) 

Thus, Qij (τ, u) can be viewed as a “scaled CDF” 



EXPONENTIAL TRANSITION DISTRIBUTIONS
 

•	 Important example of transition distributions 

(	 ) 
Qij (τ, u) = pij (u) 1 − e−νi(u)τ , 

where pij (u) are transition probabilities, and νi(u) 
is called the transition rate at state i. 

• Interpretation: If the system is in state i and 
control u is applied 

− the next state will be j with probability pij (u) 
−	 the time between the transition to state i and 

the transition to the next state j is exponen
tially distributed with parameter νi(u) (inde
pendtly of j): 

P{transition time interval > τ  | i, u} = e−νi(u)τ 

• The exponential distribution is memoryless. This 
implies that for a given policy, the system is a 
continuous-time Markov chain (the future depends 
on the past through present). Without the mem
oryless property, the Markov property holds only 
at the times of transition. 



{ } 

{ } 

COST STRUCTURES
 

• There is cost g(i, u) per unit time, i.e. 

g(i, u)dt = the cost incurred in time dt 

• There may be an extra “instantaneous” cost 
ĝ(i, u) at the time of a transition (let’s ignore this 
for the moment) 

• Total discounted cost of π = {µ0, µ1, . . .} start
ing from state i (with discount factor β >  0) 

N−1 ∫ ∣ ∑ tk+1 −βt 
( ) ∣ 

lim E e g xk, µk(xk) dt ∣ x0 = i
 
N→∞
 

k=0 tk
 

• Average cost per unit time 

N−1 ∫ ∣ 
1 ∑ tk+1 ( ) ∣
 

lim E g xk, µk(xk) dt ∣ x0 = i
 
N→∞ E{tN } 

k=0 tk 

• We will see that both problems have equivalent 
discrete-time versions. 



∫


A NOTE ON NOTATION
 

• The scaled CDF Qij (τ, u) can be used to model 
discrete, continuous, and mixed distributions for 
the transition time τ . 

• Generally, expected values of functions of τ 
can be written as integrals involving dQij (τ, u). 
For example, the conditional expected value of τ 
given i, j, and u is written as ∫
 ∞ dQij (τ, u)

E{τ | i, j, u} = 
0 

τ
pij (u) 

• If Qij (τ, u) is continuous with respect to τ , its 
derivative 

qij (τ, u) =  
dQij (τ, u)
dτ 

can be viewed as a “scaled” density function. Ex
pected values of functions of τ can then be written 
in terms of qij (τ, u). For example 

∞ qij (τ, u)
E{τ | i, j, u} = τ

pij (u) 
dτ 

0 

• If Qij (τ, u) is discontinuous and “staircase-like,”
 
expected values can be written as summations.
 



{ } 

DISCOUNTED PROBLEMS – COST CALCULATION 

• For a policy π = {µ0, µ1, . . .}, write 

Jπ (i) =  E{cost of 1st transition}+E{e −βτ Jπ1 (j) | i, µ0(i)} 

where Jπ1 (j) is the cost-to-go of the policy π1 = 
{µ1, µ2, . . .} 

• We calculate the two costs in the RHS. The 
E{transition cost}, if  u is applied at state i, is  

G(i, u) =  Ej Eτ {transition cost | j} 

n ∫ (∫ ) ∑ ∞ τ 
dQij (τ, u) 

= pij (u) e −βt g(i, u)dt 
pij (u) 

j=1 0 0


n ∫ ∞
∑ −βτ1 − e
= g(i, u)dQij (τ, u)

β 
j=1 0 

• Thus the E{cost of 1st transition} is 

n ∫ ∞ ( ) ( )∑ 1 − e −βτ ( ) 
G i, µ0(i) = g i, µ0(i) dQij τ, µ0(i)

β 
j=1 0 



{ } 

∑ ( ) 

( ) 

( ) ( ) ∑ 

COST CALCULATION (CONTINUED) 

• Also 

E{e−βτ Jπ1 (j)} 

= Ej E{e−βτ | j}Jπ1 (j) 
n (∫ ) ∑ ∞ dQij (τ, u)

= pij (u) e−βτ 
pij (u) 

Jπ1 (j) 
j=1 0
 

n
 

= mij µ(i) Jπ1 (j)
 
j=1
 

where mij (u) is given by 

∫ ∞ ∫ ∞ 

mij (u) =  e −βτ dQij (τ, u) < dQij (τ, u) = pij (u) 
0 0 

and can be viewed as the “effective discount fac
tor” [the analog of αpij (u) in the discrete-time case]. 

• So Jπ(i) can be written as 

n 

Jπ(i) = G i, µ0(i) + mij µ(i) Jπ1 (j) 
j=1 



∑ 

∑ 

EQUIVALENCE TO AN SSP
 

• Similar to the discrete-time case, introduce a 
stochastic shortest path problem with an artificial 
termination state t 

• Under control u, from state i the system moves 
to state j with probability mij (u) and to the termi
nation state t with probability 1 − 

∑n
j=1 mij (u) 

• Bellman’s equation: For i = 1, . . . , n,   
n J∗(i) =  min  G(i, u) +  mij (u)J∗(j)

u∈U(i) 
j=1 

• Analogs of value iteration, policy iteration, and 
linear programming. 

