
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

LECTURE SLIDES ON DYNAMIC PROGRAMMING

BASED ON LECTURES GIVEN AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASS

FALL 2003

DIMITRI P. BERTSEKAS

These lecture slides are based on the book:

“Dynamic Programming and Optimal Control:
2nd edition,” Vols. I and II, Athena Scientific,
2001, by Dimitri P. Bertsekas; see

http://www.athenasc.com/dpbook.html

Last Updated: December 2003

The slides are copyrighted, but may be freely
reproduced and distributed for any noncom
mercial purpose.

http://www.athenasc.com/dpbook.html

6.231 DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Problem Formulation

• Examples

• The Basic Problem

• Significance of Feedback

DP AS AN OPTIMIZATION METHODOLOGY

•	 Basic optimization problem

min g(u)
u∈U

where u is the optimization/decision variable, g(u)
is the cost function, and U is the constraint set

•	 Categories of problems:

− Discrete (U is finite) or continuous

− Linear (g is linear and U is polyhedral) or
nonlinear

− Stochastic or deterministic: In stochastic prob
lems the cost involves a stochastic parame
ter w, which is averaged, i.e., it has the form

�	 �
g(u) = Ew G(u, w)

where w is a random parameter.

• DP can deal with complex stochastic problems
where information about w becomes available in
stages, and the decisions are also made in stages
and make use of this information.

� �

BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called distur

bance or noise depending on the context)

− N : Horizon or number of times control is

applied

• Cost function that is additive over time

N−1 �

E gN (xN) + gk(xk, uk, wk)

k=0

�

� � � � �

INVENTORY CONTROL EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk + 1 = xk + uk - wk

uk
Cost of Period k

cuk + r (xk + uk - wk)

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time � �

N−1

E gN (xN) + gk(xk, uk, wk)

k=0

N−1

= E cuk + r(xk + uk − wk)
k=0

• Optimization over policies: Rules/functions uk =
µk(xk) that map states to controls

ADDITIONAL ASSUMPTIONS

• The set of values that the control uk can take
depend at most on xk and not on prior x or u

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

−	 Otherwise past values of w or x would be
useful for future optimization

•	 Sequence of events envisioned in period k:

− xk occurs according to

�	 �
xk	 = fk−1 xk−1, uk−1, wk−1

− uk is selected with knowledge of xk, i.e.,

uk	 ∈ U(xk)

−	 wk is random and generated according to a
distribution

Pwk (xk, uk)

CDA

DETERMINISTIC FINITE-STATE PROBLEMS

• Scheduling example: Find optimal sequence of
operations A, B, C, D

• A must precede B, and C must precede D

• Given startup cost SA and SC , and setup tran
sition cost Cmn from operation m to operation n

AB

ABC

ACB

CBC

A

SA

CCB

CAB

CAC
AC

ACDCCD

CCD

CBD

CDB

CAD

CA

CAD

CDA

CCD CD

CAB
CAB

CCA

CBD

C

Initial
State

SC

CDB

CAB

STOCHASTIC FINITE-STATE PROBLEMS

• Example: Find two-game chess match strategy

• Timid play draws with prob. pd > 0 and loses
with prob. 1 − pd. Bold play wins with prob. pw <
1/2 and loses with prob. 1 − pw

0 - 0

0.5-0.5

0 - 1

pd

1 - pd

0 - 0

1 - 0

0 - 1

1 - pw

pw

1st Game / Timid Play 1st Game / Bold Play

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

pd

pd

pd

1 - pd

1 - pd

1 - pd

pw

1 - pw

1 - 0

0.5-0.5

0 - 1

2 - 0

1.5-0.5

1 - 1

0.5-1.5

0 - 2

1 - pw

1 - pw

pw

pw

2nd Game / Timid Play 2nd Game / Bold Play

� � �

BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ U(xk)

• Probability distribution Pk(· |xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E gN (xN) + gk(xk, µk(xk), wk)

k=0

• Optimal cost function

J∗(x0) = minJπ(x0)
π

• Optimal policy π∗ satisfies

Jπ∗ (x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.

SIGNIFICANCE OF FEEDBACK

• Open-loop versus closed-loop policies

 System
xk + 1 = fk(xk,uk,wk)

µk

uk = µk(xk) xk

wk

• In deterministic problems open loop is as good
as closed loop

• Chess match example; value of information

Timid Play

1 - pd

pd

Bold Play

0 - 0

1 - 0

0 - 1

1 - pw

pw

1.5-0.5

1 - 1

1 - 1

0 - 2

1 - pw

pw
Bold Play

A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop
ment or precise mathematical statements

• Figures are meant to convey and enhance ideas,
not to express them precisely

• Omitted proofs and a much fuller discussion can
be found in the text, which these slides follow

6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Principle of optimality

• DP example: Deterministic problem

• DP example: Stochastic problem

• The general algorithm

• State augmentation

� � �

BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ U(xk)

• Probability distribution Pk(· |xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

N−1

Jπ(x0) = E gN (xN) + gk(xk, µk(xk), wk)

k=0

• Optimal cost function

J∗(x0) = minJπ(x0)
π

• Optimal policy π∗ is one that satisfies

Jπ∗ (x0) = J∗(x0)

� � � � �

PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ0
∗ , µ1

∗ , . . . , µ ∗ } be an optimal pol-N−1
icy

• Consider the “tail subproblem” whereby we are
at xi at time i and wish to minimize the “cost-to-go”
from time i to time N

N−1

E gN (xN) + gk xk, µk(xk), wk

k=i

and the “tail policy” {µi
∗ , µi

∗
+1, . . . , µ ∗ }N−1

xi Tail Subproblem

0 i N

• Principle of optimality : The tail policy is optimal
for the tail subproblem

• DP first solves all tail subroblems of final stage

• At the generic step, it solves all tail subproblems
of a given time length, using the solution of the tail
subproblems of shorter time length

DETERMINISTIC SCHEDULING EXAMPLE

• Find optimal sequence of operations A, B, C, D
(A must precede B and C must precede D)

ABC

3

A

AB

AC

2

8
3

4

9
ACB

ACD

6

1

C

Initial
State

4

CA

CD

CAB

CAD

6

2

3 4

5 3

3
5 5 6

1 0
1

3

3
7

CDA 2

• Start from the last tail subproblem and go back
wards

• At each state-time pair, we record the optimal
cost-to-go and the optimal decision

�

�

�

�

STOCHASTIC INVENTORY EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk + 1 = xk + uk - wk

uk
Cost of Period k

cuk + r (xk + uk - wk)

• Tail Subproblems of Length 1:

JN−1(xN−1) = min E cuN−1
uN−1≥0 wN−1

+ r(xN−1 + uN−1 − wN−1)

• Tail Subproblems of Length N − k:

Jk(xk) = min E cuk + r(xk + uk − wk)
uk ≥0 wk

+ Jk+1(xk + uk − wk)

�

� ��

DP ALGORITHM

• Start with

JN (xN) = gN (xN),

and go backwards using

Jk(xk) = min E gk(xk, uk, wk)
uk∈Uk (xk) wk

+ Jk+1 fk(xk, uk, wk) , k = 0, 1, . . . , N − 1.

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ ∗
0, . . . , µ ∗

N−1}

where µ ∗
k(xk) minimizes in the right side above for

each xk and k, is optimal.

• Justification: Proof by induction that Jk(xk) is
equal to Jk

∗(xk), defined as the optimal cost of the
tail subproblem that starts at time k at state xk.

• Note that ALL the tail subproblems are solved in
addition to the original problem, and the intensive
computational requirements.

� �

� � �

� � �
�

� � �� � � �

� � ��

PROOF OF THE INDUCTION STEP

• Let πk = µk, µk+1, . . . , µN−1 denote a tail
policy from time k onward

• Assume that Jk+1(xk+1) = Jk
∗
+1(xk+1). Then

Jk
∗ (xk) = min E gk xk, µk(xk), wk

(µk ,πk+1) wk ,...,wN−1

N−1

+ gN (xN) + gi xi, µi(xi), wi

i=k+1 �
 � �

= min E gk xk, µk(xk), wk

µk wk

N−1

+ min E gN (xN) + gi xi, µi(xi), wi

πk+1 wk+1,...,wN−1

i=k+1
 � � � � � ��� ∗ = min E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk

µk wk
 � � � � � ���

= min E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk

µk wk

= min E gk(xk, uk, wk) + Jk+1 fk(xk, uk, wk)
uk∈Uk(xk) wk

= Jk(xk)

� �

� � ��

LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Initial
Temperature x0

Temperature
u0

Oven 1 x1

Final
Oven 2 Temperature x2

Temperature
u1

• System

xk+1 = (1 − a)xk + auk, k = 0, 1,

where a is given scalar from the interval (0, 1).

• Cost
r(x2 − T)2 + u0

2 + u1
2

where r is given positive scalar.

• DP Algorithm:

J2(x2) = r(x2 − T)2

J1(x1) = min u1
2 + r

�
(1 − a)x1 + au1 − T

�2

u1

J0(x0) = min u0
2 + J1 (1 − a)x0 + au0

u0

�

� � �

STATE AUGMENTATION

• When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state.

• Example: Time lags

xk+1 = fk(xk, xk−1, uk, wk)

• Introduce additional state variable yk = xk−1.
New system takes the form

� � � �

xk+1 =

fk(xk, yk, uk, wk)
yk+1 xk

View x̃k = (xk, yk) as the new state.

• DP algorithm for the reformulated problem:

Jk(xk, xk−1) = min E gk(xk, uk, wk)

uk∈Uk(xk) wk

+ Jk+1 fk(xk, xk−1, uk, wk), xk

6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Deterministic finite-state DP problems

• Backward shortest path algorithm

• Forward shortest path algorithm

• Shortest path examples

• Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

. . .

. . .

. . .

Initial State
s

t
Artificial Terminal
Node

Terminal Arcs
with Cost Equal
to Terminal Cost

Stage 0 Stage 1 Stage 2 . . . Stage N - 1 Stage N

• States <==> Nodes

• Controls <==> Arcs

• Control sequences (open-loop) <==> paths from
initial state to terminal states

• k : Cost of transition from state i ∈ Sk to state aij
j ∈ Sk+1 at time k (view it as “length” of the arc)

N• ait : Terminal cost of state i ∈ SN

• Cost of control sequence <==> Cost of the cor
responding path (view it as “length” of the path)

� �

� �

BACKWARD AND FORWARD DP ALGORITHMS

• DP algorithm:

JN (i) = aN , i ∈ SN ,it

Jk(i) = min ak +Jk+1(j) , i ∈ Sk, k = 0, . . . , N−1.
j∈Sk+1

ij

The optimal cost is J0(s) and is equal to the length
of the shortest path from s to t.

• Observation: An optimal path s → t is also

an optimal path t → s in a “reverse” shortest

path problem where the direction of each arc is

reversed and its length is left unchanged.

• Forward DP algorithm (= backward DP algo

rithm for the reverse problem):

J̃N (j) = asj
0 , j ∈ S1,

˜ �
N−k ˜ �

Jk(j) = min aij + Jk+1(i) , j ∈ SN−k+1

i∈SN−k

˜ N ˜The optimal cost is J0(t) = mini∈SN ait + J1(i) .

• View J̃k(j) as optimal cost-to-arrive to state j

from initial state s.

A NOTE ON FORWARD DP ALGORITHMS

• There is no forward DP algorithm for stochastic
problems.

• Mathematically, for stochastic problems, we can
not restrict ourselves to open-loop sequences, so
the shortest path viewpoint fails.

• Conceptually, in the presence of uncertainty,
the concept of “optimal-cost-to-arrive” at a state
xk does not make sense. The reason is that it may
be impossible to guarantee (with prob. 1) that any
given state can be reached.

• By contrast, even in stochastic problems, the
concept of “optimal cost-to-go” from any state xk

makes clear sense.

� �

GENERIC SHORTEST PATH PROBLEMS

• {1, 2, . . . , N, t}: nodes of a graph (t: the desti
nation)

• aij : cost of moving from node i to node j

• Find a shortest (minimum cost) path from each
node i to node t

• Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than N
moves

• We formulate the problem as one where we
require exactly N moves but allow degenerate
moves from a node i to itself with cost aii = 0.

Jk(i) = optimal cost of getting from i to t in N−k moves

J0(i): Cost of the optimal path from i to t.

• DP algorithm:

Jk(i) = min aij +Jk+1(j) , k = 0, 1, . . . , N−2,
j=1,...,N

with JN−1(i) = ait, i = 1, 2, . . . , N.

� �

EXAMPLE

State i

Destination

2
7 5

2
5 5

6 1

3

0.5
32

1 4

5
5

4

3

2

1

3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

0 1 2 3 4 Stage k

(a) (b)

JN−1(i) = ait, i = 1, 2, . . . , N,

Jk(i) = min aij +Jk+1(j) , k = 0, 1, . . . , N−2.
j=1,...,N

STATE ESTIMATION / HIDDEN MARKOV MODELS

• Markov chain with transition probabilities pij

• State transitions are hidden from view

• For each transition, we get an (independent)
observation

• r(z; i, j): Prob. the observation takes value z
when the state transition is from i to j

• Trajectory estimation problem: Given the ob
servation sequence ZN = {z1, z2, . . . , zN }, what
is the “most likely” state transition sequence X̂N =
{x̂0, x̂1, . . . , x̂N } [one that maximizes p(XN | ZN)
over all XN = {x0, x1, . . . , xN }].

s x0 x1 x2 xN - 1 xN t

. . .

. . .

. . .

�

� � �

VITERBI ALGORITHM

• We have

p(XN | ZN) =
p(XN , ZN)

p(ZN)

where p(XN , ZN) and p(ZN) are the unconditional
probabilities of occurrence of (XN , ZN) and ZN

• Maximizing p(XN | ZN) is equivalent with max
imizing ln(p(XN , ZN))

• We have

N

p(XN , ZN) = πx0 pxk−1xk r(zk; xk−1, xk)
k=1

so the problem is equivalent to

N

minimize − ln(πx0) − ln pxk−1xk r(zk; xk−1, xk)
k=1

over all possible sequences {x0, x1, . . . , xN }.

• This is a shortest path problem

GENERAL SHORTEST PATH ALGORITHMS

• There are many nonDP shortest path algo
rithms. They can all be used to solve deterministic
finite-state problems

• They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

• This is essential for problems with HUGE state
spaces. Such problems arise for example in com
binatorial optimization

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

Artificial Terminal Node t

5 1 15

5 20 4

1 20 3

15 4 3

LABEL CORRECTING METHODS

•	 Given: Origin s, destination t, lengths aij ≥ 0.

• Idea is to progressively discover shorter paths
from the origin s to every other node i

•	 Notation:
−	 di (label of i): Length of the shortest path

found (initially ds = 0, di = ∞ for i =� s)

− UPPER: The label dt of the destination

− OPEN list: Contains nodes that are currently
active in the sense that they are candidates
for further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node i
from OPEN and for each child j of i, do step 2.

Step 2 (Node Insertion Test): If di + aij <
min{dj , UPPER}, set dj = di + aij and set i to
be the parent of j. In addition, if j �= t, place j in
OPEN if it is not already in OPEN, while if j = t,
set UPPER to the new value di + ait of dt.

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1.

VISUALIZATION/EXPLANATION

• Given: Origin s, destination t, lengths aij ≥ 0.

• di (label of i): Length of the shortest path found
thus far (initially ds = 0, di = ∞ for i =� s). The
label di is implicitly associated with an s → i path.

• UPPER: The label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj ?
(Is the path s --> i --> j
better than the
current path s --> j ?)

Is di + aij < UPPER ?

(Does the path s --> i --> j
have a chance to be part
of a shorter s --> t path ?)

YES

YES

INSERT

OPEN

Set dj = di + aij

EXAMPLE

AB AC 7 AD

Origin Node sA1

15 15

1 02

ABC ABD

20 4

ACB ACD

20 3

ADB ADC

4 3

5
 8
3

3 3 4 4 20 20

4
 ADBC ADCB9
6

15 15

15 5

ABCD ABDC ACBD ACDB

1

Artificial Terminal Node t

Iter. No. Node Exiting OPEN OPEN after Iteration
 UPPER

1

2, 7,10

3, 5, 7, 10

4, 5, 7, 10

∞
∞
∞
∞

0
 -

1
 1

2
 2

3
 3

4
 4
 5, 7, 10
 43

5
 5
 6, 7, 10
 43

6
 6
 7, 10
 13

7
 7
 8, 10
 13

8
 8
 9, 10
 13

9
 9
 10
 13

10
 10
 Empty
 13

Note that some nodes never entered OPEN
•

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina
tion.

Proof: (1) Each time a node j enters OPEN,
its label is decreased and becomes equal to the
length of some path from s to j

(2) The number of possible distinct path lengths
is finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and
let d∗ be the shortest distance. If UPPER > d∗

at termination, UPPER will also be larger than the
length of all the paths (s, j1, . . . , jm), m = 1, . . . , k,
throughout the algorithm. Hence, node jk will
never enter the OPEN list with djk equal to the
shortest distance from s to jk. Similarly node jk−1

will never enter the OPEN list with djk−1 equal to
the shortest distance from s to jk−1. Continue to
j1 to get a contradiction.

6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Label correcting methods for shortest paths

• Variants of label correcting methods

• Branch-and-bound as a shortest path algorithm

LABEL CORRECTING METHODS

• Origin s, destination t, lengths aij that are ≥ 0.

• di (label of i): Length of the shortest path found
thus far (initially di = ∞ except ds = 0). The label
di is implicitly associated with an s → i path.

• UPPER: Label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj ?
(Is the path s --> i --> j
better than the
current path s --> j ?)

Is di + aij < UPPER ?

(Does the path s --> i --> j
have a chance to be part
of a shorter s --> t path ?)

YES

YES

INSERT

OPEN

Set dj = di + aij

VALIDITY OF LABEL CORRECTING METHODS

Proposition: If there exists at least one path from
the origin to the destination, the label correcting
algorithm terminates with UPPER equal to the
shortest distance from the origin to the destina
tion.

Proof: (1) Each time a node j enters OPEN,
its label is decreased and becomes equal to the
length of some path from s to j

(2) The number of possible distinct path lengths
is finite, so the number of times a node can enter
OPEN is finite, and the algorithm terminates

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and
let d∗ be the shortest distance. If UPPER > d∗

at termination, UPPER will also be larger than the
length of all the paths (s, j1, . . . , jm), m = 1, . . . , k,
throughout the algorithm. Hence, node jk will
never enter the OPEN list with djk equal to the
shortest distance from s to jk. Similarly node jk−1

will never enter the OPEN list with djk−1 equal to
the shortest distance from s to jk−1. Continue to
j1 to get a contradiction.

MAKING THE METHOD EFFICIENT

• Reduce the value of UPPER as quickly as pos
sible

−	 Try to discover “good” s → t paths early in
the course of the algorithm

•	 Keep the number of reentries into OPEN low

− Try to remove from OPEN nodes with small
label first.

− Heuristic rationale: if di is small, then dj

when set to di +aij will be accordingly small,
so reentrance of j in the OPEN list is less
likely.

• Reduce the overhead for selecting the node to
be removed from OPEN

• These objectives are often in conflict. They give
rise to a large variety of distinct implementations

• Good practical strategies try to strike a compro
mise between low overhead and small label node
selection.

NODE SELECTION METHODS

• Depth-first search: Remove from the top of OPEN
and insert at the top of OPEN.

−	 Has low memory storage properties (OPEN
is not too long). Reduces UPPER quickly.

Origin Node s

1

2	 1 0

3 6 1 1 1 2

4 5 7 8 9 1 3 1 4

Destination Node t

• Best-first search (Djikstra): Remove from OPEN
a node with minimum value of label.

− Interesting property: Each node will be in
serted in OPEN at most once.

− Many implementations/approximations

ADVANCED INITIALIZATION

• Instead of starting from di = ∞ for all i �= s,
start with

di	 = length of some path from s to i (or di = ∞)

OPEN = {i �=	t | di < ∞}

• Motivation: Get a small starting value of UP
PER.

• No node with shortest distance ≥ initial value
of UPPER will enter OPEN

•	 Good practical idea:

− Run a heuristic (or use common sense) to
get a “good” starting path P from s to t

−	 Use as UPPER the length of P , and as di

the path distances of all nodes i along P

• Very useful also in reoptimization, where we
solve the same problem with slightly different data

VARIANTS OF LABEL CORRECTING METHODS

• If a lower bound hj of the true shortest distance
from j to t is known, use the test

di + aij + hj < UPPER

for entry into OPEN, instead of

di + aij < UPPER

• If an upper bound mj of the true shortest dis
tance from j to t is known, then if dj + mj <
UPPER, reduce UPPER to dj + mj

• Important use: Branch-and-bound algorithm
for discrete optimization can be viewed as an im
plementation of this last variant

BRANCH-AND-BOUND METHOD

• Problem: Minimize f(x) over a finite set of
feasible solutions X.

