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6.231 DYNAMIC PROGRAMMING
 

LECTURE 1
 

LECTURE OUTLINE
 

• Problem Formulation 

• Examples 

• The Basic Problem 

• Significance of Feedback 



DP AS AN OPTIMIZATION METHODOLOGY
 

•	 Generic optimization problem: 

min g(u)
 
u∈U 

where u is the optimization/decision variable, g(u)
 
is the cost function, and U is the constraint set 

•	 Categories of problems: 
− Discrete (U is finite) or continuous 
− Linear (g is linear and U is polyhedral) or 

nonlinear 
− Stochastic or deterministic: In stochastic prob

lems the cost involves a stochastic parameter 
w, which is averaged, i.e., it has the form 

{	 } 
g(u) =  Ew G(u,w) 

where w is a random parameter. 

• DP can deal with complex stochastic problems 
where information about w becomes available in 
stages, and the decisions are also made in stages 
and make use of this information. 



{ } 

BASIC STRUCTURE OF STOCHASTIC DP
 

• Discrete-time system 

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N  − 1 

− k: Discrete time 

− xk: State; summarizes past information that 
is relevant for future optimization 

− uk: Control; decision to be selected at time 
k from a given set 

− wk: Random parameter (also called distur
 
bance or noise depending on the context)
 

− N : Horizon or number of times control is
 
applied 

• Cost function that is additive over time 

N−1 ∑
 
E gN (xN ) +  gk(xk, uk, wk) 

k=0 



{ } ∑ 
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INVENTORY CONTROL EXAMPLE
 

Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk  + 1 = xk + uk - wk 

uk 
Cos t  of P e riod k 

c uk + r (xk  + uk - wk) 

• Discrete-time system 

xk+1 = fk(xk, uk, wk) =  xk + uk − wk 

• Cost function that is additive over time 

N−1 

E gN (xN ) +  gk(xk, uk, wk)
 
k=0
 

N−1 

= E cuk + r(xk + uk − wk) 
k=0 

• Optimization over policies: Rules/functions uk = 
µk(xk) that map states to controls 



ADDITIONAL ASSUMPTIONS
 

• The set of values that the control uk can take 
depend at most on xk and not on prior x or u 

• Probability distribution of wk does not depend 
on past values wk−1, . . . , w0, but may depend on 
xk and uk 

−	 Otherwise past values of w or x would be 
useful for future optimization 

•	 Sequence of events envisioned in period k: 
− xk occurs according to 

(	 ) 
xk	 = fk−1 xk−1, uk−1, wk−1 

− uk is selected with knowledge of xk, i.e., 

uk	 ∈ Uk(xk) 

−	 wk is random and generated according to a 
distribution 

Pwk (xk, uk) 



DETERMINISTIC FINITE-STATE PROBLEMS
 

• Scheduling example: Find optimal sequence of 
operations A, B, C, D 

• A must precede B, and C must precede D 

• Given startup cost SA and SC , and setup tran
sition cost Cmn from operation m to operation n 

A 

S A 

C 

S C 

AB 

CAB 

ACCAC 

CDA 

CAD 

ABC 

CA 

CCD CD 

ACD 

ACB 

CAB 

CAD 

CBC 

CCB 

CCD 

CAB 

CCA 

CDA 

CCD 

CBD 

CDB 

CBD 

CDB 

CAB 

Initial 
State  



STOCHASTIC FINITE-STATE PROBLEMS
 

• Example: Find two-game chess match strategy
 

• Timid play draws with prob. pd > 0 and  loses  
with prob. 1 − pd. Bold play wins with prob. pw < 
1/2 and loses with prob. 1 − pw 

0 - 0 

0.5-0.5 

0 - 1 

pd 

1 - pd 

0 - 0 

1 - 0 

0 - 1 

1 - pw 

pw 

1st Game / Timid Play 1st Game / Bold Play 

1 - 0 

0.5-0.5 

0 - 1 

2 - 0 

1.5-0.5 

1 - 1 

0.5-1.5pd 

pd 

pd 

1 - pd 

1 - pd 

1 - pd 

0 - 2 

pw 

1 - pw 

1 - 0 

0.5-0.5 

0 - 1 

2 - 0 

1.5-0.5 

1 - 1 

0.5-1.5 

0 - 2 

1 - pw 

1 - pw 

pw 

pw 

2nd Game / Timid Play 2nd Game / Bold Play 
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BASIC PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1 

• Control contraints uk ∈ Uk(xk) 

• Probability distribution Pk(· | xk, uk) of  wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and  is  such  
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) =  E gN (xN ) +  gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) =  min  Jπ(x0)
π 

• Optimal policy π∗ satisfies 

Jπ∗ (x0) =  J∗(x0) 

∗When produced by DP, π is independent of x0. 



mk

uk  mk(xk)uk µk(xk)

SIGNIFICANCE OF FEEDBACK 

• Open-loop versus closed-loop policies

 System 
xk + 1 = fk(xk,uk,wk) 