• If in addition to the cost per unit time g, there 
is an extra (instantaneous) one-stage cost ĝ(i, u), 
Bellman’s equation becomes 

  
n 

J∗(i) =  min  ĝ(i, u) + G(i, u) +  mij (u)J∗(j) 
u∈U(i) 

j=1 



[ ] 

MANUFACTURER’S EXAMPLE REVISITED
 

• A manufacturer receives orders with interarrival 
times uniformly distributed in [0, τmax]. 

• He may process all unfilled orders at cost K >  0, 
or process none. The cost per unit time of an 
unfilled order is c. Max number of unfilled orders 
is n. 

• The nonzero transition distributions are 

τ 
Qi1(τ, Fill) = Qi(i+1)(τ, Not Fill) = min  1, 

τmax 

• The one-stage expected cost G is 

G(i, Fill) = 0, G(i, Not Fill) = γ c i,  

where 

n ∫ ∫ ∑ ∞ 1 − e−βτ τmax 1 − e−βτ 
γ = dQij(τ, u) =  dτ 

0 β 0 βτmax
j=1 

• There is an “instantaneous” cost 

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0  



[	 ] 

MANUFACTURER’S EXAMPLE CONTINUED
 

• The “effective discount factors” mij (u) in Bell-
man’s Equation are 

mi1(Fill) =  mi(i+1)(Not Fill) =  α, 

where ∫ ∞	 ∫ τmax −βτ	 −βτmax 

α = e −βτ dQij(τ, u) = 	
e 

dτ =
1 − e 

τmax βτmax0	 0 

• Bellman’s equation has the form 

J∗(i) = min  K+αJ∗(1), γci+αJ∗(i+1) , i = 1, 2, . . .  

• As in the discrete-time case, we can conclude 
that there exists an optimal threshold i∗: 

fill the orders <==> their number i exceeds i∗ 



∫ 

∑ 

( ) 

AVERAGE COST
 

• Minimize 

1 
{ tN 

} 

lim E g x(t), u(t) dt 
N→∞ E{tN } 0 

assuming there is a special state that is “recurrent 
under all policies” 

• Total expected cost of a transition 

G(i, u) = g(i, u)τ i(u), 
where τ i(u): Expected transition time. 

• We now apply the SSP argument used for the 
discrete-time case. Divide trajectory into cycles 
marked by successive visits to n. The cost at 
(i, u) is G(i, u) − λ∗τ i(u), where λ∗ is the optimal 
expected cost per unit time. Each cycle is viewed 
as a state trajectory of a corresponding SSP prob
lem with the termination state being essentially n 

• So Bellman’s Eq. for the average cost problem:   
n h∗(i) =  min  G(i, u) − λ∗τ i(u) +  pij (u)h∗(j)

u∈U(i) 
j=1 



[ 

] 

AVERAGE COST MANUFACTURER’S EXAMPLE
 

•	 The expected transition times are
 

τ i(Fill) = τ i(Not Fill) =  
τmax
 

2 

the expected transition cost is
 

G(i, Fill) = 0, G(i, Not Fill) =  
c i τmax
 

2 

and there is also the “instantaneous” cost
 

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0 
  

• Bellman’s equation: 

h∗(i) = min  K − λ∗ 
τmax + h∗(1),

2 

ci
τmax −	λ∗ 

τmax + h∗(i + 1)  
2	 2


• Again it can be shown that a threshold policy is 
optimal. 
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LECTURE 21
 

LECTURE OUTLINE
 

• With this lecture, we start a four-lecture se
quence on advanced dynamic programming and 
neuro-dynamic programming topics. References: 

−	 Dynamic Programming and Optimal Control, 
Vol. II, by D. Bertsekas 

− Neuro-Dynamic Programming, by D. Bert
sekas and J. Tsitsiklis 

• 1st Lecture: Discounted problems with infinite 
state space, stochastic shortest path problem 

• 2nd Lecture: DP with cost function approxi
mation 

• 3rd Lecture: Simulation-based policy and 
value iteration, temporal difference methods 

• 4th Lecture: Other approximation methods: 
Q-learning, state aggregation, approximate linear 
programming, approximation in policy space 



� � � � � 

� � �� 

DISCOUNTED PROBLEMS W/ BOUNDED COST
 

• System 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,  

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk
 

k=0,1,... k=0
 

with g(x, u, w): bounded over (x, u, w), and α < 1. 

• Shorthand notation for DP mappings (operate 

on functions of state to produce other functions) 


(TJ)(x) = min E g(x, u, w) +  αJ f(x, u, w) , ∀ x
 
u∈U(x) w 

TJ  is the optimal cost function for the one-stage 

problem with stage cost g and terminal cost αJ . 