• Idea of branch-and-bound: Partition the feasi
ble set into smaller subsets, and then calculate
certain bounds on the attainable cost within some
of the subsets to eliminate from further consider
ation other subsets.

Bounding Principle

Given two subsets Y1 ⊂ X and Y2 ⊂ X, suppose
that we have bounds

f ≤ min f(x), f2 ≥ min f(x).
1 x∈Y1 x∈Y2

Then, if f2 ≤ f , the solutions in Y1 may be dis
1

regarded since their cost cannot be smaller than
the cost of the best solution in Y2.

• The B+B algorithm can be viewed as a la
bel correcting algorithm, where lower bounds de
fine the arc costs, and upper bounds are used to
strengthen the test for admission to OPEN

SHORTEST PATH IMPLEMENTATION

• Acyclic graph/partition of X into subsets (typi
cally a tree). The leafs consist of single solutions.

• Upper/Lower bounds f and fY for the mini-
Y

mum cost over each subset Y can be calculated.

• The lower bound of a leaf/single solution {x} is
the true value f(x)

• Each arc (Y, Z) has length f − f
Z Y

• Shortest distance from X to Y = f − f
Y X

• Distance from origin X to a leaf {x} is f(x)−f
X

• Shortest path from X to the set of leafs gives
the optimal cost and optimal solution

{1,2,3,4,5}

{1,2,3} {4,5}

{3} {4} {5}{1,2,}

{1} {2}

BRANCH-AND-BOUND ALGORITHM

Step 1: Remove a node Y from OPEN. For each
child Yj of Y , do the following: If f

Y j
< UPPER,

then place Yj in OPEN. If in addition fY j < UP
PER, then set UPPER = fY j , and if Yj consists
of a single solution, mark that solution as being
the best solution found so far.

Step 2: (Termination Test) If OPEN is nonempty,
go to step 1. Otherwise, terminate; the best solu
tion found so far is optimal.

• It is neither practical nor necessary to generate
a priori the acyclic graph (we generate it as we
go).

•	 Keys to branch-and-bound:

− Generate as sharp as possible upper and
lower bounds at each node

−	 Have a good partitioning and node selection
strategy

• Method involves a lot of art, may be prohibitively
time-consuming, but is guaranteed to find an op
timal solution.

6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Linear-quadratic problems

• Inventory control

�

�

LINEAR-QUADRATIC PROBLEMS

•	 System: xk+1 = Akxk + Bkuk + wk

•	 Quadratic cost �	 �
N−1

E	 x′
N

QN xN +
 (x
 ′
k

Qkxk + u′

k

Rkuk)

wk

k=0,1,...,N−1	 k=0

where Qk ≥ 0 and Rk > 0 (in the positive (semi)definite
sense).

•	 wk are independent and zero mean

•	 DP algorithm:
JN (xN) = x′

 QN xN ,
N
 �

Jk(xk) = min

E
 x′
k

Qkxk + u′

k

Rkuk

uk

+	Jk+1(Akxk + Bkuk + wk)

•	 Key facts:

− Jk(xk) is quadratic

− Optimal policy {µ
0
∗ , . . . , µN

∗
−1
} is linear:

µ∗
k

(xk) = Lkxk

− Similar treatment of a number of variants

�

�

DERIVATION

• By induction and straightforward calculation,
verify that

µ ∗
k(xk) = Lkxk,

where the matrices Lk are given by

Lk = −(Bk
′ Kk+1Bk + Rk)−1Bk

′ Kk+1Ak,

and where the symmetric positive semidefinite ma
trices Kk are given by the algorithm

KN = QN ,

Kk = A′
k Kk+1 − Kk+1Bk(Bk

′ Kk+1Bk

+ Rk)−1Bk
′ Kk+1 Ak + Qk.

• This is called the discrete-time Riccati equation.

• Just like DP, it starts at the terminal time N and
proceeds backwards.

• Certainty equivalence holds (optimal policy is
the same as when wk is replaced by its expected
value E{wk} = 0).

ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION

• Assume time-independent system and cost per
stage, and some technical assumptions: contro
lability of (A, B) and observability of (A, C) where
Q = C ′C

• The Riccati equation converges limk→−∞ Kk =
K, where K is the unique positive semidefinite
solution of the algebraic Riccati equation

� �

K = A′ K − KB(B′KB + R)−1B′K A + Q

• The corresponding steady-state controller µ ∗(x) =
Lx, where

L = −(B′KB + R)−1B′KA,

is stable in the sense that the matrix (A + BL) of
the closed-loop system

xk+1 = (A + BL)xk + wk

satisfies limk→∞(A + BL)k = 0.

� �

GRAPHICAL PROOF FOR SCALAR SYSTEMS

A
2
R

B
2 + Q

P 0

Q

F(P)

450

PPk Pk + 1
P*

-
R

B
2

• Riccati equation (with Pk = KN−k):

B2P 2

Pk+1 = A2 Pk − k + Q,
B2Pk + R

or Pk+1 = F (Pk), where

A2RP
F (P) = + Q.

B2P + R

• Note the two steady-state solutions, satisfying
P = F (P), of which only one is positive.

�

RANDOM SYSTEM MATRICES

• Suppose that {A0, B0}, . . . , {AN−1, BN−1} are
not known but rather are independent random ma
trices that are also independent of the wk

• DP algorithm is

JN (xN) = x′ QN xN ,N

Jk(xk) = min E
�
xk
′ Qkxk

uk wk,Ak,Bk

+ uk
′ Rkuk + Jk+1(Akxk + Bkuk + wk)

�

•	 Optimal policy µk
∗ (xk) = Lkxk, where

Lk = −
�
Rk + E{B′ Kk+1Bk}

�−1
E{B′ Kk+1Ak},k k

and where the matrices Kk are given by

KN = QN ,

Kk = E{A′
kKk+1Ak} − E{A′

kKk+1Bk}

Rk + E{Bk
′ Kk+1Bk}

�−1
E{Bk

′ Kk+1Ak} + Qk

PROPERTIES

•	 Certainty equivalence may not hold

• Riccati equation may not converge to a steady-
state

Q

450

0 P

F (P)

R
-
E{B

2}

•	 We have Pk+1 = F̃ (Pk), where

F̃ (P) =
E{A2}RP

+ Q +
TP 2

,
E{B2}P + R E{B2}P + R

� �2� �2
T = E{A2}E{B2} − E{A} E{B}

� � � � �

� � ��

INVENTORY CONTROL

• xk: stock, uk: inventory purchased, wk: de
mand

xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1

• Minimize

N−1

E cuk + r(xk + uk − wk)
k=0

where, for some p > 0 and h > 0,

r(x) = p max(0,−x) + h max(0, x)

• DP algorithm:

JN (xN) = 0,

Jk(xk) = min cuk+H(xk+uk)+E Jk+1(xk+uk−wk) ,
uk≥0

where H(x + u) = E{r(x + u − w)}.

�	 �

�

OPTIMAL POLICY

• DP algorithm can be written as

JN (xN) = 0,

Jk(xk) = min Gk(xk + uk) − cxk,
uk≥0

where

Gk(y) = cy + H(y) + E Jk+1(y − w) .

• If Gk is convex and lim|x|→∞ Gk(x) → ∞, we
have

µk
∗ (xk) = 	

Sk − xk if xk < Sk,
0 if xk ≥ Sk,

where Sk minimizes Gk(y).

• This is shown, assuming that c < p, by showing
that Jk is convex for all k, and

lim Jk(x) → ∞
|x|→∞

JUSTIFICATION

• Graphical inductive proof that Jk is convex.

y

H(y)

cy + H(y)

SN - 1

cSN - 1

- cy

JN - 1(xN - 1)

SN - 1 xN - 1- cy

6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Stopping problems

• Scheduling problems

• Other applications

PURE STOPPING PROBLEMS

•	 Two possible controls:

− Stop (incur a one-time stopping cost, and
move to cost-free and absorbing stop state)

−	 Continue [using xk+1 = fk(xk, wk) and in
curring the cost-per-stage]

• Each policy consists of a partition of the set of
states xk into two regions:

− Stop region, where we stop

− Continue region, where we continue

STOP
REGION

CONTINUE
REGION

Stop State

�

EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, . . . , N−1
receives a random offer wk

• May accept wk and invest the money at fixed
rate of interest r, or reject wk and wait for wk+1.
Must accept the last offer wN−1

• DP algorithm (xk: current offer, T : stop state):

= T ,
JN (xN) = 	

xN if xN �
0 if xN = T ,

� �	 � ��
Jk(xk) = 	 max (1 + r)N−kxk, E Jk+1(wk) if xk �= T ,

0 if xk = T .

• Optimal policy;

accept the offer xk if xk > αk,

reject the offer xk if xk < αk,

where	 � �
E Jk+1(wk)

αk =	 .
(1 + r)N−k

� � � �

� �

FURTHER ANALYSIS

ACCEPT

REJECT

_1

_N - 1

_2

0 1 2 N - 1 N k

• Can show that αk ≥ αk+1 for all k

• Proof: Let Vk(xk) = Jk(xk)/(1 + r)N−k for xk �=
T. Then the DP algorithm is VN (xN) = xN and

Vk(xk) = max xk, (1 + r)−1 E Vk+1(w) .
w

We have αk = Ew Vk+1(w) /(1 + r), so it is enough
to show that Vk(x) ≥ Vk+1(x) for all x and k. Start
with VN−1(x) ≥ VN (x) and use the monotonicity
property of DP.

• We can also show that αk → a as k → −∞.
Suggests that for an infinite horizon the optimal
policy is stationary.

� �

� ���

� � � � � � ��

GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost t(xk) or choose
a control uk ∈ U(xk) and continue

JN (xN) = t(xN),

Jk(xk) = min t(xk), min E g(xk, uk, wk)

uk∈U(xk)

+ Jk+1 f(xk, uk, wk)

• Optimal to stop at time k for states x in the set

Tk = x � t(x) ≤ min E g(x, u, w) + Jk+1 f (x, u, w)
u∈U(x)

• Since JN−1(x) ≤ JN (x), we have Jk(x) ≤
Jk+1(x) for all k, so

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1.

• Interesting case is when all the Tk are equal (to
TN−1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.

SCHEDULING PROBLEMS

• Set of tasks to perform, the ordering is subject
to optimal choice.

•	 Costs depend on the order

• There may be stochastic uncertainty, and prece
dence and resource availability constraints

• Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

• Some special problems admit a simple quasi-
analytical solution method

−	 Optimal policy has an “index form”, i.e., each
task has an easily calculable “index”, and
it is optimal to select the task that has the
maximum value of index (multi-armed bandit
problems - to be discussed later)

−	 Some problems can be solved by an “inter
change argument”(start with some sched
ule, interchange two adjacent tasks, and see
what happens)

� �

� �

EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is an
swered correctly (given probability pi), we receive
reward Ri; if not the quiz terminates. Choose or
der of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions
in an optimally ordered list

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1)

E {reward of L} = E reward of {i0, . . . , ik−1}

+ pi0 · · · pik−1 (piRi + pipj Rj)

+ pi0 · · · pik−1 pipj E reward of {ik+2, . . . , iN−1}

Consider the list with i and j interchanged

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1)

Since L is optimal, E{reward of L} ≥ E{reward of L′},
so it follows that piRi +pipj Rj ≥ pj Rj +pj piRi or

piRi/(1 − pi) ≥ pj Rj /(1 − pj).

�

MINIMAX CONTROL

• Consider basic problem with the difference that
the disturbance wk instead of being random, it is
just known to belong to a given set Wk(xk, uk).

•	 Find policy π that minimizes the cost

�

Jπ(x0) = max 	 gN (xN)

wk∈Wk(xk,µk(xk))

k=0,1,...,N−1

N−1	 � � �	 �
+	 gk xk, µk(xk), wk

k=0

•	 The DP algorithm takes the form

JN (xN) = gN (xN),

Jk(xk) = min max gk(xk, uk, wk)

uk∈U(xk) wk∈Wk(xk,uk)
 �	 ��

+	Jk+1 fk(xk, uk, wk)

(Exercise 1.5 in the text, solution posted on the
www).

�

�

�

UNKNOWN-BUT-BOUNDED CONTROL

• For each	k, keep the xk of the controlled system

�	 �
xk+1 = fk xk, µk(xk), wk

inside a given set Xk, the target set at time k.

• This is a minimax control problem, where the
cost at stage k is

0 if xk ∈ Xk,
gk(xk) = 	

1 if xk ∈/ Xk.

• We must reach at time k the set

�	 �
Xk = xk | Jk(xk) = 0

in order to be able to maintain the state within the
subsequent target sets.

• Start with	XN = XN , and for k = 0, 1, . . . , N−1,

Xk = xk ∈ Xk | there exists uk ∈ Uk(xk) such that

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk)

6.231 DYNAMIC PROGRAMMING

LECTURE 7

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• Examples

• Connection with the calculus of variations

• The Hamilton-Jacobi-Bellman equation as a
continuous-time limit of the DP algorithm

• The Hamilton-Jacobi-Bellman equation as a suf
ficient condition

• Examples

� �

� � � �

� �

� � � �

� � � �

PROBLEM FORMULATION

• We have a continuous-time dynamic system

ẋ(t) = f x(t), u(t) , 0 ≤ t ≤ T, x(0) : given,

where
n− x(t) ∈ � is the state vector at time t

m− u(t) ∈ U ⊂ � is the control vector at time
t, U is the control constraint set

− T is the terminal time.

• Any admissible control trajectory u(t) | t ∈ [0, T]
(piecewise continuous function u(t) | t ∈ [0, T]
with u(t) ∈ U for all t ∈ [0, T]), uniquely deter
mines x(t) | t ∈ [0, T] .

• Find an admissible control trajectory u(t) | t ∈
[0, T] and corresponding state trajectory x(t) | t ∈
[0, T] , that minimizes a cost function of the form

� T

h x(T) + g x(t), u(t) dt

0

• f, h, g are assumed continuously differentiable.

� �

� �

� �

� � � � � �

EXAMPLE I

• Motion control: A unit mass moves on a line
under the influence of a force u.

• x(t) = x1(t), x2(t) : position and velocity of
the mass at time t

• Problem: From a given x1(0), x2(0) , bring
the mass “near” a given final position-velocity pair
(x1, x2) at time T in the sense:

minimize �� x1(T) − x1
�2 + �� x2(T) − x2

�2

subject to the control constraint

|u(t)| ≤ 1, for all t ∈ [0, T].

• The problem fits the framework with

ẋ 1(t) = x2(t), ẋ 2(t) = u(t),

h
�
x(T)

�
=

�
x1(T) − x1

�2 +
�
x2(T) − x2

�2
,

g x(t), u(t) = 0, for all t ∈ [0, T].

� �

EXAMPLE II

• A producer with production rate x(t) at time t
may allocate a portion u(t) of his/her production
rate to reinvestment and 1 − u(t) to production of
a storable good. Thus x(t) evolves according to

ẋ(t) = γu(t)x(t),

where γ > 0 is a given constant.

• The producer wants to maximize the total amount
of product stored

� T

1 − u(t) x(t)dt
0

subject to

0 ≤ u(t) ≤ 1, for all t ∈ [0, T].

• The initial production rate x(0) is a given positive
number.

�

EXAMPLE III (CALCULUS OF VARIATIONS)

T

Length = 0 1 + (u(t))2 dt
0 .

_
Given

x(t)

x(t) = u(t)

GivenPoint
Line

0 T t

• Find a curve from a given point to a given line
that has minimum length.

• The problem is

� T �

minimize 1 +

�
ẋ(t)

�2
dt

0

subject to x(0) = α.

• Reformulation as an optimal control problem:

� T �

minimize 1 + u(t)

�2
dt

0

subject to ẋ(t) = u(t), x(0) = α.

�

� � ��

HAMILTON-JACOBI-BELLMAN EQUATION I

• We discretize [0, T] at times 0, δ, 2δ, . . . , Nδ,
where δ = T/N , and we let

xk = x(kδ), uk = u(kδ), k = 0, 1, . . . , N.

• We also discretize the system and cost:

N−1

xk+1 = xk +f(xk, uk)·δ, h(xN)+ g(xk, uk)·δ.
k=0

• We write the DP algorithm for the discretized
problem

J̃∗(Nδ, x) = h(x),

J̃∗(kδ, x) = min g(x, u)·δ+J̃∗ (k+1)·δ, x+f(x, u)·δ .
u∈U

• Assume J̃∗ is differentiable and Taylor-expand:

J̃∗ (kδ, x) = min
�
g(x, u) · δ + J̃∗ (kδ, x) + ∇tJ̃

∗ (kδ, x) · δ
u∈U

+ ∇xJ̃∗ (kδ, x)′f(x, u) · δ + o(δ)
�
.

� �

HAMILTON-JACOBI-BELLMAN EQUATION II

• Let J∗(t, x) be the optimal cost-to-go of the con
tinuous problem. Assuming the limit is valid

lim J̃∗(kδ, x) = J∗(t, x), for all t, x,
k→∞, δ→0, kδ=t

we obtain for all t, x,

0 = min g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)
u∈U

with the boundary condition J∗(T, x) = h(x).

• This is the Hamilton-Jacobi-Bellman (HJB) equa
tion – a partial differential equation, which is sat
isfied for all time-state pairs (t, x) by the cost-to-go
function J∗(t, x) (assuming J∗ is differentiable and
the preceding informal limiting procedure is valid).

• It is hard to tell a priori if J∗(t, x) is differentiable.

• So we use the HJB Eq. as a verification tool; if
we can solve it for a differentiable J∗(t, x), then:

− J∗ is the optimal-cost-to-go function

− The control µ ∗(t, x) that minimizes in the RHS
for each (t, x) defines an optimal control

� �

� � � �

� �

VERIFICATION/SUFFICIENCY THEOREM

• Suppose V (t, x) is a solution to the HJB equa
tion; that is, V is continuously differentiable in t
and x, and is such that for all t, x,

0 = min g(x, u) + ∇tV (t, x) + ∇xV (t, x)′f(x, u) ,
u∈U

V (T, x) = h(x), for all x.

• Suppose also that µ ∗(t, x) attains the minimum
above for all t and x.

• Let x ∗(t) | t ∈ [0, T] and u ∗(t) = µ ∗ t, x∗(t) ,
t ∈ [0, T], be the corresponding state and control
trajectories.

• Then

V (t, x) = J∗(t, x), for all t, x,

and u ∗(t) | t ∈ [0, T] is optimal.

� �

� � � � � �

� � � � � �

� � � � � �

PROOF

Let {(û(t), x̂(t)) | t ∈ [0, T]} be any admissible control
state trajectory. We have for all t ∈ [0, T] � � � � � �′ � �
0 ≤ g x̂(t), û(t) +∇tV t, x̂(t) +∇xV t, x̂(t) f x̂(t), û(t) .

Using the system equation ẋ̂(t) = f x̂(t), û(t) ,
the RHS of the above is equal to � � d � �

g x̂(t), û(t) + V (t, x̂(t))
dt

Integrating this expression over t ∈ [0, T],

� T

0 ≤ g x̂(t), û(t) dt+ V T, x̂(T) − V 0, x̂(0) .
0

Using V (T, x) = h(x) and x̂(0) = x(0), we have � T

V 0, x(0) ≤ h x̂(T) + g x̂(t), û(t) dt.
0

If we use u ∗(t) and x ∗(t) in place of û(t) and x̂(t),
the inequalities becomes equalities, and � T

V 0, x(0) = h x∗(T) + g x ∗(t), u ∗(t) dt.
0

� �

� �

� �

� � � �

EXAMPLE OF THE HJB EQUATION

Consider the scalar system ẋ(t) = u(t), with |u(t)| ≤
1 and cost (1/2)

�
x(T)

�2
. The HJB equation is

0 = min ∇tV (t, x) +∇xV (t, x)u , for all t, x,
|u|≤1

with the terminal condition V (T, x) = (1/2)x2.

• Evident candidate for optimality: µ ∗(t, x) =
−sgn(x). Corresponding cost-to-go

1� � ��2
J∗(t, x) = max 0, |x| − (T − t) .

2

• We verify that J∗ solves the HJB Eq., and that
u = −sgn(x) attains the min in the RHS. Indeed,

∇tJ∗(t, x) = max 0, |x| − (T − t) ,

∇xJ∗(t, x) = sgn(x) · max 0, |x| − (T − t) .