= xk 

wk 

= 

µk 

• In deterministic problems open loop is as good 
as closed loop 

• Chess match example; value of information 

Timid Play 

1 - pd 

pd 

Bold Play 

0 - 0 

1 - 0 

0 - 1 

1 - pw 

pw 

1.5-0.5 

1 - 1 

1 - 1 

0 - 2 

1 - pw 

pw 
Bold Play 



VARIANTS OF DP PROBLEMS
 

• Continuous-time problems 

• Imperfect state information problems
 

• Infinite horizon problems 

• Suboptimal control 



LECTURE BREAKDOWN
 

•	 Finite Horizon Problems (Vol. 1, Ch. 1-6) 
− Ch. 1: The DP algorithm (2 lectures) 
− Ch. 2: Deterministic finite-state problems (2 

lectures) 
− Ch. 3: Deterministic continuous-time prob

lems (1 lecture) 
− Ch. 4: Stochastic DP problems (2 lectures) 
− Ch. 5: Imperfect state information problems 

(2 lectures)
 
− Ch. 6: Suboptimal control (3 lectures)
 

• Infinite Horizon Problems - Simple (Vol. 1, Ch.  
7, 3 lectures) 

•	 Infinite Horizon Problems - Advanced (Vol. 2) 
− Ch. 1: Discounted problems - Computational 

methods (2 lectures) 
− Ch. 2: Stochastic shortest path problems (1 

lecture)
 
− Ch. 6: Approximate DP (6 lectures)
 



A NOTE ON THESE SLIDES
 

• These slides are a teaching aid, not a text 

• Don’t expect a rigorous mathematical develop
ment or precise mathematical statements 

• Figures are meant to convey and enhance ideas, 
not to express them precisely 

• Omitted proofs and a much fuller discussion
 
can be found in the text, which these slides follow
 



6.231 DYNAMIC PROGRAMMING 

LECTURE 2 

LECTURE OUTLINE 

• The basic problem 

• Principle of optimality 

• DP example: Deterministic problem 

• DP example: Stochastic problem 

• The general DP algorithm 

• State augmentation 
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BASIC PROBLEM
 

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1 

• Control constraints uk ∈ Uk(xk) 

• Probability distribution Pk(· | xk, uk) of  wk 

• Policies π = {µ0, . . . , µN−1}, where µk maps 
states xk into controls uk = µk(xk) and  is  such  
that µk(xk) ∈ Uk(xk) for all xk 

• Expected cost of π starting at x0 is 

N−1 

Jπ(x0) =  E gN (xN ) +  gk(xk, µk(xk), wk)
 
k=0
 

• Optimal cost function 

J∗(x0) =  min  Jπ(x0)
π 

• Optimal policy π∗ is one that satisfies 

Jπ∗ (x0) =  J∗(x0) 
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PRINCIPLE OF OPTIMALITY
 

• Let π∗ = {µ∗ 
0, µ

∗ 
1, . . . , µ  ∗ } be optimal policy N−1 

• Consider the “tail subproblem” whereby we are 
at xi at time i and wish to minimize the “cost-to
go” from time i to time N 

N−1 

E gN (xN ) +  gk xk, µk(xk), wk 

k=i 

and the “tail policy” {µi 
∗ , µi 

∗ 
+1, . . . , µ  ∗ }N−1 

xi Tail Subproblem 

0 i N 

• Principle of optimality : The tail policy is opti
 
mal for the tail subproblem (optimization of the
 
future does not depend on what we did in the past)
 

• DP first solves ALL tail subroblems of final 
stage 

• At the generic step, it solves ALL tail subprob
lems of a given time length, using the solution of 
the tail subproblems of shorter time length 



DETERMINISTIC SCHEDULING EXAMPLE
 

• Find optimal sequence of operations A, B, C, 
D (A must precede B and C must precede D) 

ABC 6 

3 

A 

C 

AB 

AC 

Initial 
State  

2 

8 
3 

3 
4 

5 

ACB 

ACD 

CAB 

CAD 

1
9 

4 

3 
5 6 

1 0  
1 

CDA 

CA 

CD 
6 

2 

3 

5 

4 

3 

3 
7 

2 

• Start from the last tail subproblem and go back
wards 

• At each state-time pair, we record the optimal 
cost-to-go and the optimal decision 
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STOCHASTIC INVENTORY EXAMPLE
 

Inventory 
System 

Stock Ordered at 
Period k 

Stock at Period k Stock at Period k + 1 

Demand at Period k 

xk 

wk 

xk  + 1 = xk + uk - wk 

uk 
Cos t  of  P e riod k 

c uk + r (xk  + uk - wk) 

• Tail Subproblems of Length 1: 

JN−1(xN−1) =  min  E cuN−1 
uN−1≥0 wN−1 

+ r(xN−1 + uN−1 − wN−1) 

• Tail Subproblems of Length N − k: 

Jk(xk) =  min  E cuk + r(xk + uk − wk) 
uk ≥0 wk 

+ Jk+1(xk + uk − wk) 

• J0(x0) is opt. cost of initial state x0
 



{ 

DP ALGORITHM 

•	 Start with 

JN (xN ) =  gN (xN ), 

and go backwards using 

Jk(xk) =  min  E gk(xk, uk, wk) 
uk ∈Uk (xk ) wk (	 )} 

+	Jk+1 fk(xk, uk, wk) , k  = 0, 1, . . . , N  − 1. 