• For any stationary policy µ 

� � � � �� 
(TµJ)(x) =  E g x, µ(x), w  + αJ f(x, µ(x), w) , ∀ x 

w 



“SHORTHAND” THEORY 

•	 Cost function expressions [with J0(x) ≡ 0] 

Jπ (x) = lim (Tµ0 Tµ1 · · ·Tµk J0)(x), Jµ(x) = lim (Tµ
kJ0)(x) 

k→∞ k→∞ 

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ 

•	 Optimality condition: 

µ: optimal <==> TµJ∗ = TJ∗ 

•	 Value iteration: For any (bounded) J and all x, 

J∗(x) = lim (T kJ)(x) 
k→∞ 

•	 Policy iteration steps: Given µk, 

− Policy evaluation: Find Jµk by solving 

J k = T k J kµ µ µ 

− Policy improvement: Find µk+1 such that
 

Tµk+1 Jµk	 = TJµk
 



� � 

� � 

� � � � � � 
� � � � � � 

THE THREE KEY PROPERTIES
 

• Monotonicity property: For any functions J 
and J ′ such that J(x) ≤ J ′(x) for all x, and any µ 

(TJ)(x) ≤ (TJ ′)(x), ∀ x, 

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x 

• Additivity property: For any J , any scalar r, 
and any µ 

T (J + re) (x) = (TJ)(x) +  αr, ∀ x,
 

Tµ(J + re) (x) = (TµJ)(x) +  αr, ∀ x, 

where e is the unit function [e(x) ≡ 1]. 

• Contraction property: For any (bounded) 
functions J and J ′, and any µ, 

max�(TJ)(x) − (TJ ′)(x) ≤ α max�J(x) − J ′(x) , 
x x 

max�(TµJ)(x)−(TµJ ′)(x) ≤ α max�J(x)−J ′(x) . 
x x 



“SHORTHAND” ANALYSIS
 

• Contraction mapping theorem: The con
traction property implies that: 

− T has a unique fixed point, J∗, which is the 
limit of T kJ for any (bounded) J . 

−	 For each µ, Tµ has a unique fixed point, Jµ, 
which is the limit of Tµ

kJ for any J . 

•	 Convergence rate: For all k, 

�	 � � � 
max�(T kJ)(x) − J∗(x)� ≤ αk max�J(x) − J∗(x)� 

x	 x 

• An assortment of other analytical and computa
tional results are based on the contraction prop
erty, e.g, error bounds, computational enhance
ments, etc. 

• Example: If we execute value iteration approxi
mately , so we compute TJ  within an ε-error, i.e., 

max |J̃(x) − (TJ)(x)| ≤ ε,
 
x 

in the limit we obtain J∗ within an ε/(1 − α) error.
 



GEOMETRIC INTERPRETATIONS
 

gµ 

J* 

J* 

450 

450 

Tj 

J  TJ  T2J 

Value Iteration Sequence 
J, TJ, T2J 

Policy Iteration Sequence 
µ 0, µ 1, µ 2 

+ _ PµJ 

g µ 0 +_ Pµ0J 

g µ 1 + _ Pµ 1J 

Jµ 0Jµ 10 

0 

gµ 2 + _ Pµ 2J 

Tj 

j 

j 
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UNDISCOUNTED PROBLEMS
 

• System 

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,  

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E g xk, µk(xk), wk 
N→∞ wk


k=0,1,... k=0


• Shorthand notation for DP mappings 

(TJ)(x) = min E g(x, u, w) +  J f(x, u, w) , ∀ x
 
u∈U(x) w 

• For any stationary policy µ 

� � � � �� 
(TµJ)(x) =  E g x, µ(x), w  + J f(x, µ(x), w) , ∀ x 

w 

• Neither T nor Tµ are contractions in general. 
Some, but not all, of the nice theory holds, thanks 
to the monotonicity of T and Tµ. 

• Some of the nice theory is recovered in SSP 
problems because of the termination state. 



� � � � � 

STOCHASTIC SHORTEST PATH PROBLEMS I 

• Assume: Cost-free term. state t, a finite number 
of states 1, . . . , n, and finite number of controls 

• Mappings T and Tµ (modified to account for 
termination state t): 

� �
 
n �
 

(TJ)(i) = min g(i, u) +  pij (u)J(j) , i  = 1, . . . , n,  
u∈U(i) 

j=1 

n 

(TµJ)(i) =  g i, µ(i) + pij µ(i) J(j), i  = 1, . . . , n.  
j=1 

• Definition: A stationary policy µ is called proper, 
if under µ, from every state i, there is a positive 
probability path that leads to t. 

• Important fact: If µ is proper then Tµ is a con
traction with respect to some weighted max norm 

1 1 
max |(TµJ)(i)−(TµJ ′)(i)| ≤ α max |J(i)−J ′(i)|

i vi i vi 

• If all µ are proper, then T is similarly a contrac
tion (the case discussed in the text, Ch. 7). 



STOCHASTIC SHORTEST PATH PROBLEMS II
 

• The theory can be pushed one step further. 
Assume that: 

(a) There exists at least one proper policy 
(b) For each improper µ, Tµ(i) =  ∞ for some i 

•	 Then T is not necessarily a contraction, but: 

− J∗ is the unique solution of Bellman’s Equ. 

− µ ∗ is optimal if and only if Tµ ∗ J∗ = TJ∗ 

− limk→∞(T kJ)(i) =  J∗(i) for all i 

− Policy iteration terminates with an optimal 
policy, if started with a proper policy 

• Example: Deterministic shortest path problem 
with a single destination 

− States <=> nodes; Controls <=> arcs 

− Termination state <=> the destination 

− Assumption (a) <=> every node is con
nected to the destination 

− Assumption (b) <=> all cycle costs > 0 

−	 Pathology: If there is a cycle cost = 0  (or 
< 0), Bellman’s equation has an infinite num
ber of solutions (no solution, respectively) 



PATHOLOGIES: THE BLACKMAILER’S DILEMMA
 

• Two states, state 1 and the termination state t. 