Substituting, the HJB Eq. becomes

0 = min 1 + sgn(x) · u max 0, |x| − (T − t)
|u|≤1

� �

LINEAR QUADRATIC PROBLEM

Consider the n-dimensional linear system

ẋ(t) = Ax(t) + Bu(t),

and the quadratic cost

� T

x(T)′QT x(T) + x(t)′Qx(t) + u(t)′Ru(t) dt
0

The HJB equation is

0 = min
�
x ′Qx+u ′Ru+∇tV (t, x)+∇xV (t, x)′(Ax+Bu)

�
,

u∈�m

with the terminal condition V (T, x) = x′QT x. We
try a solution of the form

V (t, x) = x′K(t)x, K(t) : n × n symmetric,

and show that V (t, x) solves the HJB equation if

K̇(t) = −K(t)A−A′K(t)+K(t)BR−1B′K(t)−Q

with the terminal condition K(T) = QT .

6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• From the HJB equation to the Pontryagin Mini
mum Principle

• Examples

()

[]

THE HJB EQUATION

• Continuous-time dynamic system

ẋ(t) = f x(t), u(t) , 0 ≤ t ≤ T, x(0) : given

• Cost function ∫ T () ()

h x(T) + g x(t), u(t) dt

0

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation: For all (t, x)

0 = min g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)
u∈U

with the boundary condition J∗(T, x) = h(x).

• Verification theorem: If we can find a solution, it
must be equal to the optimal cost-to-go function.
Also a (closed-loop) policy µ ∗(t, x) such that

µ ∗(t, x) attains the min for each (t, x)

is optimal.

}

()

HJB EQ. ALONG AN OPTIMAL TRAJECTORY

• Observation I: An optimal control-state trajec
tory pair {(u ∗(t), x ∗(t)) | t ∈ [0, T] satisfies for all
t ∈ [0, T]

∗
[(∗

) ∗(∗
)′ (∗

)]
u (t) = arg min g x (t), u +∇xJ t, x (t) f x (t), u .

u∈U

(1)

• Observation II: To obtain an optimal control tra}

jectory {u ∗(t) | t ∈ [0, T] via this equation, we
don’t need to know ∇xJ∗(t, x) for all (t, x) - only
the time function

p(t) = ∇xJ∗ t, x∗(t) , t ∈ [0, T].

• It turns out that calculating p(t) is often easier
than calculating J∗(t, x) or ∇xJ∗(t, x) for all (t, x).

• Pontryagin’s minimum principle is just Eq. (1) to
gether with an equation for calculating p(t), called
the adjoint equation.

• Also, Pontryagin’s minimum principle is valid
much more generally, even in cases where J∗(t, x)
is not differentiable and the HJB has no solution.

{ } ()

{ } ()

DERIVING THE ADJOINT EQUATION

• The HJB equation holds as an identity for all
(t, x), so it can be differentiated [the gradient of
the RHS with respect to (t, x) is identically 0].

• We need a tool for differentiation of “minimum”
functions.

Lemma: Let F (t, x, u) be a continuously differ-
mentiable function of t ∈ �, x ∈ �n, and u ∈ � ,

mand let U be a convex subset of � . Assume
that µ ∗(t, x) is a continuously differentiable func
tion such that

µ ∗(t, x) = arg min F (t, x, u), for all t, x.
u∈U

Then

∇t min F (t, x, u) = ∇tF t, x, µ∗(t, x) , for all t, x,
u∈U

∇x min F (t, x, u) = ∇xF t, x, µ∗(t, x) , for all t, x.
u∈U

()

()

()

DIFFERENTIATING THE HJB EQUATION I

• We set to zero the gradient with respect to x
and t of the function

g
(
x, µ ∗(t, x)

)
+∇tJ∗(t, x)+∇xJ∗

(
t, x

)′
f
(
x, µ ∗(t, x)

)

and we rely on the Lemma to disregard the terms
involving the derivatives of µ ∗(t, x) with respect to
t and x.

• We obtain for all (t, x),

0 = ∇xg x, µ ∗ (t, x) + ∇xt
2 J ∗ (t, x)

+ ∇2 ∗
(∗

) (∗
) ∗

xxJ (t, x)f x, µ (t, x) + ∇xf x, µ (t, x) ∇xJ (t, x)

0 = ∇2 J∗(t, x) + ∇2 J∗(t, x)′f x, µ ∗(t, x) ,tt xt

where ∇xf x, µ ∗(t, x) is the matrix

 ∂f1 ∂fn · · · ∂x1 ∂x1 . . .
 ∇xf =
∂f1 ∂fn· · · ∂xn ∂xn

{() } ()

()

() () ()

DIFFERENTIATING THE HJB EQUATION II

• The preceding equations hold for all (t, x). We
specialize them along an optimal state and con
trol trajectory x ∗(t), u ∗(t) | t ∈ [0, T] , where
u ∗(t) = µ ∗ t, x∗(t) for all t ∈ [0, T].

• We have ẋ∗(t) = f x ∗(t), u ∗(t) , so the terms

∇2 J∗ + ∇2 x ∗(t, x∗(t) xxJ∗ t, x∗(t) f t), u ∗(t)xt

∇2 J∗
(
t, x∗(t)

)
+ ∇2 J∗

(
t, x∗(t)

)′
f
(
x ∗(t), u ∗(t)

)
tt xt

are equal to the total derivatives

d (()) d (()) ∇xJ∗ t, x∗(t) , ∇tJ∗ t, x∗(t) ,
dt dt

and we have

() ())
∗ d ∗(∗ 0 = ∇xg x, u (t) + ∇xJ t, x (t)

dt () ∗

)∗
(∗ + ∇xf x, u (t) ∇xJ t, x (t)

d (())
0 = ∇tJ∗ t, x∗(t) .

dt

()

()

() ()

() ()

()

CONCLUSION FROM DIFFERENTIATING THE HJB

• Define
p(t) = ∇xJ∗ t, x∗(t)

and
p0(t) = ∇tJ∗ t, x∗(t)

• We have the adjoint equation

ṗ(t) = −∇xf x ∗(t), u ∗(t) p(t)−∇xg x ∗(t), u ∗(t)

and
ṗ0(t) = 0

or equivalently,

p0(t) = constant, for all t ∈ [0, T].

• Note also that, by definition J∗ T, x∗(T) =
h x∗(T) , so we have the following boundary con
dition at the terminal time:

p(T) = ∇h x∗(T)

()

[()]

()

()

NOTATIONAL SIMPLIFICATION

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u)

• The adjoint equation becomes

ṗ(t) = −∇xH x∗(t), u ∗(t), p(t)

• The HJB equation becomes

0 = min H x∗(t), u, p(t) + p0(t)
u∈U

= H x∗(t), u ∗(t), p(t) + p0(t)

so since p0(t) = constant, there is a constant C
such that

H x∗(t), u ∗(t), p(t) = C, for all t ∈ [0, T].

{ } { }

()

()

()

()

PONTRYAGIN MINIMUM PRINCIPLE

• The preceding (highly informal) derivation is
summarized as follows:

Minimum Principle: Let u ∗(t) | t ∈ [0, T] be
an optimal control trajectory and let x ∗(t) | t ∈
[0, T] be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH x∗(t), u ∗(t), p(t) ,

with the boundary condition

p(T) = ∇h x∗(T) .

Then, for all t ∈ [0, T],

u ∗(t) = arg min H x∗(t), u, p(t) .
u∈U

Furthermore, there is a constant C such that

H x∗(t), u ∗(t), p(t) = C, for all t ∈ [0, T].

()

()

()

()

2-POINT BOUNDARY PROBLEM VIEW

• The minimum principle is a necessary condition
for optimality and can be used to identify candi
dates for optimality.

• We need to solve for x ∗(t) and p(t) the differen
tial equations

ẋ∗(t) = f x∗(t), u ∗(t)

ṗ(t) = −∇xH x∗(t), u ∗(t), p(t) ,

with split boundary conditions:

x ∗(0) : given, p(T) = ∇h x∗(T) .

• The control trajectory is implicitly determined
from x ∗(t) and p(t) via the equation

u ∗(t) = arg minH x∗(t), u, p(t) .
u∈U

• This 2-point boundary value problem can be

addressed with a variety of numerical methods.

ANALYTICAL EXAMPLE I

∫ T √

minimize 1 +

(
u(t)

)2
dt

0

subject to

ẋ(t) = u(t), x(0) = α.

• Hamiltonian is

√

H(x, u, p) = 1 + u2 + pu,

and adjoint equation is ṗ(t) = 0 with p(T) = 0.

• Hence, p(t) = 0 for all t ∈ [0, T], so minimization
of the Hamiltonian gives

√
u ∗(t) = arg min 1 + u2 = 0, for all t ∈ [0, T].

u∈�

Therefore, ẋ∗(t) = 0 for all t, implying that x ∗(t) is
constant. Using the initial condition x ∗(0) = α, it
follows that x ∗(t) = α for all t.

{

ANALYTICAL EXAMPLE II

•	 Optimal production problem

∫	 T ()
maximize 1 − u(t) x(t)dt

0

subject to 0 ≤ u(t) ≤ 1 for all t, and

ẋ(t) = γu(t)x(t), x(0) > 0 : given.

•	 Hamiltonian: H(x, u, p) = (1 − u)x + pγux.

•	 Adjoint equation is

ṗ(t) = −γu∗(t)p(t) − 1 + u ∗(t), p(T) = 0.

•	 Maximization of the Hamiltonian over u ∈ [0, 1]:

0 if p(t) < 1 ,
u ∗(t) =

1 if p(t) ≥
γ

γ
1 .

Since p(T) = 0, for t close to T , p(t) < 1/γ and
u ∗(t) = 0. Therefore, for t near T the adjoint equa
tion has the form ṗ(t) = −1.

ANALYTICAL EXAMPLE II (CONTINUED)

• For t = T − 1/γ, p(t) is equal to 1/γ, so u ∗(t)
changes to u ∗(t) = 1.

• Geometrical construction

T t0

p(t)

T - 1/a

1/a

T t0

p(t)

T - 1/a

1/a

T t0 T - 1/a

u *(t)

u *(t) = 1 u *(t) = 0

6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• Variants of the Pontryagin Minimum Principle

• Fixed terminal state

• Free terminal time

• Examples

• Discrete-Time Minimum Principle

� �

� �

�

� �

REVIEW

• Continuous-time dynamic system

ẋ(t) = f x(t), u(t) , 0 ≤ t ≤ T, x(0) : given

• Cost function � � � T � �

h x(T) + g x(t), u(t) dt

0

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation/Verification theorem: For all (t, x)

0 = min g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)
u∈U

with the boundary condition J∗(T, x) = h(x).

• Adjoint equation/vector: To compute an op
timal state-control trajectory {(u ∗(t), x ∗(t)) it is
enough to know

p(t) = ∇xJ∗ t, x∗(t) , t ∈ [0, T].

• Pontryagin theorem gives an equation for p(t).

� � � �

� �

� �

� �

� �

NEC. CONDITION: PONTRYAGIN MIN. PRINCIPLE

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u).

• Minimum Principle: Let u ∗(t) | t ∈ [0, T]
be an optimal control trajectory and let x ∗(t) | t ∈
[0, T] be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH x∗(t), u ∗(t), p(t) ,

with the boundary condition

p(T) = ∇h x∗(T) .

Then, for all t ∈ [0, T],

u ∗(t) = arg minH x∗(t), u, p(t) .
u∈U

Furthermore, there is a constant C such that

H x∗(t), u ∗(t), p(t) = C, for all t ∈ [0, T].

�

� �

VARIATIONS: FIXED TERMINAL STATE

• Suppose that in addition to the initial state x(0),
the final state x(T) is given.

• Then the informal derivation of the adjoint equa
tion still holds, but the terminal condition J∗(T, x) ≡
h(x) of the HJB equation is not true anymore.

• In effect,

J∗(T, x) = 	 0 if x = x(T)
∞ otherwise.

So J∗(T, x) cannot be differentiated with respect
to x, and the terminal boundary condition p(T) =
∇h x∗(T) for the adjoint equation does not hold.

• As compensation, we have the extra condition

x(T) : given,

thus maintaining the balance between boundary
conditions and unknowns.

• Generalization: Some components of the ter
minal state are fixed.

�

EXAMPLE WITH FIXED TERMINAL STATE

• Consider finding the curve of minimum length
connecting two points (0, α) and (T, β). We have

ẋ(t) = u(t), x(0) = α, x(T) = β,

and the cost is
�
0
T 1 +

�
u(t)

�2
dt.

x*(t) `

_

0 T t

•	 The adjoint equation is ṗ(t) = 0, implying that

p(t) = constant, for all t ∈ [0, T].
√ • Minimizing the Hamiltonian 1 + u2 + p(t)u:

u ∗(t) = constant, for all t ∈ [0, T].

�	 �
So optimal x ∗(t) | t ∈ [0, T] is a straight line.

�� � �

� � � �

VARIATIONS: FREE TERMINAL TIME

• Initial state and/or the terminal state are given,
but the terminal time T is subject to optimization.

• Let x ∗(t), u ∗(t) | t ∈ [0, T] be an optimal
state-control trajectory pair and let T ∗ be the opti
mal terminal time. Then x ∗(t), u ∗(t) would still be
optimal if T were fixed at T ∗, so

� �

u ∗(t) = arg min H x∗(t), u, p(t) , for all t ∈ [0, T ∗]

u∈U

where p(t) is given by the adjoint equation.

• In addition: H(x ∗(t), u ∗(t), p(t)) = 0 for all t
[instead of H(x ∗(t), u ∗(t), p(t)) ≡ constant].

• Justification: We have

∇tJ∗ t, x∗(t)
t=0

= 0

Along the optimal, the HJB equation is

� � � � ∇tJ∗ t, x∗(t) = −H x∗(t), u ∗(t), p(t) , for all t

� �

so H x∗(0), u ∗(0), p(0) = 0.

�	 �

MINIMUM-TIME EXAMPLE I

• Unit mass moves horizontally: ÿ(t) = u(t),
where y(t): position, u(t): force, u(t) ∈ [−1, 1].

• Given the initial position-velocity (y(0), ẏ(0)),
bring the object to (y(T), ẏ(T)) = (0, 0) so that
the time of transfer is minimum. Thus, we want to

� T

minimize T = 1dt.
0

• Let the state variables be

x1(t) = y(t), x2(t) = ̇y(t),

so the system equation is

ẋ 1(t) = x2(t), ẋ 2(t) = u(t).

•	 Initial state x1(0), x2(0) : given and

x1(T) = 0, x2(T) = 0.

� �

� �

�

� �

MINIMUM-TIME EXAMPLE II

• If u ∗(t) | t ∈ [0, T] is optimal, u ∗(t) must min
imize the Hamiltonian for each t, i.e.,

u ∗(t) = arg min 1 + p1(t)x2
∗(t) + p2(t)u .

−1≤u≤1

Therefore

1 if p2(t) < 0,
u ∗(t) = −1 if p2(t) ≥ 0.

• The adjoint equation is

ṗ1(t) = 0, ṗ2(t) = −p1(t),

so
p1(t) = c1, p2(t) = c2 − c1t,

where c1 and c2 are constants.

• So p2(t) | t ∈ [0, T] switches at most once in
going from negative to positive or reversely.

0

MINIMUM-TIME EXAMPLE III

p2(t) p2(t) p2(t) p2(t)

TT t 0 T t 0 T t 0 t

(a)

u*(t) u*(t) u*(t) u*(t)

1 1 1

0 T t 0 T t 0 T t 0 T t

-1 -1 -1

(b)

• For u(t) ≡ ζ, where ζ = ±1, the system evolves
according to

ζ
x1(t) = x1(0)+x2(0)t+ t2 , x2(t) = x2(0)+ζt.

2

Eliminating the time t, we see that for all t

1 � �2 1 � �2
x1(t) − x2(t) = x1(0) − x2(0) .

2ζ 2ζ

MINIMUM-TIME EXAMPLE IV

• For intervals where u(t) ≡ 1, the system moves
along the curves

1� �2
x1(t) − x2(t) : constant.

2

• For intervals where u(t) ≡ −1, the system
moves along the curves

1� �2
x1(t) + x2(t) : constant.

2

x1

x2

u(t) > 1

0 x1

x2

0

u(t) > -1

(a) (b)

MINIMUM-TIME EXAMPLE V

• To bring the system from the initial state x(0)
to the origin with at most one switch, we use the
following switching curve.

x1

x2

u*(t) > 1

u*(t) > -1

0

(x1(0),x2(0))

(a) If the initial state lies above the switching curve,
use u ∗(t) ≡ −1 until the state hits the switch
ing curve; then use u ∗(t) ≡ 1.

(b) If the initial state lies below the switching curve,
use u ∗(t) ≡ 1 until the state hits the switch
ing curve; then use u ∗(t) ≡ −1.

(c) If the initial state lies on the top (bottom)
part of the switching curve, use u ∗(t) ≡ −1
[u ∗(t) ≡ 1, respectively].

� �

DISCRETE-TIME MINIMUM PRINCIPLE

�N−1 • Minimize J(u) = gN (xN) + k=0 gk(xk, uk),
subject to uk ∈ Uk ⊂ 	m, with Uk: convex, and

xk+1 = fk(xk, uk), k = 0, . . . , N−1, x0 : given.

• Introduce Hamiltonian function

Hk(xk, uk, pk+1) = gk(xk, uk) + p′ k+1fk(xk, uk)

• Suppose {(uk
∗ , x ∗) | k = 0, . . . , N − 1} arek+1

optimal. Then for all k,

∇uk Hk
�
x∗

k, u∗
k, pk+1

�′(uk−u∗
k) ≥ 0, for all uk ∈ Uk,

where p1, . . . , pN are obtained from

pk = ∇xk fk · pk+1 + ∇xk gk,

with the terminal condition pN x ∗).= ∇gN (N

• If, in addition, the Hamiltonian Hk is a convex
function of uk for any fixed xk and pk+1, we have

u ∗
k = arg min Hk x ∗

k, uk, pk+1 , for all k.
uk∈Uk

DERIVATION

• We develop an expression for the gradient ∇J(u).
We have, using the chain rule,

∇uk J(u) = ∇uk fk · ∇xk+1 fk+1 · · ·∇xN−1 fN−1 · ∇gN

+ ∇uk fk · ∇xk+1 fk+1 · · ·∇xN−2 fN−2 · ∇xN−1 gN−1

· · ·

+ ∇uk fk · ∇xk+1 gk+1

+	∇uk gk,

where all gradients are evaluated along u and the
corresponding state trajectory.

•	 Iintroduce the discrete-time adjoint equation

pk = ∇xk fk · pk+1 +∇xk gk, k = 1, . . . , N − 1,

with terminal condition pN = ∇gN .

•	 Verify that, for all k,

∇uk J(u0, . . . , uN−1) = ∇uk Hk(xk, uk, pk+1)

6.231 DYNAMIC PROGRAMMING

LECTURE 10

LECTURE OUTLINE

• Problems with imperfect state info

• Reduction to the perfect state info case

• Machine repair example

BASIC PROBLEM WITH IMPERFECT STATE INFO

• Same as basic problem of Chapter 1 with one
difference: the controller, instead of knowing xk,
receives at each time k an observation of the form

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 1

• The observation zk belongs to some space Zk.

• The random observation disturbance vk is char
acterized by a probability distribution

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0)

• The initial state x0 is also random and charac
terized by a probability distribution Px0 .

• The probability distribution P (· | xk, uk) of wkwk

is given, and it may depend explicitly on xk and
uk but not on w0, . . . , wk−1, v0, . . . , vk−1.

• The control uk is constrained to a given subset
Uk (this subset does not depend on xk, which is
not assumed known).

� � � � �

� �

INFORMATION VECTOR AND POLICIES

• Denote by Ik the information vector , i.e., the
information available at time k:

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1,

I0 = z0.

• We consider policies π = {µ0, µ1, . . . , µN−1},
where each function µk maps the information vec
tor Ik into a control uk and

µk(Ik) ∈ Uk, for all Ik, k ≥ 0.

• We want to find a policy π that minimizes

N−1

Jπ = E gN (xN) + gk xk, µk(Ik), wk
x0,wk,vk

k=0,...,N−1 k=0

subject to the equations

� �

xk+1 = fk xk, µk(Ik), wk , k ≥ 0,

z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k ≥ 1

EXAMPLE: MULTIACCESS COMMUNICATION I

• Collection of transmitting stations sharing a com
mon channel, are synchronized to transmit pack
ets of data at integer times.

• xk: backlog at the beginning of slot k.