• Then J0(x0), generated at the last step, is equal 
to the optimal cost J∗(x0). Also, the policy 

π∗ = {µ0 
∗ , . . . , µ  ∗ }N−1 

where µk
∗ (xk) minimizes in the right side above for 

each xk and k, is  optimal  

• Justification: Proof by induction that Jk(xk) is  
equal to Jk 

∗(xk), defined as the optimal cost of the 
tail subproblem that starts at time k at state xk 

•	 Note: 
− ALL the tail subproblems are solved (in ad

dition to the original problem)
 
− Intensive computational requirements
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PROOF OF THE INDUCTION STEP 

• Let πk = µk, µk+1, . . . , µN−1 denote a tail 
policy from time k onward 

• Assume that Jk+1(xk+1) =  Jk 
∗ 
+1(xk+1). Then 

Jk 
∗ (xk) =  min  E gk xk, µk(xk ), wk 

(µk,πk+1) wk ,...,wN−1 

N−1 

+ gN (xN ) +  gi xi, µi(xi), wi 

i=k+1 {
 ( )
 
= min  E gk xk, µk(xk ), wk
 

µk wk
 [ { }]} 
N−1 

+ min  E gN (xN ) +  gi xi, µi(xi), wi
 
πk+1 wk+1,...,wN−1
 

i=k+1
 { ( ) ( ( ))} ∗ = min  E gk xk, µk (xk), wk + Jk+1 fk xk, µk (xk), wk
 
µk wk
 { ( ) ( ( ))} 

= min  E gk xk, µk (xk), wk + Jk+1 fk xk, µk (xk), wk
 
µk wk
 

= min E gk(xk , uk, wk ) + Jk+1 fk(xk , uk, wk )
 
uk ∈Uk (xk ) wk
 

= Jk(xk)
 



LINEAR-QUADRATIC ANALYTICAL EXAMPLE
 

Initial 
Temperature x0 

Temperature 
u0 

Oven 1 x1 

Final 
Oven 2 Temperature x2 

Temperature 
u1 

• System 

xk+1 = (1  − a)xk + auk, k = 0, 1, 

where a is given scalar from the interval (0, 1)
 

•	 Cost 
r(x2 − T )2 + u0

2 + u1
2 

where r is given positive scalar 

• DP Algorithm: 

J2(x2) =  r(x2 − T )2 

[	 ] 
J1(x1) = min  u1

2 + r 
( 
(1 − a)x1 + au1 − T 

)2 

u1 [ (	 )] 
J0(x0) = min  u2

0 + J1 (1 − a)x0 + au0 
u0 



{ 
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STATE AUGMENTATION
 

• When assumptions of the basic problem are
 
violated (e.g., disturbances are correlated, cost is
 
nonadditive, etc) reformulate/augment the state
 

• Example: Time lags 

xk+1 = fk(xk, xk−1, uk, wk) 

• Introduce additional state variable yk = xk−1. 
New system takes the form 

( ) ( )
 
xk+1 = 

fk(xk, yk, uk, wk) 
yk+1 xk 

View x̃k = (xk, yk) as the new state. 

• DP algorithm for the reformulated problem: 

Jk(xk, xk−1) =  min  E gk(xk, uk, wk) 
uk ∈Uk (xk ) wk 

+ Jk+1 fk(xk, xk−1, uk, wk), xk 



6.231 DYNAMIC PROGRAMMING 

LECTURE 3 

LECTURE OUTLINE 

• Deterministic finite-state DP problems 

• Backward shortest path algorithm 

• Forward shortest path algorithm 

• Shortest path examples 

• Alternative shortest path algorithms 



DETERMINISTIC FINITE-STATE PROBLEM
 

Terminal Arcs 

. . . 

. . . 

. . . 

Initial State 
s 

t 
Artificial Terminal 
Node  

with Cost Equal 
to Terminal Cost 

Stage 0 Stage 1 Stage 2 . . . Stage N - 1 Stage N 

• States <==> Nodes 

• Controls <==> Arcs 

• Control sequences (open-loop) <==> paths 
from initial state to terminal states 

• ak : Cost of transition from state i ∈ Sk to state ij 
j ∈ Sk+1 at time k (view it as “length” of the arc) 

• aN : Terminal cost of state i ∈ SNit 

• Cost of control sequence <==> Cost of the cor
 
responding path (view it as “length” of the path)
 



[ ] 
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BACKWARD AND FORWARD DP ALGORITHMS
 

• DP algorithm: 

JN (i) =  aN , i ∈ SN ,it 

J ) =  min  ak +J k, k = 0, . . . , N−1k(i ij k+1(j) , i ∈ S
j∈Sk+1 

The optimal cost is J0(s) and is equal to the 
length of the shortest path from s to t 

• Observation: An optimal path s → t is also an 
optimal path t → s in a “reverse” shortest path 
problem where the direction of each arc is reversed 
and its length is left unchanged 

• Forward DP algorithm (= backward DP algo
rithm for the reverse problem): 

J̃N (j) =  asj 
0 , j ∈ S1, 

˜ 
[ 

N−k ˜ ]
 
Jk(j) =  min  aij + Jk+1(i) , j ∈ SN−k+1 

i∈SN−k 

˜ N ˜The optimal cost is J0(t) =  mini∈SN ait + J1(i) 