• At state 1, choose a control u ∈ (0, 1] (the black
mail amount demanded), and move to t at no cost 
with probability u2, or stay in 1 at a cost −u with 
probability 1 − u2. 

• Every stationary policy is proper, but the control 
set in not finite. 

• For any stationary µ with µ(1) = u, we have  

Jµ(1) = −(1 − u2)u + (1  − u2)Jµ(1) 

ufrom which Jµ(1) = − 1− 
u 

2 

• Thus J∗(1) = −∞, and there is no optimal 
stationary policy. 

• It turns out that a nonstationary policy is opti
mal: demand µk(1) = γ/(k + 1)  at time k, with 
γ ∈ (0, 1/2). (Blackmailer requests diminishing 
amounts over time, which add to ∞; the proba
bility of the victim’s refusal diminishes at a much 
faster rate.) 
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LECTURE 22
 

LECTURE OUTLINE
 

• Approximate DP for large/intractable problems 

• Approximate policy iteration 

• Simulation-based policy iteration 

• Actor-critic interpretation 

• Learning how to play tetris: A case study 

• Approximate value iteration with function ap
proximation 



APPROX. POLICY ITERATION - DISCOUNTED CASE
 

• Suppose that the policy evaluation is approxi
mate, according to, 

max |Jk(x) − J k (x)| ≤ δ, k = 0, 1, . . .µx 

and policy improvement is also approximate, ac
cording to, 

max |(T k+1 Jk)(x)−(TJk)(x)| ≤ ε, k = 0, 1, . . .µx 

where δ and ε are some positive scalars. 

• Error Bound: The sequence {µk} generated 
by the approximate policy iteration algorithm sat
isfies 

� � ε + 2αδ
lim supmax Jµk (x) − J∗(x) ≤ 

k→∞ x∈S (1 − α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
Jµk oscillate within a neighborhood of J∗ . 



APPROXIMATE POLICY ITERATION - SSP 

• Suppose that the policy evaluation is approxi
mate, according to, 

max |Jk(i) − J k (i)| ≤ δ, k = 0, 1, . . .  
i=1,...,n µ 

and policy improvement is also approximate, ac
cording to, 

max |(T k+1 Jk)(i)−(TJk)(i)| ≤ ε, k = 0, 1, . . .  
i=1,...,n µ 

where δ and ε are some positive scalars. 

• Assume that all policies generated by the method 
are proper (they are guaranteed to be if δ = ε = 0, 
but not in general). 

• Error Bound: The sequence {µk} generated 
by approximate policy iteration satisfies � � n(1 − ρ + n)(ε + 2δ)
lim sup max J k (i)−J∗(i) ≤ 

k→∞ i=1,...,n µ (1 − ρ)2 

where ρ = max  i=1,...,n P{x � = i, µ}n = t |x0 
µ: proper  



� 

� � 

SIMULATION-BASED POLICY EVALUATION
 

• Given µ, suppose we want to calculate Jµ by 
simulation. 

• Generate by simulation sample costs. Approx
imation: 

1 
Mi 

Jµ(i) ≈ c(i, m)
Mi 

m=1 

c(i, m) :  mth sample cost starting from state i 

• Approximating each Jµ(i) is impractical for a 
large state space. Instead, a “compact represen
tation” J̃  

µ(i, r) may be used, where r is a tunable 
parameter vector. We may calculate an optimal 
value r ∗ of r by a least squares fit 

n Mi 

r ∗ = arg min  �� c(i, m) − J̃  
µ(i, r)��2 

r 
i=1 m=1 

• This idea is the starting point for more sophisti
cated simulation-related methods, to be discussed 
in the next lecture. 



ACTOR-CRITIC INTERPRETATION
 

System 

Controller 
(Actor) 

Policy Evaluation 
(Critic) 

J µk 

µk+1(i ) i 

• The critic calculates approximately (e.g., using 
some form of a least squares fit) Jµk by processing 
state/sample cost pairs, which are generated by 
the actor by simulation 

• Given the approximate Jµk , the actor imple
ments the improved policy Jµk+1 by 

(Tµk+1 Jk)(i) = (TJk)(i) 



EXAMPLE: TETRIS I
 

• The state consists of the board position i, and 
the shape of the current falling block (astronomi
cally large number of states). 

• It can be shown that all policies are proper!! 

• Use a linear approximation architecture with 
feature extraction 

s �
 
J̃(i, r) =  φm(i)rm, 

m=1 

where r = (r1, . . . , rs) is the parameter vector and
 
φm(i) is the value of mth feature associated w/ i.
 



EXAMPLE: TETRIS II
 

• Approximate policy iteration was implemented 
with the following features: 

− The height of each column of the wall 

− The difference of heights of adjacent columns 

− The maximum height over all wall columns 

− The number of “holes” on the wall 

− The number 1 (provides a constant offset) 

• Playing data was collected for a fixed value of 
the parameter vector r (and the corresponding 
policy); the policy was approximately evaluated 
by choosing r to match the playing data in some 
least-squares sense. 

• The method used for approximate policy eval
uation was the λ-least squares policy evaluation 
method , to be described in the next lecture. 