• ak: random number of packet arrivals in slot k.

• tk: the number of packets transmitted in slot k.

xk+1 = xk + ak − tk,

• At kth slot, each of the xk packets in the system
is transmitted with probability uk (common for all
packets). If two or more packets are transmitted
simultaneously, they collide.

• So tk = 1 (a success) with probability xkuk(1−
uk)xk−1, and tk = 0 (idle or collision) otherwise.

• Imperfect state info: The stations can observe
the channel and determine whether in any one
slot there was a collision (two or more packets), a
success (one packet), or an idle (no packets).

�

EXAMPLE: MULTIACCESS COMMUNICATION II

• Information vector at time k: The entire history

(up to k) of successes, idles, and collisions. Math

ematically, zk+1, the observation at the end of the

kth slot, is

zk+1 = vk+1

where vk+1 yields an idle with probability (1 −

uk)xk , a success with probability xkuk(1−uk)xk−1,

and a collision otherwise.

• If we had perfect state information, the DP al

gorithm would be

Jk(xk) = gk(xk)+ min E p(xk, uk)Jk+1(xk + ak − 1)
0≤uk≤1 ak � � �

+ 1 − p(xk, uk) Jk+1(xk + ak) ,

p(xk, uk) is the success probability xkuk(1−uk)xk−1.

• The optimal (perfect state information) policy

would be to select the value of uk that maximizes

p(xk, uk), so µk(xk) = 1 , for all xk ≥ 1.
xk

• Imperfect state info problem is much harder.

� � � �
� �

� �

REFORMULATION AS A PERFECT INFO PROBLEM

• We have

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N−2, I0 = z0.

View this as a dynamic system with state Ik, con
trol uk, and random disturbance zk+1.

• We have

P (zk+1 | Ik, uk) = P (zk+1 | Ik, uk, z0, z1, . . . , zk),

since z0, z1, . . . , zk are part of the information vec
tor Ik. Thus the probability distribution of zk+1

depends explicitly only on the state Ik and control
uk and not on the prior “disturbances” zk, . . . , z0.

• Write

E gk(xk, uk, wk) = E E gk(xk, uk, wk) | Ik, uk
xk,wk

so the cost per stage of the new system is

g̃k(Ik, uk) = E gk(xk, uk, wk) | Ik, uk
xk,wk

� �

� � � �

�
�

� �

DP ALGORITHM

• Writing the DP algorithm for the (reformulated)
perfect state info problem and doing the algebra:

� �

Jk(Ik) = min E gk(xk, uk, wk)

uk∈Uk xk, wk, zk+1

+ Jk+1(Ik, zk+1, uk) | Ik, uk

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1

E gN fN−1(xN−1, uN−1, wN−1)
xN−1, wN−1

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 ,

• The optimal cost J∗ is given by

J∗ = E J0(z0) .
z0

MACHINE REPAIR EXAMPLE I

• A machine can be in one of two states denoted
P (good state) and P (bad state).

• At the end of each period the machine is in
spected.

• Two possible inspection outcomes: G (probably
good state) and B (probably bad state).

• Transition probabilities:

GP P

B

1/4

1/3

2/3 3/4

3/41

1/4

P P

State Transition Inspection

• Possible actions after each inspection:

C : Continue operation of the machine.

S : Stop the machine, determine its state, and if
in P bring it back to the good state P .

• Cost per stage:

g(P, C) = 0, g(P, S) = 1, g(P , C) = 2, g(P , S) = 1.

�

�

MACHINE REPAIR EXAMPLE II

•	 The information vector at times 0 and 1 is

I0 = z0, I1 = (z0, z1, u0),

and we seek functions µ0(I0), µ1(I1) that minimize

�	 � � � ��
E g x0, µ0(z0) +g x1, µ1(z0, z1, µ0(z0)) .

x0, w0, w1
v0, v1

• DP algorithm: Start with J2(I2) = 0. For k =
0, 1, take the min over the two actions, C and S,

Jk(Ik) = min P (xk = P | Ik)g(P, C)

+	P (xk = P | Ik)g(P , C) �	 �
+	 E Jk+1(Ik, C, zk+1) | Ik, C ,

zk+1

P (xk = P | Ik)g(P, S)

+ P (xk = P | Ik)g(P , S) �	 �
+	 E Jk+1(Ik, S, zk+1) | Ik, S

zk+1

� �

MACHINE REPAIR EXAMPLE III

• Last Stage: Compute J1(I1) for each of the eight
possible information vectors I1 = (z0, z1, u0). We
have

cost of C = 2 · P (x1 = P | I1), cost of S = 1,

and therefore J1(I1) = min 2P (x1 = P | I1), 1 .
The probabilities P (x1 = P | I1) are computed
using Bayes’ rule:

(1) For I1 = (G, G, S)

x1
P (x1 = P | G, G, S) =

P (= P , G, G | S)
P (G, G | S) � �

1 1 2 3 1 1

3 ·
4 ·
 3 ·
 4 +

3
 ·
4
 1

= �
 �2
 = .

2
 3
 1
 1
 7
·
 +
 ·

3
 4
 3
 4

Hence

2 ∗J1(G, G, S) = , µ1(G, G, S) = C.
7

MACHINE REPAIR EXAMPLE IV

(2) For I1 = (B, G, S)

1
P (x1 = P | B, G, S) = P (x1 = P | G, G, S) = ,

7

2
J1(B, G, S) =

7
, µ∗
1
(B, G, S) = C.

(3) For I1 = (G, B, S)

P (x1 = P , G, B, S)

P (x1 = P | G, B | S) =

P (G, B | S) � �

1 3 2 3 1
 1
·
 ·
 ·
 +
 ·

=
 � 3 4 3 � � 4 3
 4
 �

2
 1
 1
 3
 2
 3
 1
 1
·
 +
 ·
 ·
 +
 ·
3
 4
 3 4 3 4 3
 4

3
=

5
,

J1(G, B, S) = 1,
 µ∗
1

(G, B, S) = S.

• Similarly, for all possible I1, we compute J1(I1),
and µ∗
1(I1), which is to continue (u1 = C) if the

last inspection was G, and to stop otherwise.

� �

� �

� �

MACHINE REPAIR EXAMPLE V

• First Stage: Compute J0(I0) for each of the two
possible information vectors I0 = (G), I0 = (B).
We have

cost of C = 2P (x0 = P | I0) + E J1(I0, z1, C) | I0, C
z1

= 2P (x0 = P | I0) + P (z1 = G | I0, C)J1(I0, G, C)

+ P (z1 = B | I0)J1(I0, B, C),

cost of S = 1 + E J1(I0, z1, S) | I0, S
z1

= 1 + P (z1 = G | I0)J1(I0, G, S)
+ P (z1 = B | I0)J1(I0, B, S),

using the values of J1 from the previous stage.

• We have

J0(I0) = min cost of C, cost of S

• The optimal cost is

J∗ = P (G)J0(G) + P (B)J0(B).

6.231 DYNAMIC PROGRAMMING

LECTURE 11

LECTURE OUTLINE

• Review of DP for imperfect state info

• Linear quadratic problems

• Separation of estimation and control

REVIEW: PROBLEM WITH IMPERFECT STATE INFO

•	 Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 1

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes �	 �
N−1 � �	 �

Jπ = E gN (xN) + gk xk, µk(Ik), wk
x0,wk,vk

k=0,...,N−1 k=0

subject to the equations

�	 �

xk+1 = fk xk, µk(Ik), wk , k ≥ 0,

�	 �
z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k ≥ 1

� �

� � � �

�
�

� �

DP ALGORITHM

• Reformulate to perfect state info problem, and
write the DP algorithm:

� �

Jk(Ik) = min E gk(xk, uk, wk)

uk∈Uk xk, wk, zk+1

+ Jk+1(Ik, zk+1, uk) | Ik, uk

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1

E gN fN−1(xN−1, uN−1, wN−1)
xN−1, wN−1

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 ,

• The optimal cost J∗ is given by

J∗ = E J0(z0) .
z0

�

LINEAR-QUADRATIC PROBLEMS

•	 System: xk+1 = Akxk + Bkuk + wk

•	 Quadratic cost �	 �
N−1

E	 x′
N QN xN + (x′

kQkxk + u′
kRkuk)

wk
k=0,1,...,N−1 k=0

where Qk ≥ 0 and Rk > 0.

•	 Observations

zk = Ckxk + vk, k = 0, 1, . . . , N − 1.

•	 w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean

•	 Key fact to show:

− Optimal policy {µ0
∗ , . . . , µ ∗ } is of the form: N−1

µ ∗ (Ik) = LkE{xk | Ik}k

Lk: same as for the perfect state info case

− Estimation problem and control problem can
be solved separately

� �

� �

�

DP ALGORITHM I

• Last stage N − 1 (supressing index N − 1):

JN−1(IN−1) = min ExN−1,wN−1 xN
′

−1QxN−1
uN−1

+ u ′ RuN−1 + (AxN−1 + BuN−1 + wN−1)′ N−1

· Q(AxN−1 + BuN−1 + wN−1) | IN−1, uN−1

• Since E{wN−1 | IN−1} = E{wN−1} = 0, the
minimization involves

min uN
′

−1(B
′QB + R)uN−1

uN−1

+ 2E{xN−1 | IN−1}′A′QBuN−1

�

The minimization yields the optimal µ ∗ :N−1

u ∗ = µ ∗ (IN−1) = LN−1E{xN−1 | IN−1}N−1 N−1

where

LN−1 = −(B′QB + R)−1B′QA

DP ALGORITHM II

•	 Substituting in the DP algorithm

�	 �
JN−1(IN−1) = E x′ KN−1xN−1 | IN−1N−1

xN−1 ��	 �′+	 E xN−1 − E{xN−1 | IN−1}

xN−1
 �	 � � · PN−1 xN−1 − E{xN−1 | IN−1} | IN−1

+ E {w′ QN wN−1},N−1
wN−1

where the matrices KN−1 and PN−1 are given by

PN−1 = A′ QN BN−1(RN−1 + B′ QN BN−1)−1
N−1 N−1

· B′ QN AN−1,N−1

KN−1 = A′ QN AN−1 − PN−1 + QN−1.N−1

• Note the structure of JN−1: in addition to the
quadratic and constant terms, it involves a quadratic
in the estimation error

xN−1 − E{xN−1 | IN−1}

�

�

� �

� ��

� � �

DP ALGORITHM III

• DP equation for period N − 2:

JN−2(IN−2) = min E {x ′ N−2QxN−2
uN−2 xN−2,wN−2,zN−1

+ u ′ RuN−2 + JN−1(IN−1) | IN−2, uN−2}N−2

= E x ′ QxN−2 | IN−2N−2

+ min u ′ RuN−2 + x ′ KN−1xN−1 | IN−2N−2 N−1
uN−2 �� �′

+ E xN−1 − E{xN−1 | IN−1}

· PN−1 xN−1 − E{xN−1 | IN−1} | IN−2, uN−2

′
+ EwN−1 {wN−1QN wN−1}.

• Key point: We have excluded the next to last
term from the minimization with respect to uN−2.

• This term turns out to be independent of uN−2.

QUALITY OF ESTIMATION LEMMA

• For every k, there is a function Mk such that we
have

xk−E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk),

independently of the policy being used.

• The following simplified version of the lemma
conveys the main idea.

• Simplified Lemma: Let r, u, z be random vari
ables such that r and u are independent, and let
x = r + u. Then

x − E{x | z, u} = r − E{r | z}.

• Proof: We have

x − E{x | z, u} = r + u − E{r + u | z, u}

= r + u − E{r | z, u} − u

= r − E{r | z, u}

= r − E{r | z}.

APPLYING THE QUALITY OF ESTIMATION LEMMA

•	 Using the lemma,

xN−1 − E{xN−1 | IN−1} = ξN−1,

where

ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1

• Since ξN−1 is independent of uN−2, the condi
tional expectation of ξ′ PN−1ξN−1 satisfiesN−1

E{ξ′	 PN−1ξN−1 | IN−2, uN−2}N−1

= E{ξ′ PN−1ξN−1 | IN−2}N−1

and is independent of uN−2.

• So minimization in the DP algorithm yields

u ∗ =	µ ∗ (IN−2) = LN−2E{xN−2 | IN−2}N−2	 N−2

FINAL RESULT

• Continuing similarly (using also the quality of
estimation lemma)

µ ∗ (Ik) = LkE{xk | Ik},k

where Lk is the same as for perfect state info:

Lk = −(Rk + Bk
′ Kk+1Bk)−1Bk

′ Kk+1Ak,

with Kk generated from KN = QN , using

Kk = A′
kKk+1Ak − Pk + Qk,

Pk = A′
kKk+1Bk(Rk + Bk

′ Kk+1Bk)−1Bk
′ Kk+1Ak

xk + 1 = Akxk + Bkuk + wk

Lk

uk

wk

xk
zk = Ckxk + vk

Delay

Estimator
E{xk |Ik}

uk - 1

zk

vk

zkuk

SEPARATION INTERPRETATION

• The optimal controller can be decomposed into

(a) An estimator , which uses the data to gener
ate the conditional expectation E{xk | Ik}.

(b) An actuator , which multiplies E{xk | Ik} by
the gain matrix Lk and applies the control
input uk = LkE{xk | Ik}.

• Generically the estimate x̂ of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

Ex{‖x − x̂‖2 | I} = ‖x‖2 − 2E{x | I}x̂ + ‖x̂‖2

is E{x | I} (set to zero the derivative with respect
to x̂ of the above quadratic form).

• The estimator portion of the optimal controller
is optimal for the problem of estimating the state
xk assuming the control is not subject to choice.

• The actuator portion is optimal for the control
problem assuming perfect state information.

STEADY STATE/IMPLEMENTATION ASPECTS

• As N → ∞, the solution of the Riccati equation
converges to a steady state and Lk → L.

• If x0, wk, and vk are Gaussian, E{xk | Ik} is
a linear function of Ik and is generated by a nice
recursive algorithm, the Kalman filter.

• The Kalman filter involves also a Riccati equa
tion, so for N → ∞, and a stationary system, it
also has a steady-state structure.

• Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is
typically used.

• Most common suboptimal controller: Replace
E{xk | Ik} by the estimate produced by the Kalman
filter (act as if x0, wk, and vk are Gaussian).

• It can be shown that this controller is optimal
within the class of controllers that are linear func
tions of Ik.

6.231 DYNAMIC PROGRAMMING

LECTURE 12

LECTURE OUTLINE

• DP for imperfect state info

• Sufficient statistics

• Conditional state distribution as a sufficient statis
tic

• Finite-state systems

• Examples

REVIEW: PROBLEM WITH IMPERFECT STATE INFO

•	 Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes {	 }
N−1 ∑ ()

Jπ = E gN (xN) + gk xk, µk(Ik), wk
x0,wk,vk

k=0,...,N−1 k=0

subject to the equations

()

xk+1 = fk xk, µk(Ik), wk , k ≥ 0,

()
z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k ≥ 1

}]

[{ ()

}
]

{ }

DP ALGORITHM

• DP algorithm:

[{

Jk(Ik) = min E gk(xk, uk, wk)

uk∈Uk xk, wk, zk+1

+ Jk+1(Ik, zk+1, uk) | Ik, uk

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1

E gN fN−1(xN−1, uN−1, wN−1)
xN−1, wN−1

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

• The optimal cost J∗ is given by

J∗ = E J0(z0) .
z0

()

()

SUFFICIENT STATISTICS

• Suppose that we can find a function Sk(Ik) such
that the right-hand side of the DP algorithm can
be written in terms of some function Hk as

min Hk Sk(Ik), uk .
uk∈Uk

• Such a function Sk is called a sufficient statistic.

• An optimal policy obtained by the preceding
minimization can be written as

µ ∗
k(Ik) = µk Sk(Ik) ,

where µk is an appropriate function.

• Example of a sufficient statistic: Sk(Ik) = Ik

• Another important sufficient statistic

Sk(Ik) = Pxk|Ik

()

[{

() }]

DP ALGORITHM IN TERMS OF PXK |IK

• It turns out that Pxk|Ik
is generated recursively

by a dynamic system (estimator) of the form

Pxk+1|Ik+1
= Φk Pxk|Ik

, uk, zk+1

for a suitable function Φk

• DP algorithm can be written as

Jk(Pxk|Ik
) = min E gk(xk, uk, wk)

uk∈Uk xk,wk,zk+1

+ Jk+1 Φk(Pxk|Ik
, uk, zk+1) | Ik, uk

uk xk

Delay

Estimator

uk - 1

uk - 1

vk

zk

zk

wk

qk - 1

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk - 1,vk)

System Measurement

P x
k

| I
k

µk

EXAMPLE: A SEARCH PROBLEM

• At each period, decide to search or not search
a site that may contain a treasure.

• If we search and a treasure is present, we find
it with prob. β and remove it from the site.

• Treasure’s worth: V . Cost of search: C

• States: treasure present & treasure not present

• Each search can be viewed as an observation
of the state

• Denote

pk : prob. of treasure present at the start of time k

with p0 given.

• pk evolves at time k according to the equation

 pk if not search,
= 0 if search and find treasure, pk+1 pk(1−β) if search and no treasure. pk(1−β)+1−pk

[

()]

SEARCH PROBLEM (CONTINUED)

• DP algorithm

Jk(pk) = max 0, −C + pkβV

pk(1 − β)
+ (1 − pkβ)Jk+1 ,

pk(1 − β) + 1 − pk

with JN (pN) = 0.

• Can be shown by induction that the functions
Jk satisfy

C
Jk(pk) = 0, for all pk ≤

βV

• Furthermore, it is optimal to search at period k
if and only if

pkβV ≥ C

(expected reward from the next search ≥ the cost
of the search)

FINITE-STATE SYSTEMS

• Suppose the system is a finite-state Markov
chain, with states 1, . . . , n.

• Then the conditional probability distribution Pxk|Ik

is a vector

()

P (xk = 1 | Ik), . . . , P (xk = n | Ik)

• The DP algorithm can be executed over the n
dimensional simplex (state space is not expanding
with increasing k)

• When the control and observation spaces are
also finite sets, it turns out that the cost-to-go func
tions Jk in the DP algorithm are piecewise linear
and concave (Exercise 5.7).

• This is conceptually important and also (mod
erately) useful in practice.

INSTRUCTION EXAMPLE

• Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

• Possible decisions: T : Terminate the instruc
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

• The test has two possible outcomes: R: Student
gives a correct answer, or R: Student gives an
incorrect answer.

• Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

• Cost of instruction is I per period

• Cost of terminating instruction; 0 if student has
learned the item, and C > 0 if not.

{

[] { ()}

[]

INSTRUCTION EXAMPLE II

• Let pk: prob. student has learned the item given
the test results so far

pk = P (xk|Ik) = P (xk = L | z0, z1, . . . , zk).

• Using Bayes’ rule we can obtain

pk+1 = Φ(pk, zk+1)
1−(1−t)(1−pk) if zk+1 = R,

= 1−(1−t)(1−r)(1−pk)

0 if zk+1 = R.

• DP algorithm:

Jk(pk) = min (1 − pk)C, I + E Jk+1 Φ(pk, zk+1) .
zk+1

starting with

JN−1(pN−1) = min (1−pN−1)C, I+(1−t)(1−pN−1)C .

[]

()

()

INSTRUCTION EXAMPLE III

• Write the DP algorithm as

Jk(pk) = min (1 − pk)C, I + Ak(pk) ,

where

Ak(pk) = P (zk+1 = R | Ik)Jk+1 Φ(pk, R)

+ P (zk+1 = R | Ik)Jk+1 Φ(pk, R)

• Can show by induction that Ak(p) are piecewise
linear, concave, monotonically decreasing, with

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1].

0 p

C

I

I + AN - 1(p)

I + AN - 2(p)

I + AN - 3(p)

1I_N - 1 _N - 2 _N - 3 1
C

6.231 DYNAMIC PROGRAMMING

LECTURE 13

LECTURE OUTLINE

• Suboptimal control

• Certainty equivalent control

• Implementations and approximations

• Issues in adaptive control

PRACTICAL DIFFICULTIES OF DP

•	 The curse of modeling

•	 The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

−	 Intractability of imperfect state information
problems

•	 There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

−	 The problem data may change as the system
is controlled – need for on-line replanning

� � �

� �

CERTAINTY EQUIVALENT CONTROL (CEC)

• Replace the stochastic problem with a deter
ministic problem

• At each time k, the uncertain quantities are fixed
at some “typical” values

• Implementation for an imperfect info problem.
At each time k:

(1) Compute a state estimate xk(Ik) given the
current information vector Ik.