• View J̃k(j) as  optimal cost-to-arrive to state j 
from initial state s 



A NOTE ON FORWARD DP ALGORITHMS
 

• There is no forward DP algorithm for stochastic 
problems 

• Mathematically, for stochastic problems, we 
cannot restrict ourselves to open-loop sequences, 
so the shortest path viewpoint fails 

• Conceptually, in the presence of uncertainty, 
the concept of “optimal-cost-to-arrive” at a state 
xk does not make sense. For example, it may be 
impossible to guarantee (with prob. 1) that any 
given state can be reached 

• By contrast, even in stochastic problems, the 
concept of “optimal cost-to-go” from any state xk 

makes clear sense 
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GENERIC SHORTEST PATH PROBLEMS 

• {1, 2, . . . , N, t}: nodes  of  a  graph  (t: the  desti
 
nation)
 

• aij : cost  of  moving  from  node  i to node j 

• Find a shortest (minimum cost) path from each
 
node i to node t
 

• Assumption: All cycles have nonnegative length.
 
Then an optimal path need not take more than N
 
moves
 

• We formulate the problem as one where we re
 
quire exactly N moves but allow degenerate moves
 
from a node i to itself with cost aii = 0  
  

Jk(i) = optimal cost of getting from i to t in N−k moves 

J0(i): Cost of the optimal path from i to t. 

• DP algorithm: 

Jk(i) =  min  aij +Jk+1(j) , k = 0, 1, . . . , N−2, 
j=1,...,N 

with JN−1(i) =  ait, i = 1, 2, . . . , N 
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EXAMPLE
 

State i
 

Destination 
 

2 
7 5 

2
5 5 

6 1 

3 

0 .5  
32 

1 4 

5 
5 

4 

3 

2 

1 

3 3 3 3 

4 4 4 5 

4.5 4.5 5.5 7 

2 2 2 2 

0 1 2 3 4 Stage k 

(a) (b) 

JN−1(i) = ait, i = 1, 2, . . . , N,  

Jk(i) =  min  aij +Jk+1(j) , k = 0, 1, . . . , N−2. 
j=1,...,N 



ESTIMATION / HIDDEN MARKOV MODELS
 

• Markov chain with transition probabilities pij 

• State transitions are hidden from view 

• For each transition, we get an (independent) 
observation 

• r(z; i, j): Prob. the observation takes value z 
when the state transition is from i to j 

• Trajectory estimation problem: Given the ob
servation sequence ZN = {z1, z2, . . . , zN }, what is  
the “most likely” state transition sequence X̂N = 
{x̂0, x̂1, . . . , x̂N } [one that maximizes p(XN | ZN ) 
over all XN = {x0, x1, . . . , xN }]. 

s x0 x1 x2 xN - 1 xN t 

. . . 

. . . 

. . . 



∏ 

VITERBI ALGORITHM 

•	 We have 

p(XN | ZN ) =  
p(XN , ZN ) 

p(ZN ) 

where p(XN , ZN ) and  p(ZN ) are the unconditional 
probabilities of occurrence of (XN , ZN ) and  ZN 

• Maximizing p(XN | ZN ) is equivalent with max
imizing ln(p(XN , ZN )) 

• We have 

N 

p(XN , ZN ) =  πx0 pxk−1xk r(zk; xk−1, xk) 
k=1 

so the problem is equivalent to 

N ∑ (	 ) 
minimize − ln(πx0 ) − ln pxk−1xk r(zk; xk−1, xk) 

k=1 

over all possible sequences {x0, x1, . . . , xN }. 

• This is a shortest path problem. 



GENERAL SHORTEST PATH ALGORITHMS
 

• There are many nonDP shortest path algo
rithms. They can all be used to solve deterministic 
finite-state problems 

• They may be preferable than DP if they avoid
 
calculating the optimal cost-to-go of EVERY state
 

• This is essential for problems with HUGE state 
spaces. Such problems arise for example in com
binatorial optimization 

ABC ABD ACB ACD ADB ADC 

ABCD 

AB AC AD 

ABDC ACBD ACDB ADBC ADCB 

Origin Node sA 

1 

11 

20 20 

2020 

44 

4 4 

15 
15 5 

5 

3 3 

5 

33 

15 

Artificial Terminal Node t 

5 1 15 

5 20 4 

1  20  3 

15 4 3 



LABEL CORRECTING METHODS 

•	 Given: Origin s, destination t, lengths  aij ≥ 0. 