• See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” in 

http://www.mit.edu:8001//people/dimitrib/publ.html 

http://www.mit.edu:8001//people/dimitrib/publ.html


� � 

� � 

VALUE ITERATION W/ FUNCTION APPROXIMATION
 

• Suppose we use a linear approximation archi
tecture J̃(i, r) = φ(i)′r, or  

J̃ = Φr
 

where r = (r1, . . . , rs) is a parameter vector, and 
Φ is a full rank n × s feature matrix. 

• Approximate value iteration method: Start 
with initial guess r0; given rt, generate rt+1 by 

rt+1 = arg min�Φr − T (Φrt)� 
r 

where ‖ · ‖ is some norm. 

• Questions: Does rt converge to some r ∗? How  
close is Φr ∗ to J∗? 

• Convergence Result: If T is a contraction with 
respect to a weighted Euclidean norm (‖J‖2 = 
J ′DJ , where D is positive definite, symmetric), 
then rt converges to (the unique) r ∗ satisfying 

r ∗ = arg min�Φr − T (Φr ∗)� 
r 
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GEOMETRIC INTERPRETATION
 

• Consider the feature subspace 

S = {Φr | r ∈ �s} 

of all cost function approximations that are linear 
combinations of the feature vectors. Let Π denote 
projection on this subspace. 

• The approximate value iteration is 

rt+1 = ΠT (Φrt) = arg min�Φr − T (Φrt)� 
r 

and amounts to starting at the point Φrt of S ap
plying T to it and then projecting on S. 

• Proof Idea: Since T is a contraction with re
spect to the norm of projection, and projection is 
nonexpansive, ΠT (which maps S to S) is a con
traction (with respect to the same norm). 

Z(\r’) 

\r’ 

Z(\r) 

WZ(\r’) WZ(\r) 

\r 

0 
Feature Subspace S 



PROOF
 

• Consider two vectors Φr and Φr′ in S. The (Eu
clidean) projection is a nonexpansive mapping, so 

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ ‖T (Φr) − T (Φr′)‖ 

Since T is a contraction mapping (with respect to 
the norm of projection), 

‖T (Φr) − T (Φr′)‖ ≤ β‖Φr − Φr′‖ 

where β ∈ (0, 1) is the contraction modulus, so 

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ β‖Φr − Φr′‖ 

and it follows that ΠT is a contraction (with respect 
to the same norm and with the same modulus). 

• In general, it is not clear how to obtain a Eu
clidean norm for which T is a contraction. 

• Important fact: In the case where T = Tµ, 
where µ is a stationary policy, T is a contraction for 
the norm ‖J‖2 = J ′DJ , where D is diagonal with 
the steady-state probabilities along the diagonal. 
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ERROR BOUND
 

• If T is a contraction with respect to a weighted 
Euclidean norm ‖ · ‖ with modulus β, and r ∗ is the 
limit of rt, i.e., 

r ∗ = arg  min�Φr − T (Φr ∗)� 
r 

then ‖ΠJ∗ − J∗‖ ‖Φr ∗ − J∗‖ ≤  
1 − β 

where J∗ is the fixed point of T , and ΠJ∗ is the
 
projection of J∗ on the feature subspace S (with
 
respect to norm ‖ · ‖).
 
Proof: Using the triangle inequality,
 

‖Φr ∗ − J∗‖ ≤ ‖Φr ∗ − ΠJ∗‖ + ‖ΠJ∗ − J∗‖ 

= ‖ΠT (Φr ∗) − ΠT (J∗)‖ + ‖ΠJ∗ − J∗‖ 

≤ β‖Φr ∗ − J∗‖ + ‖ΠJ∗ − J∗‖ Q.E.D. 

• Note that the error ‖Φr ∗ −J∗‖ is proportional to 
‖ΠJ∗ − J∗‖, which can be viewed as the “power 
of the approximation architecture” (measures how 
well J∗ can be represented by the chosen fea
tures). 
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LECTURE 23
 

LECTURE OUTLINE
 

• Simulation-based policy and value iteration meth
ods 

• λ-Least Squares Policy Evaluation method 

• Temporal differences implementation 

• Policy evaluation by approximate value iteration 

• TD(λ) 



POLICY AND VALUE ITERATION BY SIMULATION
 

• There are many proposals, but we will focus on 
methods for which there is solid theory: 

(a)	 Policy evaluation methods, to be used in 
exact or approximate policy iteration. 

− Here the policy is fixed. 

− As a special case we obtain the rollout method. 

−	 The cost of the policy may be calculated 
in several different forms: (1) For all states 
(lookup table representation) or (2) Through 
an approximation architecture (compact rep
resentation) or (3) Through on-line simula
tion as needed (rollout algorithm). 

(b)	 Value iteration w/ function approximation. 

− A big restriction is to find a suitable Euclidean 
norm for which T is a contraction. 

− Such a norm can be found in the case where 
there is only one policy (T = Tµ). 

− Q-Learning is a form of on-line simulation-
based value iteration method, but the only 
available theory applies to the lookup table 
representation case. 



SIMULATION-BASED POLICY EVALUATION
 

• The policy is fixed and one or more long simu
lation trajectories are generated. 

• The weight vector r of an approximation ar
chitecture J̃(i, r) is adjusted using some kind of 
“least squares scheme” (off-line, or on-line as the 
simulation trajectories are generated). 

• For on-line methods, a sequence {rt} of param
eter vectors is generated. 