(2) Fix the wi, i ≥ k, at some wi(xi, ui). Solve
the deterministic problem:

N−1

minimize gN (xN)+ gi xi, ui, wi(xi, ui)
i=k

subject to xk = xk(Ik) and for i ≥ k,

ui ∈ Ui, xi+1 = fi xi, ui, wi(xi, ui) .

(3) Use as control the first element in the optimal
control sequence found.

ALTERNATIVE IMPLEMENTATION

� �
 • Let µd(x0), . . . , µd (xN−1) be an optimal 0 N−1

controller obtained from the DP algorithm for the
deterministic problem

N−1

minimize gN (xN) +
�

gk

�
xk, µk(xk), wk(xk, uk)

�

k=0

subject to xk+1 = fk

�
xk, µk(xk), wk(xk, uk)

�
, µk(xk) ∈ Uk

The CEC applies at time k the control input

� �

µ̃k(Ik) = µk

d xk(Ik)

xk

Delay

Estimator

uk - 1

uk - 1

vk

zk

zk

wk

Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk - 1,vk)

System Measurement

µ k
d

u k =µk
d (xk)

xk(Ik)

CEC WITH HEURISTICS

• Solve the “deterministic equivalent” problem us
ing a heuristic/suboptimal policy

• Improved version of this idea: At time k minimize
the stage k cost and plus the heuristic cost of the
remaining stages, i.e., apply at time k a control ũk

that minimizes over uk ∈ Uk(xk)

� � � � ��
gk xk, uk, wk(xk, uk) +Hk+1 fk xk, uk, wk(xk, uk)

where Hk+1 is the cost-to-go function correspond
ing to the heuristic.

• This an example of an important suboptimal
control idea:

Minimize at each stage k the sum of approxima
tions to the current stage cost and the optimal
cost-to-go.

• This is a central idea in several other suboptimal
control schemes, such as limited lookahead, and
rollout algorithms.

� �

PARTIALLY STOCHASTIC CEC

• Instead of fixing all future disturbances to their
typical values, fix only some, and treat the rest as
stochastic.

• Important special case: Treat an imperfect state
information problem as one of perfect state infor
mation, using an estimate xk(Ik) of xk as if it were
exact.

• Multiaccess Communication Example: Con
sider controlling the slotted Aloha system (dis
cussed in Ch. 5) by optimally choosing the proba
bility of transmission of wating packets. This is a
hard problem of imperfect state info, whose per
fect state info version is easy.

• Natural partially stochastic CEC:

1
µ̃k(Ik) = min 1, ,

xk(Ik)

where xk(Ik) is an estimate of the current packet
backlog based on the entire past channel history
of successes, idles, and collisions (which is Ik).

� �

SYSTEMS WITH UNKNOWN PARAMETERS

• Let the system be of the form

xk+1 = fk(xk, θ, uk, wk),

where θ is a vector of unknown parameters with a
given a priori probability distribution.

• To formulate this into the standard framework,
introduce a state variable yk = θ and the system

� � � �

xk+1 fk(xk, yk, uk, wk)= ,
yk+1 yk

and view x̃k = (xk, yk) as the new state.

• Since yk = θ is unobservable, we have a prob
lem of imperfect state information even if the con
troller knows the state xk exactly.

• Consider a partially stochastic CEC. If for a fixed
parameter vector θ, we can compute the corre
sponding optimal policy µ ∗(I0, θ), . . . , µ ∗ (IN−1, θ)0 N−1

∗a partially stochastic CEC applies µk(Ik, θ̂k), where
θ̂k is some estimate of θ.

THE PROBLEM OF IDENTIFIABILITY

•	 Suppose we consider two phases:

− A parameter identification phase (compute
an estimate θ̂ of θ)

−	 A control phase (apply control that would be
optimal if θ̂ were true).

• A fundamental difficulty: the control process
may make some of the unknown parameters in
visible to the identification process.

•	 Example: Consider the scalar system

xk+1 = axk + buk + wk, k = 0, 1, . . . , N − 1, �	 � �Nwith the cost E k=1(xk)2 . If a and b are known,

the optimal control law is µk
∗ (xk) = −(a/b)xk.

• If a and b are not known and we try to esti
mate them while applying some nominal control
law µ̃k(xk) = γxk, the closed-loop system is

xk+1 = (a + bγ)xk + wk,

so identification can at best find (a + bγ) but not
the values of both a and b.

� �

� �

CEC AND IDENTIFIABILITY I

• Suppose we have P{xk+1 | xk, uk, θ} and we
use a control law µ ∗ that is optimal for known θ:

µ̂k(Ik) = µ ∗(xk, θ̂
k), with θ̂

k: estimate of θ

There are three systems of interest:
(a) The system (perhaps falsely) believed by the

controller to be true, which evolves proba
bilistically according to

P xk+1 | xk, µ ∗(xk, θ̂
k), θ̂

k .

(b) The true closed-loop system, which evolves
probabilistically according to

P xk+1 | xk, µ ∗(xk, θ̂
k), θ .

(c) The optimal closed-loop system that corre
sponds to the true value of the parameter,
which evolves probabilistically according to

� �

P xk+1 | xk, µ ∗(xk, θ), θ .

� � � �

CEC AND IDENTIFIABILITY II

System Believed to beTrue

P{xk + 1 | xk,µ *(xk, k), k }

Optimal Closed-Loop System

P{xk + 1 | xk,µ *(xk,e),e }

True Closed-Loop System

P{xk + 1 | xk,µ *(xk, k),e }

e
^
e
^

e
^

• There is a built-in mechanism for the parameter
estimates to converge to a wrong value

• Assume that for some θ̂ �= θ and all xk+1, xk,

P xk+1 | xk, µ ∗(xk, θ̂), θ̂ = P xk+1 | xk, µ ∗(xk, θ̂), θ

i.e., there is a false value of parameter for which
the system under closed-loop control looks ex
actly as if the false value were true.

• Then, if the controller estimates at some time
the parameter to be θ̂, subsequent data will tend
to reinforce this erroneous estimate.

6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

• Limited lookahead policies

• Performance bounds

• Computational aspects

• Problem approximation approach

• Vehicle routing example

• Heuristic cost-to-go approximation

• Computer chess

� � ��

LIMITED LOOKAHEAD POLICIES

• One-step lookahead (1SL) policy : At each k and
state xk, use the control µk(xk) that

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) ,
uk∈Uk(xk)

where

− J̃N = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Two-step lookahead policy : At each k and xk,
use the control µ̃k(xk) attaining the minimum above,
where the function J̃k+1 is obtained using a 1SL
approximation (solve a 2-step DP problem).

• If J̃k+1 is readily available and the minimization
above is not too hard, the 1SL policy is imple
mentable on-line.

• Sometimes one also replaces Uk(xk) above with
a subset of “most promising controls” Uk(xk).

• As the length of lookahead increases, the re
quired computation quickly explodes.

� ��

PERFORMANCE BOUNDS

• Let Jk(xk) be the cost-to-go from (xk, k) of the
1SL policy, based on functions J̃k.

• Assume that for all (xk, k), we have

Ĵk(xk) ≤ J̃k(xk), (*)

where ĴN = gN and for all k,

ˆ �

Jk(xk) = min E gk(xk, uk, wk)

uk∈Uk(xk)

+ J̃k+1 fk(xk, uk, wk) ,

[so Ĵk(xk) is computed along with µk(xk)]. Then

Jk(xk) ≤ Ĵk(xk), for all (xk, k).

• Important application: When J̃k is the cost-to
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

• The bound can be extended to the case where
there is a δk in the RHS of (*). Then

Jk(xk) ≤ J̃k(xk) + δk + · · · + δN−1

COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par
ticularly when Uk(xk) is not a discrete set]. Con
nection with the methodology of stochastic pro
gramming.

• The choice of the approximating functions J̃k is
critical, and is calculated with a variety of methods.

• Some approaches:

(a)	 Problem Approximation: Approximate the op
timal cost-to-go with some cost derived from
a related but simpler problem

(b)	 Heuristic Cost-to-Go Approximation: Approx
imate the optimal cost-to-go with a function
of a suitable parametric form, whose param
eters are tuned by some heuristic or system
atic scheme (Neuro-Dynamic Programming)

(c)	 Rollout Approach: Approximate the optimal
cost-to-go with the cost of some suboptimal
policy, which is calculated either analytically
or by simulation

PROBLEM APPROXIMATION

•	 Many (problem-dependent) possibilities

− Replace uncertain quantities by nominal val
ues, or simplify the calculation of expected
values by limited simulation

− Simplify difficult constraints or dynamics

• Example of enforced decomposition: Route m
vehicles that move over a graph. Each node has
a “value.” The first vehicle that passes through the
node collects its value. Max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

• 1SL scheme: At time k and state xk (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value
to-go with the value collected by optimizing the
vehicle routes one-at-a-time

HEURISTIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a paramet
ric class J̃(x, r) where x is the current state and
r = (r1, . . . , rm) is a vector of “tunable” scalars
(weights).

• By adjusting the weights, one can change the
“shape” of the approximation J̃ so that it is reason
ably close to the true optimal cost-to-go function.

•	 Two key issues:

− The choice of parametric class J̃(x, r) (the
approximation architecture).

−	 Method for tuning the weights (“training” the
architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• Sometimes a simulator is used, particularly
when there is no mathematical model of the sys
tem.

� � �

APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(x, r) on r].

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer.

• Architectures based on feature extraction

State x
Feature Extraction
Mapping

Cost Approximator w/
Parameter Vector r

Feature
Vector y

Cost Approximation

J (y,r)

• Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap
proximated, and the approximation may be quite
accurate without a complicated architecture.

• Sometimes the state space is partitioned, and
“local” features are introduced for each subset of
the partition (they are 0 outside the subset).

• With a well-chosen feature vector y(x), we can
use a linear architecture

J̃(x, r) = Ĵ y(x), r = riyi(x)
i

COMPUTER CHESS I

• Programs use a feature-based position evalua
tor that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Most often the weighting of features is linear but
multistep lookahead is involved.

•	 Most often the training is done by trial and error.

•	 Additional features:

− Depth first search

− Variable depth search when dynamic posi
tions are involved

− Alpha-beta pruning

COMPUTER CHESS II

• Multistep lookahead tree

P (White to Move)

M 2

(+16)

(+16) (+20)

(+8) (+16) (+20) (+8)

(+16)

(+11)

(+11)

(+11) Black to
Move

Black to Move

White to Move

M 1

P 2

P 1

P 3

P 4

_ Cutoff _ Cutoff

_ Cutoff

` Cutoff

+8 +20 +18 +16 +24 +20 +10 +12 -4 +8 +21 +11 -5 +10 +32 +27 +10 +9 +3

• Alpha-beta pruning: As the move scores are
evaluated by depth-first search, branches whose
consideration (based on the calculations so far)
cannot possibly change the optimal move are ne
glected

6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

• Rollout algorithms

• Cost improvement property

• Discrete deterministic problems

• Sequential consistency and greedy algorithms

• Sequential improvement

�	 � ��

ROLLOUT ALGORITHMS

• One-step lookahead policy : At each k and state
xk, use the control µk(xk) that

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) ,
uk∈Uk(xk)

where

−	 J̃N = gN .

−	 J̃k+1: approximation to true cost-to-go Jk+1

• Rollout algorithm: When J̃k is the cost-to-go of
some heuristic policy (called the base policy)

• Cost improvement property (to be shown): The
rollout algorithm achieves no worse (and usually
much better) cost than the base heuristic starting
from the same state.

• Main difficulty: Calculating J̃k(xk) may be com
putationally intensive if the cost-to-go of the base
policy cannot be analytically calculated.

−	 May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case.

EXAMPLE: THE QUIZ PROBLEM

• A person is given N questions; answering cor
rectly question i has probability pi, with reward vi.

•	 Quiz terminates at the first incorrect answer.

• Problem: Choose the ordering of questions so
as to maximize the total expected reward.

• Assuming no other constraints, it is optimal to
use the index policy : Questions should be an
swered in decreasing order of the “index of pref
erence” pivi/(1 − pi).

• With minor changes in the problem, the index
policy need not be optimal. Examples:

− A limit (< N) on the maximum number of
questions that can be answered.

−	 Time windows, sequence-dependent rewards,
precedence constraints.

• Rollout with the index policy as base policy:
Convenient because at a given state (subset of
questions already answered), the index policy and
its expected reward can be easily calculated.

COST IMPROVEMENT PROPERTY

•	 Let

Jk(xk): Cost-to-go of the rollout policy

Hk(xk): Cost-to-go of the base policy

• We claim that Jk(xk) ≤ Hk(xk) for all xk and k

• Proof by induction: We have JN (xN) = HN (xN)
for all xN . Assume that

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1.

Then, for all xk � �	 � � � ���
Jk(xk) = E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk � �	 � � � ���

≤ E	 gk xk, µk(xk), wk + Hk+1 fk xk, µk(xk), wk � �	 � � � ���
≤ E	 gk xk, µk(xk), wk + Hk+1 fk xk, µk(xk), wk

= Hk(xk)

EXAMPLE: THE BREAKTHROUGH PROBLEM

root

• Given a binary tree with N stages.

• Each arc is either free or is blocked (crossed
out in the figure).

• Problem: Find a free path from the root to the
leaves (such as the one shown with thick lines).

• Base heuristic (greedy): Follow the right branch
if free; else follow the left branch if free.

• For large N and given prob. of free branch:
the rollout algorithm requires O(N) times more
computation, but has O(N) times larger prob. of
finding a free path than the greedy algorithm.

DISCRETE DETERMINISTIC PROBLEMS

• Any discrete optimization problem (with finite
number of choices/feasible solutions) can be rep
resented as a sequential decision process by us
ing a tree.

• The leaves of the tree correspond to the feasible
solutions.

• The problem can be solved by DP, starting from
the leaves and going back towards the root.

• Example: Traveling salesman problem. Find a
minimum cost tour that goes exactly once through
each of N cities.

ABC

A Origin Node s

AB AC AD

ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Traveling salesman problem with four cities A, B, C, D

A CLASS OF GENERAL DISCRETE PROBLEMS

•	 Generic problem:

− Given a graph with directed arcs

− A special node s called the origin

− A set of terminal nodes, called destinations,
and a cost g(i) for each destination i.

− Find min cost path starting at the origin, end
ing at one of the destination nodes.

• Base heuristic: For any nondestination node i,
constructs a path (i, i1, . . . , im, i) starting at i and
ending at one of the destination nodes i. We call
i the projection of i, and we denote H(i) = g(i).

• Rollout algorithm: Start at the origin; choose
the successor node with least cost projection

j1	 p(j1)

j2 p(j)2

j3 p(j)
s i i i 3

1 m-1 m

j4 p(j)4

Neighbors of im
Projections of

Neighbors of im

EXAMPLE: ONE-DIMENSIONAL WALK

• A person takes either a unit step to the left or a
unit step to the right. Minimize the cost g(i) of the
point i where he will end up after N steps.

(0,0)

_
(N,-N) (N,0) i (N,N)

g(i)

-N 0 N - 2 N i
_
i

• Base heuristic: Always go to the right. Rollout
finds the rightmost local minimum.

• Base heuristic: Compare always go to the right
and always go the left. Choose the best of the
two. Rollout finds a global minimum.

SEQUENTIAL CONSISTENCY

• The base heuristic is sequentially consistent if
for every node i, whenever it generates the path
(i, i1, . . . , im, i) starting at i, it also generates the
path (i1, . . . , im, i) starting at the node i1 (i.e., all
nodes of its path have the same projection).

• Prime example of a sequentially consistent heuris
tic is a greedy algorithm. It uses an estimate F (i)
of the optimal cost starting from i.

• At the typical step, given a path (i, i1, . . . , im),
where im is not a destination, the algorithm adds
to the path a node im+1 such that

im+1 = arg min F (j)
j∈N(im)

• If the base heuristic is sequentially consistent,
the cost of the rollout algorithm is no more than
the cost of the base heuristic. In particular, if
(s, i1, . . . , im̄) is the rollout path, we have

H(s) ≥ H(i1) ≥ · · · ≥ H(im−1) ≥ H(i ¯)¯ m

where H(i) = cost of the heuristic starting from i.

SEQUENTIAL IMPROVEMENT

• We say that the base heuristic is sequentially
improving if for every non-destination node i, we
have

H(i) ≥	 min H(j)

j is neighbor of i

• If the base heuristic is sequentially improving,
the cost of the rollout algorithm is no more than
the cost of the base heuristic, starting from any
node.

•	 Fortified rollout algorithm:

− Simple variant of the rollout algorithm, where
we keep the best path found so far through
the application of the base heuristic.

− If the rollout path deviates from the best path
found, then follow the best path.

− Can be shown to be a rollout algorithm with
sequentially improving base heuristic for a
slightly modified variant of the original prob
lem.

− Has the cost improvement property.

6.231 DYNAMIC PROGRAMMING

LECTURE 16

LECTURE OUTLINE

• More on rollout algorithms

• Simulation-based methods

• Approximations of rollout algorithms

• Rolling horizon approximations

• Discretization issues

• Other suboptimal approaches

� � ��

ROLLOUT ALGORITHMS

• Rollout policy : At each k and state xk, use the
control µk(xk) that

min Qk(xk, uk),
uk∈Uk(xk)

where

Qk(xk, uk) = E gk(xk, uk, wk)+Hk+1 fk(xk, uk, wk)

and Hk+1(xk+1) is the cost-to-go of the heuristic.

• Qk(xk, uk) is called the Q-factor of (xk, uk), and
for a stochastic problem, its computation may in
volve Monte Carlo simulation.

• Potential difficulty: To minimize over uk the Q-
factor, we must form Q-factor differences Qk(xk, u)−
Qk(xk, u). This differencing often amplifies the
simulation error in the calculation of the Q-factors.

• Potential remedy: Compare any two controls u
and u by simulating Qk(xk, u) − Qk(xk, u) directly.

� � ��

� �

� �

� �

Q-FACTOR APPROXIMATION

• Here, instead of simulating the Q-factors, we
approximate the costs-to-go Hk+1(xk+1).

• Certainty equivalence approach: Given xk, fix
future disturbances at “typical” values wk+1, . . . , wN−1
and approximate the Q-factors with

Q̃
k(xk, uk) = E gk(xk, uk, wk)+H̃

k+1 fk(xk, uk, wk)

where H̃k+1 fk(xk, uk, wk) is the cost of the heuris
tic with the disturbances fixed at the typical values.

• This is an approximation of Hk+1 fk(xk, uk, wk)
by using a “single sample simulation.”

• Variant of the certainty equivalence approach:
Approximate Hk+1 fk(xk, uk, wk) by simulation
using a small number of “representative samples”
(scenarios).

• Alternative: Calculate (exact or approximate)
values for the cost-to-go of the base policy at a
limited set of state-time pairs, and then approx
imate Hk+1 using an approximation architecture
and a “least-squares fit.”

ROLLING HORIZON APPROACH

• This is an l-step lookahead policy where the
cost-to-go approximation is just 0.

• Alternatively, the cost-to-go approximation is the
terminal cost function gN .

• A short rolling horizon saves computation.

• “Paradox”: It is not true that a longer rolling
horizon always improves performance.

• Example: At the initial state, there are two con
trols available (1 and 2). At every other state, there
is only one control.

Optimal Trajectory

Current
State

... ...

... ...

1

2

High Low Highl Stages
Cost Cost Cost

ROLLING HORIZON COMBINED WITH ROLLOUT

• We can use a rolling horizon approximation in
calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the ratio
nale for a long rolling horizon becomes weaker.

• Example: N -stage stopping problem where the
stopping cost is 0, the continuation cost is either
−ε or 1, where 0 < ε < 1/N , and the first state
with continuation cost equal to 1 is state m. Then
the optimal policy is to stop at state m, and the
optimal cost is −mε.

0 1 2 m N

Stopped State

< ¡ < ¡ 1... ...

• Consider the heuristic that continues at every
state, and the rollout policy that is based on this
heuristic, with a rolling horizon of l ≤ m steps.

• It will continue up to the first m − l + 1 stages,
thus compiling a cost of −(m − l +1)ε. The rollout
performance improves as l becomes shorter!

DISCRETIZATION

• If the state space and/or control space is con
tinuous/infinite, it must be replaced by a finite dis
cretization.

• Need for consistency, i.e., as the discretiza
tion becomes finer, the cost-to-go functions of the
discretized problem converge to those of the con
tinuous problem.

• Pitfalls with discretizing continuous time.

• The control constraint set changes a lot as we
pass to the discrete-time approximation.