• Idea is to progressively discover shorter paths 
from the origin s to every other node i 

•	 Notation: 
−	 di (label of i): Length of the shortest path
 

found (initially ds = 0,  di 
= ∞ for i =� s)
 
− UPPER: The label dt of the destination
 

− OPEN list: Contains nodes that are cur
 
rently active in the sense that they are candi
 
dates for further examination (initially OPEN={s}) 

Label Correcting Algorithm 

Step 1 (Node Removal): Remove a node i from 
OPEN and for each child j of i, do step 2 

Step 2 (Node Insertion Test): If di + aij < 
min{dj , UPPER}, set  dj = di + aij and set i to 
be the parent of j. In addition, if j =� t, place  j in 
OPEN if it is not already in OPEN, while if j = t, 
set UPPER to the new value di + ait of dt 

Step 3 (Termination Test): If OPEN is empty, 
terminate; else go to step 1 



VISUALIZATION/EXPLANATION
 

• Given: Origin s, destination t, lengths  aij ≥ 0 

• di (label of i): Length of the shortest path found 
thus far (initially ds = 0,  di = ∞ for i =� s). The 
label di is implicitly associated with an s → i path 

• UPPER: The label dt of the destination 

• OPEN list: Contains “active” nodes (initially 
OPEN={s}) 

i j 

REMOVE 

Is di + aij < dj ? 
(Is the path s --> i --> j 
better than the 
current path s --> j ?) 

Is di + aij < UPPER ? 

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?) 

YES 

YES 

INSERT 

O P E N  

Set dj = di + aij 



EXAMPLE
 

3 

4 

2 

ADB ADC 

ADBC ADCB 

2020 

AB AC 7 AD 

Origin Node sA1 

15 15 

1 0  

20 4 20 3 4 3 

5 8 

96 

15 15 
15 5 

ABC ABD ACB ACD 

ABCD ABDC ACBD ACDB 

1 

4 43 3 

Artificial Terminal Node t 

Iter. No. Node Exiting OPEN 

0 
 

1 1
 

2 2
 

3 3
 

4 4
 

5 5
 

6 6
 

7 7
 

8 8
 

9 9
 

10 10
 

OPEN after Iteration UPPER 

1 ∞ 
2, 7,10 ∞ 

3, 5, 7, 10 ∞ 
4, 5, 7, 10 ∞ 
5, 7, 10 43 

6, 7, 10 43 

7, 10 13 

8, 10 13 

9, 10 13 

10 13 

Empty 13 

• Note that some nodes never entered OPEN
 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 4
 

LECTURE OUTLINE
 

• Label correcting methods for shortest paths 
• Variants of label correcting methods 
• Branch-and-bound as a shortest path algorithm
 



LABEL CORRECTING METHODS
 

• Origin s, destination t, lengths  aij that are ≥ 0 

• di (label of i): Length of the shortest path 
found thus far (initially di = ∞ except ds = 0).  
The label di is implicitly associated with an s → i 
path 

• UPPER: Label dt of the destination 

• OPEN list: Contains “active” nodes (initially 
OPEN={s}) 

i j 

REMOVE 

Is di + aij < dj ? 
(Is the path s --> i --> j 
better than the 
current path s --> j ?) 

Is di + aij < UPPER ? 

(Does the path s --> i --> j 
have a chance to be part 
of a shorter s --> t path ?) 

YES 

YES 

INSERT 

O P E N  

Set dj = di + aij 



VALIDITY OF LABEL CORRECTING METHODS
 

Proposition: If there exists at least one path 
from the origin to the destination, the label cor
recting algorithm terminates with UPPER equal 
to the shortest distance from the origin to the des
tination 

Proof: (1) Each time a node j enters OPEN, its 
label is decreased and becomes equal to the length 
of some path from s to j 

(2) The number of possible distinct path lengths 
is finite, so the number of times a node can enter 
OPEN is finite, and the algorithm terminates 

(3) Let (s, j1, j2, . . . , jk, t) be a shortest path and 
∗ ∗let d be the shortest distance. If UPPER > d  

at termination, UPPER will also be larger than 
the length of all the paths (s, j1, . . . , jm), m = 
1, . . . , k, throughout the algorithm. Hence, node 
jk will never enter the OPEN list with djk equal 
to the shortest distance from s to jk. Similarly 
node jk−1 will never enter the OPEN list with 
djk−1 equal to the shortest distance from s to jk−1. 
Continue to j1 to get a contradiction 



MAKING THE METHOD EFFICIENT
 

• Reduce the value of UPPER as quickly as pos
sible 

−	 Try to discover “good” s → t paths early in 
the course of the algorithm 

•	 Keep the number of reentries into OPEN low 

− Try to remove from OPEN nodes with small 
label first. 

− Heuristic rationale: if di is small, then dj 

when set to di +aij will be accordingly small, 
so reentrance of j in the OPEN list is less 
likely 

• Reduce the overhead for selecting the node to 
be removed from OPEN 

• These objectives are often in conflict. They give
 
rise to a large variety of distinct implementations
 

• Good practical strategies try to strike a compro
mise between low overhead and small label node 
selection 



NODE SELECTION METHODS
 

• Depth-first search: Remove from the top of 
OPEN and insert at the top of OPEN. 

− Has low memory storage properties (OPEN
 
is not too long). Reduces UPPER quickly.
 

Origin Node s 

1
 

2 1 0  
  

3
 6 1 1  1 2  
  

4 5 7 8 9 1 3  1 4  
  

Destination Node t 

• Best-first search (Djikstra): Remove from 
OPEN a node with minimum value of label. 

− Interesting property: Each node will be in
serted in OPEN at most once. 

− Nodes enter OPEN at minimum distance
 

− Many implementations/approximations
 



ADVANCED INITIALIZATION
 

• Instead of starting from di = ∞ for all i �= s, 
start with 

di	 = length of some path from s to i (or di = ∞) 

OPEN = {i �=	t | di < ∞} 

• Motivation: Get a small starting value of UP
PER. 