• There is solid theory only for linear approxi
mation architectures (and under some technical 
assumptions). 

• Typical result: In the limit, as the number of 
simulation-generated transitions goes to ∞, the 
sequence of generated parameter vectors con
verges to a limit that solves a related least-squares 
approximation problem. 

• We will focus on so-called temporal difference 
methods, λ-least squares and TD(λ), which may 
be viewed as on-line simulation-based approxi
mate value iteration methods for policy evaluation. 



� � � 
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POLICY EVALUATION BY VALUE ITERATION I 

• The remainder of this lecture is based on the pa
per “Improved Temporal Difference Methods with 
Function Approximation,” by Bertsekas, Borkar, 
and Nedic at 

http://www.mit.edu:8001//people/dimitrib/publ.html 

• Let J be the cost function associated with a 
stationary policy in the discounted context, so J 
is the unique solution of Bellman’s Eq., J(i) =  

n 
j=1 pij g(i, j) + αJ(j) ≡ (TJ)(i). We assume 

that the associated Markov chain has steady-state 
probabilities p(i) which are all positive. 

• If we use a linear approximation architecture 
J̃(i, r) = φ(i)′r, the value iteration 

n � � �
 
Jt+1(i) =  pij g(i, j) + αJt(j) = (TJt)(i)
 

j=1
 

is approximated as Φrt+1 ≈ T (Φrt) in the sense � �2 n n 

rt+1 = arg min w(i) φ(i)′ r − pij g(i, j) +  αφ(j)′ rt 
r 

i=1 j=1 

where the w(i) are some positive weights.
 

http://www.mit.edu:8001//people/dimitrib/publ.html
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POLICY EVALUATION BY VALUE ITERATION II 

• Note that, assuming Φ has full rank, rt+1 is 
uniquely obtained by projecting the value iterate 
T (Φrt) =  P (g + αΦrt) on the range space of the 
matrix Φ, where the projection is with respect to √ 
the norm ‖ · ‖D given by ‖z‖D = z′Dz, and D is 
diagonal with the w(i) along the diagonal. 

• The iteration converges if the mapping T is a 
contraction with respect to the norm ‖ · ‖D. 
Key fact: This is so if the w(i) are equal to 
the steady state probabilities p(i). The limit is the 
unique r ∗ satisfying � �2 n n 

r ∗ = arg min w(i) φ(i)′ r − pij g(i, j) +  αφ(j)′ r ∗ 

r
 
i=1 j=1
 

• Simulation-based implementation: Generate an 
infinitely long trajectory (i0, i1, . . .) using a simula
tor, and iteratively update r by 

t 

rt+1 = arg min 
� 
φ(im)′ r−g(im, im+1)−αφ(im+1)′ rt 

�2 

r
 
m=0
 

This can be shown to converge to the same r ∗.
 



GEOMETRIC INTERPRETATION
 

Z(\rt) Z(\rt) 

\rt\rt 

\rt+1 


\rt+1 

0 0 Simulation error 
Feature Subspace S Feature Subspace S 

Simulation-BasedValue Iteration with Linear Value Iteration with LinearFunction Approximation Function Approximation 

• The simulation-based implementation yields the 
(non-simulation) value iterate with linear function 
approximation [i.e., the projection of T (Φrt)] plus 
stochastic simulation error. 

• Key Convergence Proof Idea: The simu
lation error converges to 0 as the simulation tra
jectory becomes longer. Furthermore, the (non-
simulation) value iteration is a convergent linear 
deterministic algorithm [since it involves a contrac
tion mapping with respect to the weighted norm 
defined by the steady-state probabilities p(i)]. 



� � � � 

� � 

� � � � 

USING M -STEP VALUE ITERATION 

• For M ≥ 1, consider the equation 

M−1 � 
J(i) = E αM J(iM ) +  αkg(ik, ik+1) � i0 = i 

k=0 

• This is Bellman’s Eq. for a modified problem, 
involving a Markov chain where each transition 
corresponds to M transitions of the original, and 
the cost is calculated using a discount factor αM 

and a cost per stage equal to 
�M−1 

αkg(ik, ik+1).k=0 

• This Bellman equation is also solved uniquely 
by the same J that solves the ordinary (one-step) 
Bellman equation J(i) = E g(i, j) + αJ(j) . 

• The corresponding value iteration method is 

M−1 � 
Jt+1(i) = E αM Jt(iM ) +  αkg(ik, ik+1) � i0 = i 

k=0 

and can be similarly approximated by simulation.
 



� 
� 
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� 
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SIMULATION-BASED M -STEP VALUE ITERATION
 

• The corresponding simulation-based least-squares 
implementation is 

t 

rt+1 = arg min  φ(im)′r − αM φ(im+M )′rt 
r 

m=0 

M−1 
�2 �
 

− αkg(im+k, im+k+1) 
k=0 

• By introducing the temporal differences, defined 
by 

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt, 

we can write this iteration as 

t 

rt+1 = arg min  φ(im)′r − φ(im)′rt 
r 

m=0 

m+M−1 
�2 

− αk−mdt(ik, ik+1) 
k=m 



�� 
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USING RANDOM STEP VALUE ITERATION 

• Consider a version of Bellman’s equation where 
M is random and geometrically distributed with 
parameter λ, i.e., 

Prob(M = m) = (1 − λ)λm−1, m = 1, 2, . . .  