• Example:

ẋ1(t) = u1(t), ẋ2(t) = u2(t),

with the control constraint ui(t) ∈ {−1, 1} for i =
1, 2. Compare with the discretized version

x1(t+∆t) = x1(t)+∆tu1(t), x2(t+∆t) = x2(t)+∆tu2(t),

with ui(t) ∈ {−1, 1}.

• “Convexification effect” of continuous time.

� �

GENERAL APPROACH FOR DISCRETIZATION I

• Given a discrete-time system with state space
S, consider a finite subset S; for example S could
be a finite grid within a continuous state space S.
Assume stationarity for convenience, i.e., that the
system equation and cost per stage are the same
for all times.

• We define an approximation to the original prob
lem, with state space S, as follows:

• Express each x ∈ S as a convex combination
of states in S, i.e.,

x = γi(x)xi where γi(x) ≥ 0, γi(x) = 1
xi∈S i

• Define a “reduced” dynamic system with state
space S, whereby from each xi ∈ S we move to
x = f(xi, u, w) according to the system equation
of the original problem, and then move to xj ∈ S
with probabilities γj (x).

• Define similarly the corresponding cost per stage
of the transitions of the reduced system.

�

GENERAL APPROACH FOR DISCRETIZATION II

• Let Jk(xi) be the optimal cost-to-go of the “re
duced” problem from each state xi ∈ S and time
k onward.

• Approximate the optimal cost-to-go of any x ∈ S
for the original problem by

J̃k(x) = γi(x)Jk(xi),
xi∈S

and use one-step-lookahead based on J̃k.

• The choice of coefficients γi(x) is in principle
arbitrary, but should aim at consistency, i.e., as
the number of states in S increases, J̃k(x) should
converge to the optimal cost-to-go of the original
problem.

• Interesting observation: While the original prob
lem may be deterministic, the reduced problem is
always stochastic.

• Generalization: The set S may be any finite set
(not a subset of S) as long as the coefficients γi(x)
admit a meaningful interpretation that quantifies
the degree of association of x with xi.

� ��

�

OTHER SUBOPTIMAL CONTROL APPROACHES

• Minimize the DP equation error: Ap

proximate the optimal cost-to-go functions Jk(xk)

with functions J̃k(xk, rk), where rk is a vector of

unknown parameters, chosen to minimize some

form of error in the DP equations.

• Approximate directly control policies: For

a subset of states xi, i = 1, . . . , m, find

�

µ̂k(xi) = arg min E g(xi, uk, wk)

uk∈Uk(xi)

+ J̃k+1 fk(xi, uk, wk), rk+1 .

Then find µ̃k(xk, sk), where sk is a vector of pa

rameters obtained by solving the problem

m

min ‖µ̂k(xi) − µ̃k(xi, s)‖2 .
s

i=1

• Approximation in policy space: Do not
bother with cost-to-go approximations. Parametrize
the policies as µ̃k(xk, sk), and minimize the cost
function of the problem over the parameters sk.

6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

• Infinite horizon problems

• Stochastic shortest path problems

• Bellman’s equation

• Dynamic programming – value iteration

• Examples

∑

TYPES OF INFINITE HORIZON PROBLEMS

•	 Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

•	 Total cost problems: Minimize

{	 }
N−1 ∑ ()

Jπ(x0) = lim E	 αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

− Stochastic shortest path problems (α = 1)

− Discounted problems (α < 1) with bounded
cost per stage

− Discounted and undiscounted problems with
unbounded cost per stage

•	 Average cost problems

{	 }
1

N−1 ()
lim E g xk, µk(xk), wk

N→∞ N wk

k=0,1,... k=0

{ ()}

{ ()}

PREVIEW OF INFINITE HORIZON RESULTS

• Key issue: The relation between the infinite and
finite horizon optimal cost-to-go functions.

• Illustration: Let α = 1 and JN (x) denote the
optimal cost of the N -stage problem, generated
after N DP iterations, starting from J0(x) ≡ 0

Jk+1(x) = min E g(x, u, w) + Jk f(x, u, w) , ∀ x
u∈U(x) w

• Typical results for total cost problems:

J∗(x) = lim JN (x), ∀ x
N→∞

J∗(x) = min E g(x, u, w) + J∗ f(x, u, w) , ∀ x
u∈U(x) w

(Bellman’s Equation). If µ(x) minimizes in Bell-
man’s Eq., the policy {µ, µ, . . .} is optimal.

• Bellman’s Eq. always holds. The other results
are true for SSP (and bounded/discounted; un
usual exceptions for other problems).

{ } ∣

STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij (u)
− Control constraints u ∈ U(i)

− Cost of policy π = {µ0, µ1, . . .} is

N−1 ∣ ∑
 ()
Jπ(i) = lim E g xk, µk(xk) ∣ x0 = i

N→∞
k=0

− Optimal policy if Jπ(i) = J∗(i) for all i.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption: There exists integer m such that
for every policy and initial state, there is posi
tive probability that the termination state will be
reached after no more that m stages; for all π, we
have

ρπ = max P{x � = i, π} < 1m = t | x0
i=1,...,n

∣ ∣ ∣

∑

FINITENESS OF POLICY COST-TO-GO FUNCTIONS

• Let
ρ = max ρπ.

π

Note that ρπ depends only on the first m compo
nents of the policy π, so that ρ < 1.

• For any π and any initial state i

P {x2m =� t |x0 = i, π} = P { = t |xm �x2m � = t, x0 = i, π}

× P {xm �= t |x0 = i, π} ≤ ρ2

and similarly

P{xkm �= t |x0 = i, π} ≤ ρk , i = 1, . . . , n

• So E{Cost between times km and (k + 1)m − 1 }

≤ mρk max ∣g(i, u)
i=1,...,n

and u∈U(i)

∞ ∣ ∣ ∣ ∣ m ∣ ∣ ∣Jπ (i)∣ ≤ mρk max ∣g(i, u)∣ = max ∣g(i, u)∣
i=1,...,n 1 − ρ i=1,...,n

k=0 u∈U(i) u∈U(i)

∑

∑

∑ { ()}

MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by the DP iteration

n Jk+1(i) = min g(i, u) + pij (u)Jk(j) , ∀ i
u∈U(i)

j=1

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n J∗(i) = min g(i, u) + pij (u)J∗(j) , ∀ i

u∈U(i)
j=1

• A stationary policy µ is optimal if and only if
for every state i, µ(i) attains the minimum in Bell-
man’s equation.

• Key proof idea: The “tail” of the cost series,

∞

E g xk, µk(xk)
k=mK

vanishes as K increases to ∞.

∑ ∑

∑ ∑ { ()}

OUTLINE OF PROOF THAT JN → J∗

• Assume for simplicity that J0(i) = 0 for all i, and
for any K ≥ 1, write the cost of any policy π as

mK−1 ∞ { ()} { ()}
Jπ (x0) = E g xk, µk(xk) + E g xk, µk(xk)

k=0 k=mK

mK−1 ∞

≤ E g xk, µk(xk) + ρk m max |g(i, u)|
i,u

k=0 k=K

Take the minimum of both sides over π to obtain

ρK
J∗(x0) ≤ JmK (x0) + m max |g(i, u)|.

1 − ρ i,u

Similarly, we have

ρK
JmK (x0) − m max |g(i, u)| ≤ J∗(x0).1 − ρ i,u

It follows that limK→∞ JmK (x0) = J∗(x0).

• It can be seen that JmK (x0) and JmK+k(x0)
converge to the same limit for k = 1, . . . , m−1, so
JN (x0) → J∗(x0)

∑

∑

EXAMPLE I

•	 Minimizing the E{Time to Termination}: Let

g(i, u) = 1, ∀ i = 1, . . . , n, u ∈ U(i)

• Under our assumptions, the costs J∗(i) uniquely
solve Bellman’s equation, which has the form

	

n J∗(i) = min 1 + pij (u)J∗(j) , i = 1, . . . , n

u∈U(i)
j=1

• In the special case where there is only one con
trol at each state, J∗(i) is the mean first passage
time from i to t. These times, denoted mi, are the
unique solution of the equations

n

mi = 1 + pij mj , i = 1, . . . , n.
j=1

EXAMPLE II

• A spider and a fly move along a straight line.

• The fly moves one unit to the left with probability
p, one unit to the right with probability p, and stays
where it is with probability 1 − 2p.

• The spider moves one unit towards the fly if its
distance from the fly is more that one unit.

• If the spider is one unit away from the fly, it will
either move one unit towards the fly or stay where
it is.

• If the spider and the fly land in the same position,
the spider captures the fly.

• The spider’s objective is to capture the fly in
minimum expected time.

• This is an SSP w/ state = the distance between
spider and fly (i = 1, . . . , n and t = 0 the termina
tion state).

• There is control choice only at state 1.

[]

[]

EXAMPLE II (CONTINUED)

•	 For M = move, and M = don’t move

p11(M) = 2p, p10(M) = 1 − 2p,

p12(M) = p, p11(M) = 1 − 2p, p10(M) = p,

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2,

with all other transition probabilities being 0.

• Bellman’s equation:

J∗(i) = 1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i ≥ 2

J∗(1) = 1+min 2pJ∗(1), pJ∗(2)+ (1 − 2p)J∗(1)

w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1),

p (1	− 2p)J∗(1)
J∗(1) = 1+min 2pJ∗(1), +	 .

1 − p	 1 − p

• Work from here to find that when one unit away
from the fly it is optimal not to move if and only if
p ≥ 1/3.

6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

• Stochastic shortest path problems

• Policy iteration

• Linear programming

• Discounted problems

{ } ∣

STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij (u)
− Control constraints u ∈ U(i)

− Cost of policy π = {µ0, µ1, . . .} is

N−1 ∣ ∑
 ()
Jπ(i) = lim E g xk, µk(xk) ∣ x0 = i

N→∞
k=0

− Optimal policy if Jπ(i) = J∗(i) for all i.

− Special notation: For stationary policies π =
{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption: There exists integer m such that
for every policy and initial state, there is posi
tive probability that the termination state will be
reached after no more that m stages; for all π, we
have

ρπ = max P{x � = i, π} < 1m = t | x0
i=1,...,n

∑

∑

∑ { ()}

MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n), the
sequence Jk(i) generated by the DP iteration

n Jk+1(i) = min g(i, u) + pij (u)Jk(j) , ∀ i
u∈U(i)

j=1

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

n J∗(i) = min g(i, u) + pij (u)J∗(j) , ∀ i

u∈U(i)
j=1

• A stationary policy µ is optimal if and only if
for every state i, µ(i) attains the minimum in Bell-
man’s equation.

• Key proof idea: The “tail” of the cost series,

∞

E g xk, µk(xk)
k=mK

vanishes as K increases to ∞.

() () ∑

BELLMAN’S EQUATION FOR A SINGLE POLICY

• Consider a stationary policy µ

• Jµ(i), i = 1, . . . , n, are the unique solution of
the linear system of n equations

n

Jµ(i) = g i, µ(i) + pij µ(i) Jµ(j), ∀ i = 1, . . . , n
j=1

• Proof: This is just Bellman’s equation for a mod
ified/restricted problem where there is only one
policy, the stationary policy µ, i.e., the control con
straint set at state i is Ũ(i) = {µ(i)}

• The equation provides a way to compute Jµ(i),
i = 1, . . . , n, but the computation is substantial for
large n [O(n3)]

() () ∑

∑

POLICY ITERATION

• It generates a sequence µ1, µ2 , . . . of stationary
policies, starting with any stationary policy µ0.

• At the typical iteration, given µk, we perform a
policy evaluation step, that computes the Jµk (i)
as the solution of the (linear) system of equations

n

J(i) = g i, µk(i) + pij µk(i) J(j), i = 1, . . . , n,
j=1

in the n unknowns J(1), . . . , J(n). We then per
form a policy improvement step, which computes
a new policy µk+1 as

n µk+1(i) = arg min g(i, u) + pij (u)J k (j) , ∀ i

u∈U(i)
µ

j=1

• The algorithm stops when Jµk (i) = Jµk+1 (i) for
all i

• Note the connection with the rollout algorithm,
which is just a single policy iteration

∑ () ()

JUSTIFICATION OF POLICY ITERATION

• We can show thatJµk+1 (i) ≤ Jµk (i) for all i, k

• Fix k and consider the sequence generated by
n () ∑
 ()

JN+1(i) = g i, µk+1(i) + pij µk+1(i) JN (j)

j=1

where J0(i) = Jµk (i). We have
n () ∑
 ()

J0(i) = g i, µk(i) + pij µk(i) J0(j)
j=1

n

≥ g i, µk+1(i) + pij µk+1(i) J0(j) = J1(i)
j=1

Using the monotonicity property of DP,

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i

Since JN (i) → J µk+1 (i) as N → ∞, we obtain
Jµk (i) = J0(i) ≥ Jµk+1 (i) for all i. Also if Jµk (i) =
Jµk+1 (i) for all i, Jµk solves Bellman’s equation
and is therefore equal to J∗

• A policy cannot be repeated, there are finitely
many stationary policies, so the algorithm termi
nates with an optimal policy

∑

()

∑

LINEAR PROGRAMMING

• We claim that J∗ is the “largest” J that satisfies
the constraint

n

J(i) ≤ g(i, u) + pij (u)J(j), (1)
j=1

for all i = 1, . . . , n and u ∈ U(i).

• Proof: If we use value iteration to generate a se
quence of vectors Jk = Jk(1), . . . , Jk(n) starting
with a J0 such that

n

J0(i) ≤ min g(i, u) + pij (u)J0(j) , ∀ i
u∈U(i)

j=1

Then, Jk(i) ≤ Jk+1(i) for all k and i (monotonicity
of DP) and Jk → J∗, so that J0(i) ≤ J∗(i) for all i.

• So J∗ = (J∗(1), . . . , J∗(n)) is the solution of the
linear program of maximizing

∑
i
n
=1 J(i) subject to

the constraint (1).

LINEAR PROGRAMMING (CONTINUED)

J(1)

J(2)

0

J* = (J*(1),J*(2))

J(1) = g(1,u 2) + p 11(u
2)J(1) + p 12(u

2)J(2)

J(1) = g(1,u1) + p 11(u
1)J(1) + p 12(u 1)J(2)

J(2) = g(2,u1) + p 21(u
1)J(1) + p 22(u

1)J(2)

J(2) = g(2,u 2) + p 21(u 2)J(1) + p 22(u 2)J(2)

• Drawback: For large n the dimension of this pro
gram is very large. Furthermore, the number of
constraints is equal to the number of state-control
pairs.

∑

∑

DISCOUNTED PROBLEMS

• Assume a discount factor α < 1.

• Conversion to an SSP problem.

pij(u) _ pij(u)

pii(u) i j _ pjj(u)

pji(u)

p jj(u) _pii(u)

1 - _

i j

pji(u)_
1 - _

t

• Value iteration converges to J∗ for all initial J0:

n Jk+1(i) = min g(i, u) + α pij (u)Jk(j) , ∀ i

u∈U(i)
j=1

• J∗ is the unique solution of Bellman’s equation:

n J∗(i) = min g(i, u) + α pij (u)J∗(j) , ∀ i

u∈U(i)
j=1

[] { }

{ }

DISCOUNTED PROBLEMS (CONTINUED)

• Policy iteration converges finitely to an optimal,
and linear programming works.

• Example: Asset selling over an infinite horizon.
If accepted, the offer xk of period k, is invested at
a rate of interest r.

• By depreciating the sale amount to period 0
dollars, we view (1 + r)−kxk as the reward for
selling the asset in period k at a price xk, where
r > 0 is the rate of interest. So the discount factor
is α = 1/(1 + r).

• J∗ is the unique solution of Bellman’s equation

E J∗(w)
J∗(x) = max x, .

1 + r

• An optimal policy is to sell if and only if the

current offer xk is greater than or equal to ᾱ, where

E J∗(w)
ᾱ = .

1 + r

6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

• Average cost per stage problems

• Connection with stochastic shortest path prob
lems

• Bellman’s equation

• Value iteration

• Policy iteration

∑

AVERAGE COST PER STAGE PROBLEM

• Stationary system with finite number of states
and controls

•	 Minimize over policies π = {µ0, µ1, ...}

{	 }
1

N−1 ()
Jπ(x0) = lim E g xk, µk(xk), wk

N→∞ N wk

k=0,1,... k=0

• Important characteristics (not shared by other
types of infinite horizon problems)

−	 For any fixed K, the cost incurred up to time
K does not matter (only the state that we are
at time K matters)

−	 If all states “communicate” the optimal cost
is independent of the initial state [if we can
go from i to j in finite expected time, we must
have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for all i.

−	 Because “communication” issues are so im
portant, the methodology relies heavily on
Markov chain theory.

CONNECTION WITH SSP

• Assumption: State n is such that for some inte
ger m > 0, and for all initial states and all policies,
n is visited with positive probability at least once
within the first m stages.

• Divide the sequence of generated states into
cycles marked by successive visits to n.

• Each of the cycles can be viewed as a state
trajectory of a corresponding stochastic shortest
path problem with n as the termination state.

i j

pij(u)

pii(u) pjj(u)pji(u)

n
pin(u) pjn(u)

pnn(u)

pnj(u)pni(u)

i j

pij(u)

pii(u) pjj(u)pji(u)

n

t

Artificial Termination State

Special
State n

pni(u)

pin(u)

pnn(u)

pnj(u)

pjn(u)

• Let the cost at i of the SSP be g(i, u) − λ∗

• We will show that

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl.

CONNECTION WITH SSP (CONTINUED)

• Consider a minimum cycle cost problem: Find
a stationary policy µ that minimizes the expected
cost per transition within a cycle

Cnn(µ)

Nnn(µ)

,

where for a fixed µ,

Cnn(µ) : E{cost from n up to the first return to n}

Nnn(µ) : E{time from n up to the first return to n}

• Intuitively, optimal cycle cost = λ∗, so

Cnn(µ) − Nnn(µ)λ∗ ≥ 0,

with equality if µ is optimal.

• Thus, the optimal µ must minimize over µ the
expression Cnn(µ) − Nnn(µ)λ∗, which is the ex
pected cost of µ starting from n in the SSP with
stage costs g(i, u) − λ∗ .

∑

∑

BELLMAN’S EQUATION

• Let h∗(i) the optimal cost of this SSP prob
lem when starting at the nontermination states i =
1, . . . , n. Then, h∗(1), . . . , h∗(n) solve uniquely the
corresponding Bellman’s equation

n−1

h∗(i) = min g(i, u) − λ∗ + pij (u)h∗(j) , ∀ i
u∈U(i)

j=1

• If µ ∗ is an optimal stationary policy for the SSP
problem, we have

h∗(n) = Cnn(µ ∗) − Nnn(µ ∗)λ∗ = 0

• Combining these equations, we have

n λ∗+h∗(i) = min g(i, u) + pij (u)h∗(j) , ∀ i

u∈U(i)
j=1

∗ • If µ ∗(i) attains the min for each i, µ is optimal.

MORE ON THE CONNECTION WITH SSP

• Interpretation of h∗(i) as a relative or differential
cost : It is the minimum of

E{cost to reach n from i for the first time}
∗−	E{cost if the stage cost were λ and not g(i, u)}

• We don’t know λ∗, so we can’t solve the aver
age cost problem as an SSP problem. But similar
value and policy iteration algorithms are possible.

•	 Example: A manufacturer at each time:

− Receives an order with prob. p and no order
with prob. 1 − p.

− May process all unfilled orders at cost K >
0, or process no order at all. The cost per
unfilled order at each time is c > 0.

− Maximum number of orders that can remain
unfilled is n.

−	 Find a processing policy that minimizes the
total expected cost per stage.

[

]

EXAMPLE (CONTINUED)

• State = number of unfilled orders. State 0 is the
special state for the SSP formulation.

• Bellman’s equation: For states i = 0, 1, . . . , n−1

λ∗ + h∗(i) = min K + (1 − p)h∗(0) + ph∗(1),

ci + (1 − p)h∗(i) + ph∗(i + 1) ,

and for state n

λ∗ + h∗(n) = K + (1 − p)h∗(0) + ph∗(1)

• Optimal policy: Process i unfilled orders if

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1).

• Intuitively, h∗(i) is monotonically nondecreas
ing with i (interpret h∗(i) as optimal costs-to-go
for the associate SSP problem). So a threshold
policy is optimal: process the orders if their num
ber exceeds some threshold integer m ∗ .

∑

∣ ∣ ∣ ∣

VALUE ITERATION

• Natural value iteration method: Generate op
timal k-stage costs by DP algorithm starting with
any J0:

n Jk+1(i) = min g(i, u) + pij (u)Jk(j) , ∀ i

u∈U(i)
j=1

• Result: limk→∞ Jk(i)/k = λ∗ for all i.