• No node with shortest distance ≥ initial value 
of UPPER will enter OPEN 

•	 Good practical idea: 
− Run a heuristic (or use common sense) to 

get a “good” starting path P from s to t 

− Use as UPPER the length of P , and  as  di 

the path distances of all nodes i along P 

• Very useful also in reoptimization, where we
 
solve the same problem with slightly different data
 



VARIANTS OF LABEL CORRECTING METHODS
 

• If a lower bound hj of  the true shortest dis
tance from j to t is known, use the test 

di + aij + hj < UPPER 

for entry into OPEN, instead of 

di + aij < UPPER 

The label correcting method with lower bounds as 
above is often referred to as the A∗ method. 

• If an upper bound mj of  the true shortest  
distance from j to t is known, then if dj + mj < 
UPPER, reduce UPPER to dj + mj . 

• Important use: Branch-and-bound algorithm 
for discrete optimization can be viewed as an im
plementation of this last variant. 



BRANCH-AND-BOUND METHOD
 

• Problem: Minimize f(x) over a  finite set of 
feasible solutions X. 

• Idea of branch-and-bound: Partition the fea
sible set into smaller subsets, and then calculate 
certain bounds on the attainable cost within some 
of the subsets to eliminate from further consider
ation other subsets. 

Bounding Principle 

Given two subsets Y1 ⊂ X and Y2 ⊂ X, suppose 
that we have bounds 

f ≤ min f(x), f2 ≥ min f(x). 
1 x∈Y1 x∈Y2 

Then, if f2 ≤ f , the solutions in Y1 may be dis
1 

regarded since their cost cannot be smaller than 
the cost of the best solution in Y2. 

• The B+B algorithm can be viewed as a la
bel correcting algorithm, where lower bounds de
fine the arc costs, and upper bounds are used to 
strengthen the test for admission to OPEN. 



SHORTEST PATH IMPLEMENTATION
 

• Acyclic graph/partition of X into subsets (typ
 
ically a tree). The leafs consist of single solutions.
 

• Upper/Lower bounds f and fY for the mini-
Y 

mum cost over each subset Y can be calculated.
 

• The lower bound of a leaf {x} is f(x) 

• Each arc (Y,Z) has  length  f − f 
Z Y 

• Shortest distance from X to Y = f − f 
Y X 

• Distance from origin X to a leaf {x} is f(x)−f 
X 

• Shortest path from X to the set of leafs gives 
the optimal cost and optimal solution 

• UPPER is the smallest f(x) − f out of leaf
 
X 

nodes {x} examined so far 

{1,2,3,4,5} 

{1,2,} 

{4,5}{1,2,3} 

{1} {2} 

{3} {4} {5} 



BRANCH-AND-BOUND ALGORITHM
 

Step 1: Remove a node Y from OPEN. For each 
child Yj of Y , do the following: 

− Entry Test: If f 
Y j  

< UPPER, place Yj in 
OPEN. 

−	 Update UPPER: If fY j  < UPPER, set UP
PER = fY j , and  if  Yj consists of a single 
solution, mark that as being the best solu
tion found so far 

Step 2: (Termination Test) If OPEN: empty, 
terminate; the best solution found so far is opti
mal. Else go to Step 1 

• It is neither practical nor necessary to generate
 
a priori the acyclic graph (generate it as you go)
 

•	 Keys to branch-and-bound: 
− Generate as sharp as possible upper and lower 

bounds at each node 

−	 Have a good partitioning and node selection 
strategy 

• Method involves a lot of art, may be prohibitively 
time-consuming ... but guaranteed to find an op
timal solution 
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LECTURE 5
 

LECTURE OUTLINE
 

• Deterministic continuous-time optimal control
 

• Examples 

• Connection with the calculus of variations 

• The Hamilton-Jacobi-Bellman equation as a 
continuous-time limit of the DP algorithm 

• The Hamilton-Jacobi-Bellman equation as a 
sufficient condition 

• Examples 
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PROBLEM FORMULATION
 

• Continuous-time dynamic system: 

ẋ(t) =  f x(t), u(t) , 0 ≤ t ≤ T,  x(0) : given,
 

where 

− x(t) ∈ �n: state vector at time t 

− u(t) ∈ U ⊂ �m: control vector at time t 

− U : control constraint set 
− T : terminal  time  

• Admissible control trajectories u(t) | t ∈ [0, T ] :
 
piecewise continuous functions u(t) | t ∈ [0, T ]
 

with u(t) ∈ U for all t ∈ [0, T ]; uniquely determine
 
x(t) | t ∈ [0, T ] 

• Problem: Find an admissible control trajectory
 
u(t) | t ∈ [0, T ] and corresponding state trajec
 

tory x(t) | t ∈ [0, T ] , that minimizes the cost 

∫ T 

h x(T ) + g x(t), u(t) dt
 
0 

• f, h, g are assumed continuously differentiable
 



EXAMPLE I
 

• Motion control: A unit mass moves on a line 
under the influence of a force u (	 ) • x(t) =  x1(t), x2(t) : position and velocity of 
the mass at time t (	 ) • Problem: From a given x1(0), x2(0) , bring  the  
mass “near” a given final position-velocity pair 
(x1, x2) at time  T in the sense: 

minimize ∣∣ x1(T ) − x1
∣∣	2 + ∣∣ x2(T ) − x2

∣∣2 

subject to the control constraint 

|u(t)| ≤ 1, for all t ∈ [0, T ]