• This equation is obtained by multiplying both 
sides of the M -step Bellman’s Eq. with (1−λ)λm−1, 
for each m, and adding over m: 

∞	 m−1 �	 � 
J(i) =  (1−λ)λm−1E αmJ(im) +  αk g(ik, ik+1) | i0 = i 

m=1	 k=0 

•	 The corresponding value iteration method is 

∞ 

Jt+1(i) =  (1 − λ)λm−1E αmJt(im) 
m=1 

m−1 

+	 αkg(ik, ik+1) | i0 = i 
k=0 
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TEMPORAL DIFFERENCES IMPLEMENTATION 

• We can write the random step value iteration as 
∞ 

Jt+1(i) =  Jt(i)+ (αλ)kE g(ik, ik+1)+αJt(ik+1)−Jt(ik) | i0 = i 

k=0 

• By using φ(i)′rt to approximate Jt, and by re
placing g(ik, ik+1) + αJt(ik+1) − Jt(ik) with the 
temporal differences (TD) 

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt, 

we obtain the simulation-based least-squares im
plementation (called λ-least squares policy eval
uation method) 

t 

rt+1 = arg min  φ(im)′r − φ(im)′rt 
r 

m=0 �2t �
 
− (αλ)k−mdt(ik, ik+1) 

k=m 

• Role of the TD: They simplify the formulas. 

• Convergence can be shown to an r ∗ that solves 
a corresponding least squares problem. 



� � � 

TD(LAMBDA)
 

• Another method for solving the policy evalu
ation problem is TD(λ), which uses a parameter 
λ ∈ [0, 1] and generates an infinitely long trajec
tory (i0, i1, . . .) using a simulator. It iteratively up
dates r by 

t 

rt+1 = rt + γt (αλ)t−mφ(im) dt(it, it+1) 
m=0 

where γt is a positive stepsize with γt → 0. 

• It can be viewed as a gradient-like method for 
minimizing the least-squares sum of the preced
ing λ-least squares method described earlier (see 
the Bertsekas, Borkar, and Nedic paper). 

• For a given value of λ ∈ [0, 1], TD(λ) converges 
to the same limit as the λ-least squares method 
(under technical assumptions on the choice of γt). 

• While TD(λ) uses a simpler formula, it tends to 
be much slower than λ-Least Squares. In prac
tice, it also requires tricky trial and error to settle 
on good stepsize choices. 



TD METHODS: PROPERTIES AND DIFFICULTIES
 

• As M increases, the M -step Bellman’s equation 
becomes better suited for approximation, because 
it embodies a longer horizon cost. Thus Φr ∗ tends 
to be closer to J when M is large. 

• Similarly, Φr ∗ tends to be closer to J as λ ≈ 1. 

• On the other hand, when M or λ is large, the 
simulation noise inherent in the updates is mag
nified (more random cost terms are added), and 
convergence can be very slow. TD(λ) is particu
larly susceptible to noise, so λ ≈ 1 may be a bad 
choice. This is less of a problem for the alternative 
λ-least squares method. 

• A serious problem arises when the Markov 
chain is “slow-mixing,” i.e., it takes many transi
tions for the simulation to reach important parts of 
the state space. Then if the simulation trajectory 
is terminated prematurely, the approximation ob
tained over these parts will be poor. A remedy is 
to use many long simulation trajectories starting 
from a set of initial states that adequately covers 
the state space. 
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LECTURE 24
 

LECTURE OUTLINE
 

• Additional methods for approximate DP 

• Q-Learning 

• Aggregation 

• Linear programming with function approxima
tion 

• Gradient-based approximation in policy space 



� � � 

� � � 

� � 

� 

Q-LEARNING I
 

• To implement an optimal policy, what we need 
are the Q-factors defined for each pair (i, u) by 

Q(i, u) =  pij (u) g(i, u, j) + J∗(j) 
j 

• Bellman’s equation is J∗(j) = minu′∈U(j) Q(j, u′), 
so the Q-factors solve the system of equations 

Q(i, u) =  pij (u) g(i, u, j)+ min Q(j, u′) , ∀ (i, u) 
u′∈U(j) 

j 

• One possibility is to solve this system iteratively 
by a form of value iteration 

Q(i, u) := (1 − γ)Q(i, u)+γ pij (u) g(i, u, j) 
j 

+ min  Q(j, u′) , 
u′∈U(j) 

where γ is a stepsize parameter with γ ∈ (0, 1], 
that may change from one iteration to the next. 



� 
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Q-LEARNING II
 

• The Q-learning method is an approximate ver
sion of this iteration, whereby the expected value 
is replaced by a single sample, i.e., 

Q(i, u) := Q(i, u) + γ g(i, u, j) 

+ min  Q(j, u′) − Q(i, u) 
u′∈U(j) 

• Here j and g(i, u, j) are generated from the pair 
(i, u) by simulation, i.e., according to the transition 
probabilities pij (u). 

• Thus Q-learning can be viewed as a combina
tion of value iteration and simulation. 

• Convergence of the method to the (optimal) Q 
factors can be shown under some reasonable (but 
quite technical) assumptions. 

• Strong connections with the theory of stochastic 
iterative algorithms (such as stochastic gradient 
methods). 