• Proof outline: Let Jk
∗ be so generated from the

initial condition J0
∗ = h∗. Then, by induction,

Jk
∗(i) = kλ∗ + h∗(i), ∀i, ∀ k.

On the other hand,

∣Jk(i) − Jk
∗(i)∣ ≤ max ∣J0(j) − h∗(j)∣, ∀ i

j=1,...,n

since Jk(i) and Jk
∗(i) are optimal costs for two k-

stage problems that differ only in the terminal cost
functions, which are J0 and h∗ .

∑

∑

RELATIVE VALUE ITERATION

• The value iteration method just described has
two drawbacks:

−	 Since typically some components of Jk di
verge to ∞ or −∞, calculating limk→∞ Jk(i)/k
is numerically cumbersome.

−	 The method will not compute a correspond
ing differential cost vector h∗ .

• We can bypass both difficulties by subtracting a
constant from all components of the vector Jk, so
that the difference, call it hk, remains bounded.

• Relative value iteration algorithm:Pick any state
s, and iterate according to 	

n hk+1(i) = min g(i, u) + pij (u)hk(j)
u∈U(i)

j=1 	
n −	 min g(s, u) + psj (u)hk(j) , ∀ i

u∈U(s)
j=1

• Then we can show hk → h∗ (under an extra
assumption).

() () ∑

∑

POLICY ITERATION

• At the typical iteration, we have a stationary µk.

• Policy evaluation: Compute λk and hk(i) of µk,
using the n + 1 equations hk(n) = 0 and

n

λk + hk(i) = g i, µk(i) + pij µk(i) hk(j), ∀ i
j=1

• Policy improvement: Find for all i
n µk+1(i) = arg min g(i, u) + pij (u)hk(j)

u∈U(i)

j=1

• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop;
otherwise, repeat with µk+1 replacing µk.

• Result: For each k, we either have λk+1 < λk

or

λk+1 = λk , hk+1(i) ≤ hk(i), i = 1, . . . , n.

The algorithm terminates with an optimal policy.

6.231 DYNAMIC PROGRAMMING

LECTURE 20

LECTURE OUTLINE

• Control of continuous-time Markov chains –
Semi-Markov problems

• Problem formulation – Equivalence to discrete-
time problems

• Discounted problems

• Average cost problems

CONTINUOUS-TIME MARKOV CHAINS

• Stationary system with finite number of states
and controls

• State transitions occur at discrete times

• Control applied at these discrete times and stays
constant between transitions

• Time between transitions is random

• Cost accumulates in continuous time (may also
be incurred at the time of transition)

• Example: Admission control in a system with
restricted capacity (e.g., a communication link)

− Customer arrivals: a Poisson process

− Customers entering the system, depart after
exponentially distributed time

− Upon arrival we must decide whether to ad
mit or to block a customer

− There is a cost for blocking a customer

− For each customer that is in the system, there
is a customer-dependent reward per unit time

− Minimize time-discounted or average cost

PROBLEM FORMULATION

• x(t) and u(t): State and control at time t

• tk: Time of kth transition (t0 = 0)

• xk = x(tk): We have x(t) = xk for tk ≤ t < tk+1.

• uk = u(tk): We have u(t) = uk for tk ≤ t < tk+1.

• In place of transition probabilities, we have tran
sition distributions

Qij (τ, u) = P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u}

• Two important formulas:

(1) Transition probabilities are specified by

pij (u) = P{xk+1 = j | xk = i, uk = u} = lim Qij (τ, u)
τ →∞

(2) The Cumulative Distribution Function (CDF) of
τ given i, j, u is (assuming pij (u) > 0)

Qij (τ, u)
P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} =

pij (u)

Thus, Qij (τ, u) can be viewed as a “scaled CDF”

EXPONENTIAL TRANSITION DISTRIBUTIONS

•	 Important example of transition distributions

()
Qij (τ, u) = pij (u) 1 − e−νi(u)τ ,

where pij (u) are transition probabilities, and νi(u)
is called the transition rate at state i.

• Interpretation: If the system is in state i and
control u is applied

− the next state will be j with probability pij (u)
−	 the time between the transition to state i and

the transition to the next state j is exponen
tially distributed with parameter νi(u) (inde
pendtly of j):

P{transition time interval > τ | i, u} = e−νi(u)τ

• The exponential distribution is memoryless. This
implies that for a given policy, the system is a
continuous-time Markov chain (the future depends
on the past through present). Without the mem
oryless property, the Markov property holds only
at the times of transition.

{ }

{ }

COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

• There may be an extra “instantaneous” cost
ĝ(i, u) at the time of a transition (let’s ignore this
for the moment)

• Total discounted cost of π = {µ0, µ1, . . .} start
ing from state i (with discount factor β > 0)

N−1 ∫ ∣ ∑ tk+1 −βt
() ∣

lim E e g xk, µk(xk) dt ∣ x0 = i

N→∞

k=0 tk

• Average cost per unit time

N−1 ∫ ∣
1 ∑ tk+1 () ∣

lim E g xk, µk(xk) dt ∣ x0 = i

N→∞ E{tN }

k=0 tk

• We will see that both problems have equivalent
discrete-time versions.

∫

A NOTE ON NOTATION

• The scaled CDF Qij (τ, u) can be used to model
discrete, continuous, and mixed distributions for
the transition time τ .

• Generally, expected values of functions of τ
can be written as integrals involving dQij (τ, u).
For example, the conditional expected value of τ
given i, j, and u is written as ∫
 ∞ dQij (τ, u)

E{τ | i, j, u} =
0

τ
pij (u)

• If Qij (τ, u) is continuous with respect to τ , its
derivative

qij (τ, u) =
dQij (τ, u)
dτ

can be viewed as a “scaled” density function. Ex
pected values of functions of τ can then be written
in terms of qij (τ, u). For example

∞ qij (τ, u)
E{τ | i, j, u} = τ

pij (u)
dτ

0

• If Qij (τ, u) is discontinuous and “staircase-like,”

expected values can be written as summations.

{ }

DISCOUNTED PROBLEMS – COST CALCULATION

• For a policy π = {µ0, µ1, . . .}, write

Jπ (i) = E{cost of 1st transition}+E{e −βτ Jπ1 (j) | i, µ0(i)}

where Jπ1 (j) is the cost-to-go of the policy π1 =
{µ1, µ2, . . .}

• We calculate the two costs in the RHS. The
E{transition cost}, if u is applied at state i, is

G(i, u) = Ej Eτ {transition cost | j}

n ∫ (∫) ∑ ∞ τ
dQij (τ, u)

= pij (u) e −βt g(i, u)dt
pij (u)

j=1 0 0

n ∫ ∞
∑ −βτ1 − e
= g(i, u)dQij (τ, u)

β
j=1 0

• Thus the E{cost of 1st transition} is

n ∫ ∞ () ()∑ 1 − e −βτ ()
G i, µ0(i) = g i, µ0(i) dQij τ, µ0(i)

β
j=1 0

{ }

∑ ()

()

() () ∑

COST CALCULATION (CONTINUED)

• Also

E{e−βτ Jπ1 (j)}

= Ej E{e−βτ | j}Jπ1 (j)
n (∫) ∑ ∞ dQij (τ, u)

= pij (u) e−βτ
pij (u)

Jπ1 (j)
j=1 0

n

= mij µ(i) Jπ1 (j)

j=1

where mij (u) is given by

∫ ∞ ∫ ∞

mij (u) = e −βτ dQij (τ, u) < dQij (τ, u) = pij (u)
0 0

and can be viewed as the “effective discount fac
tor” [the analog of αpij (u) in the discrete-time case].

• So Jπ(i) can be written as

n

Jπ(i) = G i, µ0(i) + mij µ(i) Jπ1 (j)
j=1

∑

∑

EQUIVALENCE TO AN SSP

• Similar to the discrete-time case, introduce a
stochastic shortest path problem with an artificial
termination state t

• Under control u, from state i the system moves
to state j with probability mij (u) and to the termi
nation state t with probability 1 −

∑n
j=1 mij (u)

• Bellman’s equation: For i = 1, . . . , n,
n J∗(i) = min G(i, u) + mij (u)J∗(j)

u∈U(i)
j=1

• Analogs of value iteration, policy iteration, and
linear programming.

• If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ĝ(i, u),
Bellman’s equation becomes

n

J∗(i) = min ĝ(i, u) + G(i, u) + mij (u)J∗(j)
u∈U(i)

j=1

[]

MANUFACTURER’S EXAMPLE REVISITED

• A manufacturer receives orders with interarrival
times uniformly distributed in [0, τmax].

• He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

• The nonzero transition distributions are

τ
Qi1(τ, Fill) = Qi(i+1)(τ, Not Fill) = min 1,

τmax

• The one-stage expected cost G is

G(i, Fill) = 0, G(i, Not Fill) = γ c i,

where

n ∫ ∫ ∑ ∞ 1 − e−βτ τmax 1 − e−βτ
γ = dQij(τ, u) = dτ

0 β 0 βτmax
j=1

• There is an “instantaneous” cost

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0

[]

MANUFACTURER’S EXAMPLE CONTINUED

• The “effective discount factors” mij (u) in Bell-
man’s Equation are

mi1(Fill) = mi(i+1)(Not Fill) = α,

where ∫ ∞	 ∫ τmax −βτ	 −βτmax

α = e −βτ dQij(τ, u) = 	
e

dτ =
1 − e

τmax βτmax0	 0

• Bellman’s equation has the form

J∗(i) = min K+αJ∗(1), γci+αJ∗(i+1) , i = 1, 2, . . .

• As in the discrete-time case, we can conclude
that there exists an optimal threshold i∗:

fill the orders <==> their number i exceeds i∗

∫

∑

()

AVERAGE COST

• Minimize

1
{ tN

}

lim E g x(t), u(t) dt
N→∞ E{tN } 0

assuming there is a special state that is “recurrent
under all policies”

• Total expected cost of a transition

G(i, u) = g(i, u)τ i(u),
where τ i(u): Expected transition time.

• We now apply the SSP argument used for the
discrete-time case. Divide trajectory into cycles
marked by successive visits to n. The cost at
(i, u) is G(i, u) − λ∗τ i(u), where λ∗ is the optimal
expected cost per unit time. Each cycle is viewed
as a state trajectory of a corresponding SSP prob
lem with the termination state being essentially n

• So Bellman’s Eq. for the average cost problem:
n h∗(i) = min G(i, u) − λ∗τ i(u) + pij (u)h∗(j)

u∈U(i)
j=1

[

]

AVERAGE COST MANUFACTURER’S EXAMPLE

•	 The expected transition times are

τ i(Fill) = τ i(Not Fill) =
τmax

2

the expected transition cost is

G(i, Fill) = 0, G(i, Not Fill) =
c i τmax

2

and there is also the “instantaneous” cost

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0

• Bellman’s equation:

h∗(i) = min K − λ∗
τmax + h∗(1),

2

ci
τmax −	λ∗

τmax + h∗(i + 1)
2	 2

• Again it can be shown that a threshold policy is
optimal.

6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• With this lecture, we start a four-lecture se
quence on advanced dynamic programming and
neuro-dynamic programming topics. References:

−	 Dynamic Programming and Optimal Control,
Vol. II, by D. Bertsekas

− Neuro-Dynamic Programming, by D. Bert
sekas and J. Tsitsiklis

• 1st Lecture: Discounted problems with infinite
state space, stochastic shortest path problem

• 2nd Lecture: DP with cost function approxi
mation

• 3rd Lecture: Simulation-based policy and
value iteration, temporal difference methods

• 4th Lecture: Other approximation methods:
Q-learning, state aggregation, approximate linear
programming, approximation in policy space

� � � � �

� � ��

DISCOUNTED PROBLEMS W/ BOUNDED COST

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E αkg xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

with g(x, u, w): bounded over (x, u, w), and α < 1.

• Shorthand notation for DP mappings (operate

on functions of state to produce other functions)

(TJ)(x) = min E g(x, u, w) + αJ f(x, u, w) , ∀ x

u∈U(x) w

TJ is the optimal cost function for the one-stage

problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

� � � � ��
(TµJ)(x) = E g x, µ(x), w + αJ f(x, µ(x), w) , ∀ x

w

“SHORTHAND” THEORY

•	 Cost function expressions [with J0(x) ≡ 0]

Jπ (x) = lim (Tµ0 Tµ1 · · ·Tµk J0)(x), Jµ(x) = lim (Tµ
kJ0)(x)

k→∞ k→∞

•	 Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ

•	 Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

•	 Value iteration: For any (bounded) J and all x,

J∗(x) = lim (T kJ)(x)
k→∞

•	 Policy iteration steps: Given µk,

− Policy evaluation: Find Jµk by solving

J k = T k J kµ µ µ

− Policy improvement: Find µk+1 such that

Tµk+1 Jµk	 = TJµk

� �

� �

� � � � � �
� � � � � �

THE THREE KEY PROPERTIES

• Monotonicity property: For any functions J
and J ′ such that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x

• Additivity property: For any J , any scalar r,
and any µ

T (J + re) (x) = (TJ)(x) + αr, ∀ x,

Tµ(J + re) (x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Contraction property: For any (bounded)
functions J and J ′, and any µ,

max�(TJ)(x) − (TJ ′)(x) ≤ α max�J(x) − J ′(x) ,
x x

max�(TµJ)(x)−(TµJ ′)(x) ≤ α max�J(x)−J ′(x) .
x x

“SHORTHAND” ANALYSIS

• Contraction mapping theorem: The con
traction property implies that:

− T has a unique fixed point, J∗, which is the
limit of T kJ for any (bounded) J .

−	 For each µ, Tµ has a unique fixed point, Jµ,
which is the limit of Tµ

kJ for any J .

•	 Convergence rate: For all k,

�	 � � �
max�(T kJ)(x) − J∗(x)� ≤ αk max�J(x) − J∗(x)�

x	 x

• An assortment of other analytical and computa
tional results are based on the contraction prop
erty, e.g, error bounds, computational enhance
ments, etc.

• Example: If we execute value iteration approxi
mately , so we compute TJ within an ε-error, i.e.,

max |J̃(x) − (TJ)(x)| ≤ ε,

x

in the limit we obtain J∗ within an ε/(1 − α) error.

GEOMETRIC INTERPRETATIONS

gµ

J*

J*

450

450

Tj

J TJ T2J

Value Iteration Sequence
J, TJ, T2J

Policy Iteration Sequence
µ 0, µ 1, µ 2

+ _ PµJ

g µ 0 +_ Pµ0J

g µ 1 + _ Pµ 1J

Jµ 0Jµ 10

0

gµ 2 + _ Pµ 2J

Tj

j

j

� � � � �

� � ��

UNDISCOUNTED PROBLEMS

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

N−1

Jπ(x0) = lim E g xk, µk(xk), wk
N→∞ wk

k=0,1,... k=0

• Shorthand notation for DP mappings

(TJ)(x) = min E g(x, u, w) + J f(x, u, w) , ∀ x

u∈U(x) w

• For any stationary policy µ

� � � � ��
(TµJ)(x) = E g x, µ(x), w + J f(x, µ(x), w) , ∀ x

w

• Neither T nor Tµ are contractions in general.
Some, but not all, of the nice theory holds, thanks
to the monotonicity of T and Tµ.

• Some of the nice theory is recovered in SSP
problems because of the termination state.

� � � � �

STOCHASTIC SHORTEST PATH PROBLEMS I

• Assume: Cost-free term. state t, a finite number
of states 1, . . . , n, and finite number of controls

• Mappings T and Tµ (modified to account for
termination state t):

� �

n �

(TJ)(i) = min g(i, u) + pij (u)J(j) , i = 1, . . . , n,
u∈U(i)

j=1

n

(TµJ)(i) = g i, µ(i) + pij µ(i) J(j), i = 1, . . . , n.
j=1

• Definition: A stationary policy µ is called proper,
if under µ, from every state i, there is a positive
probability path that leads to t.

• Important fact: If µ is proper then Tµ is a con
traction with respect to some weighted max norm

1 1
max |(TµJ)(i)−(TµJ ′)(i)| ≤ α max |J(i)−J ′(i)|

i vi i vi

• If all µ are proper, then T is similarly a contrac
tion (the case discussed in the text, Ch. 7).

STOCHASTIC SHORTEST PATH PROBLEMS II

• The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy
(b) For each improper µ, Tµ(i) = ∞ for some i

•	 Then T is not necessarily a contraction, but:

− J∗ is the unique solution of Bellman’s Equ.

− µ ∗ is optimal if and only if Tµ ∗ J∗ = TJ∗

− limk→∞(T kJ)(i) = J∗(i) for all i

− Policy iteration terminates with an optimal
policy, if started with a proper policy

• Example: Deterministic shortest path problem
with a single destination

− States <=> nodes; Controls <=> arcs

− Termination state <=> the destination

− Assumption (a) <=> every node is con
nected to the destination

− Assumption (b) <=> all cycle costs > 0

−	 Pathology: If there is a cycle cost = 0 (or
< 0), Bellman’s equation has an infinite num
ber of solutions (no solution, respectively)

PATHOLOGIES: THE BLACKMAILER’S DILEMMA

• Two states, state 1 and the termination state t.

• At state 1, choose a control u ∈ (0, 1] (the black
mail amount demanded), and move to t at no cost
with probability u2, or stay in 1 at a cost −u with
probability 1 − u2.

• Every stationary policy is proper, but the control
set in not finite.

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −(1 − u2)u + (1 − u2)Jµ(1)

ufrom which Jµ(1) = − 1−
u

2

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• It turns out that a nonstationary policy is opti
mal: demand µk(1) = γ/(k + 1) at time k, with
γ ∈ (0, 1/2). (Blackmailer requests diminishing
amounts over time, which add to ∞; the proba
bility of the victim’s refusal diminishes at a much
faster rate.)

6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

• Approximate DP for large/intractable problems

• Approximate policy iteration

• Simulation-based policy iteration

• Actor-critic interpretation

• Learning how to play tetris: A case study

• Approximate value iteration with function ap
proximation

APPROX. POLICY ITERATION - DISCOUNTED CASE

• Suppose that the policy evaluation is approxi
mate, according to,

max |Jk(x) − J k (x)| ≤ δ, k = 0, 1, . . .µx

and policy improvement is also approximate, ac
cording to,

max |(T k+1 Jk)(x)−(TJk)(x)| ≤ ε, k = 0, 1, . . .µx

where δ and ε are some positive scalars.

• Error Bound: The sequence {µk} generated
by the approximate policy iteration algorithm sat
isfies

� � ε + 2αδ
lim supmax Jµk (x) − J∗(x) ≤

k→∞ x∈S (1 − α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗ .

APPROXIMATE POLICY ITERATION - SSP

• Suppose that the policy evaluation is approxi
mate, according to,

max |Jk(i) − J k (i)| ≤ δ, k = 0, 1, . . .
i=1,...,n µ

and policy improvement is also approximate, ac
cording to,

max |(T k+1 Jk)(i)−(TJk)(i)| ≤ ε, k = 0, 1, . . .
i=1,...,n µ

where δ and ε are some positive scalars.

• Assume that all policies generated by the method
are proper (they are guaranteed to be if δ = ε = 0,
but not in general).

• Error Bound: The sequence {µk} generated
by approximate policy iteration satisfies � � n(1 − ρ + n)(ε + 2δ)
lim sup max J k (i)−J∗(i) ≤

k→∞ i=1,...,n µ (1 − ρ)2

where ρ = max i=1,...,n P{x � = i, µ}n = t |x0
µ: proper

�

� �

SIMULATION-BASED POLICY EVALUATION

• Given µ, suppose we want to calculate Jµ by
simulation.

• Generate by simulation sample costs. Approx
imation:

1
Mi

Jµ(i) ≈ c(i, m)
Mi

m=1

c(i, m) : mth sample cost starting from state i

• Approximating each Jµ(i) is impractical for a
large state space. Instead, a “compact represen
tation” J̃

µ(i, r) may be used, where r is a tunable
parameter vector. We may calculate an optimal
value r ∗ of r by a least squares fit

n Mi

r ∗ = arg min �� c(i, m) − J̃
µ(i, r)��2

r
i=1 m=1

• This idea is the starting point for more sophisti
cated simulation-related methods, to be discussed
in the next lecture.

ACTOR-CRITIC INTERPRETATION

System

Controller
(Actor)

Policy Evaluation
(Critic)

J µk

µk+1(i) i

• The critic calculates approximately (e.g., using
some form of a least squares fit) Jµk by processing
state/sample cost pairs, which are generated by
the actor by simulation

• Given the approximate Jµk , the actor imple
ments the improved policy Jµk+1 by

(Tµk+1 Jk)(i) = (TJk)(i)

EXAMPLE: TETRIS I

• The state consists of the board position i, and
the shape of the current falling block (astronomi
cally large number of states).