•	 The problem fits the framework with 

ẋ 1(t) =  x2(t), ẋ 2(t) =  u(t), 

h 
( 
x(T ) 

) 
= ∣∣ x1(T ) − x1

∣∣	2 + ∣∣ x2(T ) − x2
∣∣2 

, (	 ) 
g x(t), u(t) = 0, for all t ∈ [0, T ]
 



( ) 

EXAMPLE II
 

• A producer with production rate x(t) at  time  t 
may allocate a portion u(t) of his/her production 
rate to reinvestment and 1 − u(t) to production of 
a storable good. Thus x(t) evolves according to 

ẋ(t) =  γu(t)x(t),
 

where γ >  0 is a given constant 

• The producer wants to maximize the total amount 
of product stored 

∫ T 

1 − u(t) x(t)dt 
0 

subject to 

0 ≤ u(t) ≤ 1, for all t ∈ [0, T ]
 

• The initial production rate x(0) is a given pos
itive number 



Ú
0

1 + (u(t))2 d t

√ 

EXAMPLE III (CALCULUS OF VARIATIONS)
 

 T

Le ngth = 

a x(t) 

T t0 

x(t) = u(t) 
. 

Given 
Point Given 

Line 

∫ T 

0 

√ 
1 +  

( 
u(t) 

)2 
dt 

• Find a curve from a given point to a given line 
that has minimum length 

• The problem is 

∫ T √
 
minimize 1 +  

( 
ẋ(t) 

)2 
dt 

0 

subject to x(0) = α 

• Reformulation as an optimal control problem:
 

∫ T 

minimize 1 +  
( 
u(t) 

)2 
dt 

0 

subject to ẋ(t) =  u(t), x(0) = α
 



∑ 
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HAMILTON-JACOBI-BELLMAN EQUATION I
 

• We discretize [0, T ] at times  0, δ, 2δ, . . . , Nδ, 
where δ = T/N , and  we  let  

xk = x(kδ), uk = u(kδ), k = 0, 1, . . . , N  

• We also discretize the system and cost: 

N−1 

xk+1 = xk +f(xk, uk)·δ, h(xN )+ g(xk, uk)·δ 
k=0 

• We write the DP algorithm for the discretized
 
problem
 

J̃∗(Nδ, x) =  h(x),
 

J̃∗(kδ, x) = min  g(x, u)·δ+J̃∗ (k+1)·δ, x+f(x, u)·δ . 
u∈U 

• Assume J̃∗ is differentiable and Taylor-expand:
 

J̃∗ (kδ, x) = min  
[ 
g(x, u) · δ + J̃∗ (kδ, x) + ∇tJ̃

∗ (kδ, x) · δ 
u∈U 

+ ∇xJ̃∗ (kδ, x)′f(x, u) · δ + o(δ) 
] 

• Cancel J̃∗(kδ, x), divide by δ, and take limit 



HAMILTON-JACOBI-BELLMAN EQUATION II
 

• Let J∗(t, x) be the optimal cost-to-go of the 
continuous problem. Assuming the limit is valid 

lim J̃∗(kδ, x) =  J∗(t, x), for all t, x, 
k→∞, δ→0, kδ=t 

we obtain for all t, x, [	 ] 
0 = min  g(x, u)+  ∇tJ∗(t, x)+  ∇xJ∗(t, x)′f(x, u) 

u∈U 

with the boundary condition J∗(T, x) =  h(x) 

• This is the Hamilton-Jacobi-Bellman (HJB) 
equation – a  partial differential equation, which is 
satisfied for all time-state pairs (t, x) by the cost-
to-go function J∗(t, x) (assuming J∗ is differen
tiable and the preceding informal limiting proce
dure is valid) 

•	 Hard to tell a priori if J∗(t, x) is differentiable 

• So we use the HJB Eq. as a verification tool; if 
we can solve it for a differentiable J∗(t, x), then: 

− J∗ is the optimal-cost-to-go function 

−	 The control µ ∗(t, x) that minimizes in the 
RHS for each (t, x) defines an optimal con
trol 
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VERIFICATION/SUFFICIENCY THEOREM
 

• Suppose V (t, x) is a solution to the HJB equa
tion; that is, V is continuously differentiable in t 
and x, and is such that for all t, x, 

0 = min  g(x, u) +  ∇tV (t, x) +  ∇xV (t, x)′f(x, u) , 
u∈U 

V (T, x) =  h(x), for all x
 

• Suppose also that µ ∗(t, x) attains the  minimum  
above for all t and x 

• Let x ∗(t) | t ∈ [0, T  ] and u ∗(t) =  µ ∗ t, x∗(t) , 
t ∈ [0, T  ], be the corresponding state and control 
trajectories 

• Then 

V (t, x) =  J∗(t, x), for all t, x, 

and u ∗(t) | t ∈ [0, T  ] is optimal 



( ) 

( ) ( ) ( ) 
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PROOF
 

Let {(û(t), x̂(t)) | t ∈ [0, T ]} be any admissible
 
control-state trajectory. We have for all t ∈ [0, T ]
 ( ) ( ) ( )′ ( ) 
0 ≤ g x̂(t), û(t) +∇tV t, x̂(t) +∇xV t, x̂(t) f x̂(t), û(t) . 