• Challenging analysis, limited practicality (only 
for a small number of states). 



AGGREGATION I
 

• Another major idea in approximate DP is to ap
proximate the cost-to-go function of the problem 
with the cost-to-go function of a simpler problem. 

•	 The main idea of aggregation approach: 

− Lump many states together into a few “ag
gregate” states 

− View the aggregate states as the states of 
an “aggregate” system 

− Formulate and solve (optimally) the “aggre
gate” problem by any kind of value or policy 
iteration method (including simulation-based 
methods, such as Q-learning) 

− Use the optimal cost of the aggregate prob
lem for a piecewise-constant approximation 
of the optimal cost of the original problem 
(all states that belong to the same aggre
gate state are restricted to have the same 
cost, the optimal cost of the aggregate state) 

• The aggregate problem could also be solved 
approximately. 



AGGREGATION II
 

Feature 
Vector 

System/ 
Simulator 

Feature 
Extraction 
Mapping 

State 

Aggregate System/ 
Simulator 

Cost 
Approximator 

Cost Approximation 

Approximator for the 
Aggregate System 

•	 Main steps to define the aggregate system 

• Form the aggregate states by partitioning the 
original state space (features can be used for this). 

− Each aggregate state is a subset S of states 
of the original system 

−	 Each state of the original system belongs to 
a unique aggregate state 

•	 Define the dynamics of the aggregate system 

Current aggregate state S �→ New aggregate state S′ 

Example: If the current aggregate state is S, gen
erate a “typical” state i within S in some probabilis
tic way, then generate j according to the pij , then 
declare S′ to be the aggregate state to which j 
belongs. 



� 

SOFT AGGREGATION
 

• A more general approach is to specify that each 
original system state j “belongs to each aggregate 
state k with prescribed probability πjk.” Then find 
the costs J̃k of the aggregate states by solving an 
aggregate problem, and approximate the cost of 
an original system state j by k πjkJ̃k. 

• Define the dynamics of the aggregate system 
as follows: from the current aggregate state, gen
erate a “typical” state i in some probabilistic way, 
then generate j according to the pij , then gen
erate probabilistically the next aggregate state k 
according to probabilities πjk. 

• A variant of this approach when the aggregate 
states are themselves states of the original sys
tem (so aggregation here represents a coarse dis
cretization of the original state space). 

−	 Define the dynamics of the aggregate sys
tem as follows: from the current aggregate 
state, generate a next state j according to 
the original system transition probabilities, 
then generate the next aggregate state k ac
cording to probabilities πjk. 



APPROXIMATE LINEAR PROGRAMMING
 

• Approximate J∗ using a linear architecture 

J̃ = Φr 
where r = (r1, . . . , rs) is a weight vector, and Φ is 
an n × s feature matrix. 

• Use J̃ in place of J∗ in the linear programming 
approach, i.e., compute r by solving 

maximize c′Φr 

subject to Φr ≤ gµ + αPµΦr, ∀ µ 

where c is a vector with positive components. 

• This is a linear program with s variables but an 
enormous number of constraints (one constraint 
for each state-control pair). 

• Special large-scale linear programming meth
ods (cutting plane or column generation methods) 
may be used for such problems. 

• Approximations using only a “sampled” subset 
of state-control pairs are possible (see the papers 
by de Farias and Van Roy). 



APPROXIMATION IN POLICY SPACE I
 

• Consider an average cost problem, where the 
problem data are parameterized by a vector r, 
i.e., a cost vector g(r), transition probability ma
trix P (r). Let λ(r) be the (scalar) average cost per 
stage, satisfying Bellman’s equation 

λ(r)e + v(r) = g(r) + P (r)v(r)
 

• Consider minimizing λ(r) over r (here the data 
dependence on control is encoded in the param
eterization). We can try to solve the problem by 
nonlinear programming/gradient descent methods. 

• Important fact: If ∆λ is the change in λ due 
to a small change ∆r from a given r, we have  

∆λ · e = p′(∆g + ∆Pv), 
where p is the steady-state probability distribu
tion/vector corresponding to P (r), and all the quan
tities above are evaluated at r: 

∆λ = λ(r + ∆r) − λ(r),
 

∆g = g(r+∆r)−g(r), ∆P = P (r+∆r)−P (r)
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APPROXIMATION IN POLICY SPACE II
 

• Proof of the gradient formula: We have, 
by “differentiating” Bellman’s equation, 

∆λ(r)·e+∆v(r) = ∆g(r)+∆P (r)v(r)+P (r)∆v(r)
 

By left-multiplying with p′ , 

p ′∆λ(r)·e+p ′∆v(r) =  p ′ ∆g(r)+∆P (r)v(r) +p ′P (r)∆v(r) 

Since p′∆λ(r) · e = ∆λ(r)e and p′ = p′P (r), this 
equation simplifies to 

∆λ · e = p′(∆g + ∆Pv) 

• Since we don’t know p, we cannot implement a 
gradient-like method for minimizing λ(r). An alter
native is to use “sampled gradients”, i.e., gener
ate a simulation trajectory (i0, i1, . . .), and change 
r once in a while, in the direction of a simulation-
based estimate of p′(∆g + ∆Pv). 

• There is much recent research on this subject, 
see e.g., the work of Marbach and Tsitsiklis, and 
Konda and Tsitsiklis. 