• It can be shown that all policies are proper!!

• Use a linear approximation architecture with
feature extraction

s �

J̃(i, r) = φm(i)rm,

m=1

where r = (r1, . . . , rs) is the parameter vector and

φm(i) is the value of mth feature associated w/ i.

EXAMPLE: TETRIS II

• Approximate policy iteration was implemented
with the following features:

− The height of each column of the wall

− The difference of heights of adjacent columns

− The maximum height over all wall columns

− The number of “holes” on the wall

− The number 1 (provides a constant offset)

• Playing data was collected for a fixed value of
the parameter vector r (and the corresponding
policy); the policy was approximately evaluated
by choosing r to match the playing data in some
least-squares sense.

• The method used for approximate policy eval
uation was the λ-least squares policy evaluation
method , to be described in the next lecture.

• See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” in

http://www.mit.edu:8001//people/dimitrib/publ.html

http://www.mit.edu:8001//people/dimitrib/publ.html

� �

� �

VALUE ITERATION W/ FUNCTION APPROXIMATION

• Suppose we use a linear approximation archi
tecture J̃(i, r) = φ(i)′r, or

J̃ = Φr

where r = (r1, . . . , rs) is a parameter vector, and
Φ is a full rank n × s feature matrix.

• Approximate value iteration method: Start
with initial guess r0; given rt, generate rt+1 by

rt+1 = arg min�Φr − T (Φrt)�
r

where ‖ · ‖ is some norm.

• Questions: Does rt converge to some r ∗? How
close is Φr ∗ to J∗?

• Convergence Result: If T is a contraction with
respect to a weighted Euclidean norm (‖J‖2 =
J ′DJ , where D is positive definite, symmetric),
then rt converges to (the unique) r ∗ satisfying

r ∗ = arg min�Φr − T (Φr ∗)�
r

� �

GEOMETRIC INTERPRETATION

• Consider the feature subspace

S = {Φr | r ∈ �s}

of all cost function approximations that are linear
combinations of the feature vectors. Let Π denote
projection on this subspace.

• The approximate value iteration is

rt+1 = ΠT (Φrt) = arg min�Φr − T (Φrt)�
r

and amounts to starting at the point Φrt of S ap
plying T to it and then projecting on S.

• Proof Idea: Since T is a contraction with re
spect to the norm of projection, and projection is
nonexpansive, ΠT (which maps S to S) is a con
traction (with respect to the same norm).

Z(\r’)

\r’

Z(\r)

WZ(\r’) WZ(\r)

\r

0
Feature Subspace S

PROOF

• Consider two vectors Φr and Φr′ in S. The (Eu
clidean) projection is a nonexpansive mapping, so

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ ‖T (Φr) − T (Φr′)‖

Since T is a contraction mapping (with respect to
the norm of projection),

‖T (Φr) − T (Φr′)‖ ≤ β‖Φr − Φr′‖

where β ∈ (0, 1) is the contraction modulus, so

‖ΠT (Φr) − ΠT (Φr′)‖ ≤ β‖Φr − Φr′‖

and it follows that ΠT is a contraction (with respect
to the same norm and with the same modulus).

• In general, it is not clear how to obtain a Eu
clidean norm for which T is a contraction.

• Important fact: In the case where T = Tµ,
where µ is a stationary policy, T is a contraction for
the norm ‖J‖2 = J ′DJ , where D is diagonal with
the steady-state probabilities along the diagonal.

� �

ERROR BOUND

• If T is a contraction with respect to a weighted
Euclidean norm ‖ · ‖ with modulus β, and r ∗ is the
limit of rt, i.e.,

r ∗ = arg min�Φr − T (Φr ∗)�
r

then ‖ΠJ∗ − J∗‖ ‖Φr ∗ − J∗‖ ≤
1 − β

where J∗ is the fixed point of T , and ΠJ∗ is the

projection of J∗ on the feature subspace S (with

respect to norm ‖ · ‖).

Proof: Using the triangle inequality,

‖Φr ∗ − J∗‖ ≤ ‖Φr ∗ − ΠJ∗‖ + ‖ΠJ∗ − J∗‖

= ‖ΠT (Φr ∗) − ΠT (J∗)‖ + ‖ΠJ∗ − J∗‖

≤ β‖Φr ∗ − J∗‖ + ‖ΠJ∗ − J∗‖ Q.E.D.

• Note that the error ‖Φr ∗ −J∗‖ is proportional to
‖ΠJ∗ − J∗‖, which can be viewed as the “power
of the approximation architecture” (measures how
well J∗ can be represented by the chosen fea
tures).

6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

• Simulation-based policy and value iteration meth
ods

• λ-Least Squares Policy Evaluation method

• Temporal differences implementation

• Policy evaluation by approximate value iteration

• TD(λ)

POLICY AND VALUE ITERATION BY SIMULATION

• There are many proposals, but we will focus on
methods for which there is solid theory:

(a)	 Policy evaluation methods, to be used in
exact or approximate policy iteration.

− Here the policy is fixed.

− As a special case we obtain the rollout method.

−	 The cost of the policy may be calculated
in several different forms: (1) For all states
(lookup table representation) or (2) Through
an approximation architecture (compact rep
resentation) or (3) Through on-line simula
tion as needed (rollout algorithm).

(b)	 Value iteration w/ function approximation.

− A big restriction is to find a suitable Euclidean
norm for which T is a contraction.

− Such a norm can be found in the case where
there is only one policy (T = Tµ).

− Q-Learning is a form of on-line simulation-
based value iteration method, but the only
available theory applies to the lookup table
representation case.

SIMULATION-BASED POLICY EVALUATION

• The policy is fixed and one or more long simu
lation trajectories are generated.

• The weight vector r of an approximation ar
chitecture J̃(i, r) is adjusted using some kind of
“least squares scheme” (off-line, or on-line as the
simulation trajectories are generated).

• For on-line methods, a sequence {rt} of param
eter vectors is generated.

• There is solid theory only for linear approxi
mation architectures (and under some technical
assumptions).

• Typical result: In the limit, as the number of
simulation-generated transitions goes to ∞, the
sequence of generated parameter vectors con
verges to a limit that solves a related least-squares
approximation problem.

• We will focus on so-called temporal difference
methods, λ-least squares and TD(λ), which may
be viewed as on-line simulation-based approxi
mate value iteration methods for policy evaluation.

� � �

� � � �

POLICY EVALUATION BY VALUE ITERATION I

• The remainder of this lecture is based on the pa
per “Improved Temporal Difference Methods with
Function Approximation,” by Bertsekas, Borkar,
and Nedic at

http://www.mit.edu:8001//people/dimitrib/publ.html

• Let J be the cost function associated with a
stationary policy in the discounted context, so J
is the unique solution of Bellman’s Eq., J(i) =

n
j=1 pij g(i, j) + αJ(j) ≡ (TJ)(i). We assume

that the associated Markov chain has steady-state
probabilities p(i) which are all positive.

• If we use a linear approximation architecture
J̃(i, r) = φ(i)′r, the value iteration

n � � �

Jt+1(i) = pij g(i, j) + αJt(j) = (TJt)(i)

j=1

is approximated as Φrt+1 ≈ T (Φrt) in the sense � �2 n n

rt+1 = arg min w(i) φ(i)′ r − pij g(i, j) + αφ(j)′ rt
r

i=1 j=1

where the w(i) are some positive weights.

http://www.mit.edu:8001//people/dimitrib/publ.html

� � � �

�

POLICY EVALUATION BY VALUE ITERATION II

• Note that, assuming Φ has full rank, rt+1 is
uniquely obtained by projecting the value iterate
T (Φrt) = P (g + αΦrt) on the range space of the
matrix Φ, where the projection is with respect to √
the norm ‖ · ‖D given by ‖z‖D = z′Dz, and D is
diagonal with the w(i) along the diagonal.

• The iteration converges if the mapping T is a
contraction with respect to the norm ‖ · ‖D.
Key fact: This is so if the w(i) are equal to
the steady state probabilities p(i). The limit is the
unique r ∗ satisfying � �2 n n

r ∗ = arg min w(i) φ(i)′ r − pij g(i, j) + αφ(j)′ r ∗

r

i=1 j=1

• Simulation-based implementation: Generate an
infinitely long trajectory (i0, i1, . . .) using a simula
tor, and iteratively update r by

t

rt+1 = arg min
�
φ(im)′ r−g(im, im+1)−αφ(im+1)′ rt

�2

r

m=0

This can be shown to converge to the same r ∗.

GEOMETRIC INTERPRETATION

Z(\rt) Z(\rt)

\rt\rt

\rt+1

\rt+1

0 0 Simulation error
Feature Subspace S Feature Subspace S

Simulation-BasedValue Iteration with Linear Value Iteration with LinearFunction Approximation Function Approximation

• The simulation-based implementation yields the
(non-simulation) value iterate with linear function
approximation [i.e., the projection of T (Φrt)] plus
stochastic simulation error.

• Key Convergence Proof Idea: The simu
lation error converges to 0 as the simulation tra
jectory becomes longer. Furthermore, the (non-
simulation) value iteration is a convergent linear
deterministic algorithm [since it involves a contrac
tion mapping with respect to the weighted norm
defined by the steady-state probabilities p(i)].

� � � �

� �

� � � �

USING M -STEP VALUE ITERATION

• For M ≥ 1, consider the equation

M−1 �
J(i) = E αM J(iM) + αkg(ik, ik+1) � i0 = i

k=0

• This is Bellman’s Eq. for a modified problem,
involving a Markov chain where each transition
corresponds to M transitions of the original, and
the cost is calculated using a discount factor αM

and a cost per stage equal to
�M−1

αkg(ik, ik+1).k=0

• This Bellman equation is also solved uniquely
by the same J that solves the ordinary (one-step)
Bellman equation J(i) = E g(i, j) + αJ(j) .

• The corresponding value iteration method is

M−1 �
Jt+1(i) = E αM Jt(iM) + αkg(ik, ik+1) � i0 = i

k=0

and can be similarly approximated by simulation.

�
�

�
�

�

SIMULATION-BASED M -STEP VALUE ITERATION

• The corresponding simulation-based least-squares
implementation is

t

rt+1 = arg min φ(im)′r − αM φ(im+M)′rt
r

m=0

M−1
�2 �

− αkg(im+k, im+k+1)
k=0

• By introducing the temporal differences, defined
by

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt,

we can write this iteration as

t

rt+1 = arg min φ(im)′r − φ(im)′rt
r

m=0

m+M−1
�2

− αk−mdt(ik, ik+1)
k=m

��

�
�

�
�

USING RANDOM STEP VALUE ITERATION

• Consider a version of Bellman’s equation where
M is random and geometrically distributed with
parameter λ, i.e.,

Prob(M = m) = (1 − λ)λm−1, m = 1, 2, . . .

• This equation is obtained by multiplying both
sides of the M -step Bellman’s Eq. with (1−λ)λm−1,
for each m, and adding over m:

∞	 m−1 �	 �
J(i) = (1−λ)λm−1E αmJ(im) + αk g(ik, ik+1) | i0 = i

m=1	 k=0

•	 The corresponding value iteration method is

∞

Jt+1(i) = (1 − λ)λm−1E αmJt(im)
m=1

m−1

+	 αkg(ik, ik+1) | i0 = i
k=0

� � �

�
�

TEMPORAL DIFFERENCES IMPLEMENTATION

• We can write the random step value iteration as
∞

Jt+1(i) = Jt(i)+ (αλ)kE g(ik, ik+1)+αJt(ik+1)−Jt(ik) | i0 = i

k=0

• By using φ(i)′rt to approximate Jt, and by re
placing g(ik, ik+1) + αJt(ik+1) − Jt(ik) with the
temporal differences (TD)

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt,

we obtain the simulation-based least-squares im
plementation (called λ-least squares policy eval
uation method)

t

rt+1 = arg min φ(im)′r − φ(im)′rt
r

m=0 �2t �

− (αλ)k−mdt(ik, ik+1)

k=m

• Role of the TD: They simplify the formulas.

• Convergence can be shown to an r ∗ that solves
a corresponding least squares problem.

� � �

TD(LAMBDA)

• Another method for solving the policy evalu
ation problem is TD(λ), which uses a parameter
λ ∈ [0, 1] and generates an infinitely long trajec
tory (i0, i1, . . .) using a simulator. It iteratively up
dates r by

t

rt+1 = rt + γt (αλ)t−mφ(im) dt(it, it+1)
m=0

where γt is a positive stepsize with γt → 0.

• It can be viewed as a gradient-like method for
minimizing the least-squares sum of the preced
ing λ-least squares method described earlier (see
the Bertsekas, Borkar, and Nedic paper).

• For a given value of λ ∈ [0, 1], TD(λ) converges
to the same limit as the λ-least squares method
(under technical assumptions on the choice of γt).

• While TD(λ) uses a simpler formula, it tends to
be much slower than λ-Least Squares. In prac
tice, it also requires tricky trial and error to settle
on good stepsize choices.

TD METHODS: PROPERTIES AND DIFFICULTIES

• As M increases, the M -step Bellman’s equation
becomes better suited for approximation, because
it embodies a longer horizon cost. Thus Φr ∗ tends
to be closer to J when M is large.

• Similarly, Φr ∗ tends to be closer to J as λ ≈ 1.

• On the other hand, when M or λ is large, the
simulation noise inherent in the updates is mag
nified (more random cost terms are added), and
convergence can be very slow. TD(λ) is particu
larly susceptible to noise, so λ ≈ 1 may be a bad
choice. This is less of a problem for the alternative
λ-least squares method.

• A serious problem arises when the Markov
chain is “slow-mixing,” i.e., it takes many transi
tions for the simulation to reach important parts of
the state space. Then if the simulation trajectory
is terminated prematurely, the approximation ob
tained over these parts will be poor. A remedy is
to use many long simulation trajectories starting
from a set of initial states that adequately covers
the state space.

6.231 DYNAMIC PROGRAMMING

LECTURE 24

LECTURE OUTLINE

• Additional methods for approximate DP

• Q-Learning

• Aggregation

• Linear programming with function approxima
tion

• Gradient-based approximation in policy space

� � �

� � �

� �

�

Q-LEARNING I

• To implement an optimal policy, what we need
are the Q-factors defined for each pair (i, u) by

Q(i, u) = pij (u) g(i, u, j) + J∗(j)
j

• Bellman’s equation is J∗(j) = minu′∈U(j) Q(j, u′),
so the Q-factors solve the system of equations

Q(i, u) = pij (u) g(i, u, j)+ min Q(j, u′) , ∀ (i, u)
u′∈U(j)

j

• One possibility is to solve this system iteratively
by a form of value iteration

Q(i, u) := (1 − γ)Q(i, u)+γ pij (u) g(i, u, j)
j

+ min Q(j, u′) ,
u′∈U(j)

where γ is a stepsize parameter with γ ∈ (0, 1],
that may change from one iteration to the next.

�

�

Q-LEARNING II

• The Q-learning method is an approximate ver
sion of this iteration, whereby the expected value
is replaced by a single sample, i.e.,

Q(i, u) := Q(i, u) + γ g(i, u, j)

+ min Q(j, u′) − Q(i, u)
u′∈U(j)

• Here j and g(i, u, j) are generated from the pair
(i, u) by simulation, i.e., according to the transition
probabilities pij (u).

• Thus Q-learning can be viewed as a combina
tion of value iteration and simulation.

• Convergence of the method to the (optimal) Q
factors can be shown under some reasonable (but
quite technical) assumptions.

• Strong connections with the theory of stochastic
iterative algorithms (such as stochastic gradient
methods).

• Challenging analysis, limited practicality (only
for a small number of states).

AGGREGATION I

• Another major idea in approximate DP is to ap
proximate the cost-to-go function of the problem
with the cost-to-go function of a simpler problem.

•	 The main idea of aggregation approach:

− Lump many states together into a few “ag
gregate” states

− View the aggregate states as the states of
an “aggregate” system

− Formulate and solve (optimally) the “aggre
gate” problem by any kind of value or policy
iteration method (including simulation-based
methods, such as Q-learning)

− Use the optimal cost of the aggregate prob
lem for a piecewise-constant approximation
of the optimal cost of the original problem
(all states that belong to the same aggre
gate state are restricted to have the same
cost, the optimal cost of the aggregate state)

• The aggregate problem could also be solved
approximately.

AGGREGATION II

Feature
Vector

System/
Simulator

Feature
Extraction
Mapping

State

Aggregate System/
Simulator

Cost
Approximator

Cost Approximation

Approximator for the
Aggregate System

•	 Main steps to define the aggregate system

• Form the aggregate states by partitioning the
original state space (features can be used for this).

− Each aggregate state is a subset S of states
of the original system

−	 Each state of the original system belongs to
a unique aggregate state

•	 Define the dynamics of the aggregate system

Current aggregate state S �→ New aggregate state S′

Example: If the current aggregate state is S, gen
erate a “typical” state i within S in some probabilis
tic way, then generate j according to the pij , then
declare S′ to be the aggregate state to which j
belongs.

�

SOFT AGGREGATION

• A more general approach is to specify that each
original system state j “belongs to each aggregate
state k with prescribed probability πjk.” Then find
the costs J̃k of the aggregate states by solving an
aggregate problem, and approximate the cost of
an original system state j by k πjkJ̃k.

• Define the dynamics of the aggregate system
as follows: from the current aggregate state, gen
erate a “typical” state i in some probabilistic way,
then generate j according to the pij , then gen
erate probabilistically the next aggregate state k
according to probabilities πjk.

• A variant of this approach when the aggregate
states are themselves states of the original sys
tem (so aggregation here represents a coarse dis
cretization of the original state space).

−	 Define the dynamics of the aggregate sys
tem as follows: from the current aggregate
state, generate a next state j according to
the original system transition probabilities,
then generate the next aggregate state k ac
cording to probabilities πjk.

APPROXIMATE LINEAR PROGRAMMING

• Approximate J∗ using a linear architecture

J̃ = Φr
where r = (r1, . . . , rs) is a weight vector, and Φ is
an n × s feature matrix.

• Use J̃ in place of J∗ in the linear programming
approach, i.e., compute r by solving

maximize c′Φr

subject to Φr ≤ gµ + αPµΦr, ∀ µ

where c is a vector with positive components.

• This is a linear program with s variables but an
enormous number of constraints (one constraint
for each state-control pair).

• Special large-scale linear programming meth
ods (cutting plane or column generation methods)
may be used for such problems.

• Approximations using only a “sampled” subset
of state-control pairs are possible (see the papers
by de Farias and Van Roy).

APPROXIMATION IN POLICY SPACE I

• Consider an average cost problem, where the
problem data are parameterized by a vector r,
i.e., a cost vector g(r), transition probability ma
trix P (r). Let λ(r) be the (scalar) average cost per
stage, satisfying Bellman’s equation

λ(r)e + v(r) = g(r) + P (r)v(r)

• Consider minimizing λ(r) over r (here the data
dependence on control is encoded in the param
eterization). We can try to solve the problem by
nonlinear programming/gradient descent methods.

• Important fact: If ∆λ is the change in λ due
to a small change ∆r from a given r, we have

∆λ · e = p′(∆g + ∆Pv),
where p is the steady-state probability distribu
tion/vector corresponding to P (r), and all the quan
tities above are evaluated at r:

∆λ = λ(r + ∆r) − λ(r),

∆g = g(r+∆r)−g(r), ∆P = P (r+∆r)−P (r)

� �

APPROXIMATION IN POLICY SPACE II

• Proof of the gradient formula: We have,
by “differentiating” Bellman’s equation,

∆λ(r)·e+∆v(r) = ∆g(r)+∆P (r)v(r)+P (r)∆v(r)

By left-multiplying with p′ ,

p ′∆λ(r)·e+p ′∆v(r) = p ′ ∆g(r)+∆P (r)v(r) +p ′P (r)∆v(r)

Since p′∆λ(r) · e = ∆λ(r)e and p′ = p′P (r), this
equation simplifies to

∆λ · e = p′(∆g + ∆Pv)

• Since we don’t know p, we cannot implement a
gradient-like method for minimizing λ(r). An alter
native is to use “sampled gradients”, i.e., gener
ate a simulation trajectory (i0, i1, . . .), and change
r once in a while, in the direction of a simulation-
based estimate of p′(∆g + ∆Pv).

• There is much recent research on this subject,
see e.g., the work of Marbach and Tsitsiklis, and
Konda and Tsitsiklis.