Using the system equation ẋ̂(t) =  f x̂(t), û(t) , 
the RHS of the above is equal to ( ) d ( )
 

g x̂(t), û(t) + V (t, x̂(t))
dt
 

Integrating this expression over t ∈ [0, T ], 

∫ T 

0 ≤ g x̂(t), û(t) dt+ V T, x̂(T ) − V 0, x̂(0) .
 
0 

Using V (T, x) =  h(x) and  ̂x(0) = x(0), we have ∫ T 

V 0, x(0) ≤ h x̂(T ) + g x̂(t), û(t) dt.
 
0 

If we use u ∗(t) and  x ∗(t) in place  of  ̂u(t) and  ̂x(t), 
the inequalities becomes equalities, and ∫ T 

V 0, x(0) = h x∗(T ) + g x ∗(t), u  ∗(t) dt 
0 
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EXAMPLE OF THE HJB EQUATION
 

Consider the scalar system ẋ(t) =  u(t), with |u(t)| ≤
1 and cost (1/2) 

( 
x(T ) 

)2 
. The HJB equation is 

0 =  min  ∇tV (t, x)+∇xV (t, x)u , for all t, x, 
|u|≤1 

with the terminal condition V (T, x) = (1/2)x2 

• Evident candidate for optimality: µ ∗(t, x) =  
−sgn(x). Corresponding cost-to-go 

1 ( { })2 
J∗(t, x) =  max 0, |x| − (T − t) .

2 

• We verify that J∗ solves the HJB Eq., and that 
u = −sgn(x) attains the min in the RHS. Indeed, 

∇tJ∗(t, x) = max  0, |x| − (T − t) , 

∇xJ∗(t, x) =  sgn(x) · max 0, |x| − (T − t) . 

Substituting, the HJB Eq. becomes 

0 =  min  1 + sgn(x) · u max 0, |x| − (T − t)

|u|≤1 



( ) 
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LINEAR QUADRATIC PROBLEM
 

Consider the n-dimensional linear system 

ẋ(t) =  Ax(t) +  Bu(t), 

and the quadratic cost 

∫ T 

x(T )′QT x(T ) +  x(t)′Qx(t) +  u(t)′Ru(t) dt 
0 

The HJB equation is 

0 =  min  x ′Qx+u ′Ru+∇tV (t, x)+∇xV (t, x)′(Ax+Bu) , 
u∈�m 

with the terminal condition V (T, x) =  x′QT x. We 
try a solution of the form 

V (t, x) =  x′K(t)x, K(t) :  n × n symmetric, 

and show that V (t, x) solves the HJB equation if 

K̇(t) =  −K(t)A−A′K(t)+K(t)BR−1B′K(t)−Q 

with the terminal condition K(T ) =  QT 
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LECTURE 6
 

LECTURE OUTLINE
 

• Examples of stochastic DP problems 

• Linear-quadratic problems 

• Inventory control 



∑
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LINEAR-QUADRATIC PROBLEMS 

•	 System: xk+1 = Akxk + Bkuk + wk 

•	 Quadratic cost {	 } 
N−1 

E x′
N




QN xN +
 (x′
k




Qkxk + u
′k




Rkuk)
 

wk
 
k=0,1,...,N−1	 k=0 

where Qk ≥ 0 and  Rk > 0 (in the positive (semi)definite 
sense). 

•	 wk are independent and zero mean 

•	 DP algorithm: 
JN (xN ) =  x′

 QN xN ,
N
{
 

Jk(xk) =  min  E
 
 x′
k



Qkxk + u
′k




Rkuk
 

uk 

+	Jk+1(Akxk + Bkuk + wk) 

•	 Key facts: 
− Jk(xk) is quadratic 

− Optimal policy {µ
0
∗ , . . . , µN

∗
−1
} is linear:
 

µ∗
k




(xk) =  Lkxk
 

− Similar treatment of a number of variants
 



( 
) 

DERIVATION
 

• By induction verify that 

µ ∗ 
k(xk) =  Lkxk, Jk(xk) =  x′ 

kKkxk +constant, 

where Lk are matrices given by 

Lk = −(Bk 
′ Kk+1Bk + Rk)−1Bk 

′ Kk+1Ak, 

and where Kk are symmetric positive semidefinite 
matrices given by 

KN = QN , 

Kk = A′ 
k Kk+1 − Kk+1Bk(Bk 

′ Kk+1Bk 

+ Rk)−1Bk 
′ Kk+1 Ak + Qk. 

• This is called the discrete-time Riccati equation.
 

• Just like DP, it starts at the terminal time N 
and proceeds backwards. 

• Certainty equivalence holds (optimal policy is 
the same as when  wk is replaced by its expected 
value E{wk} = 0).  



ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION
  

• Assume time-independent system and cost per 
stage, and some technical assumptions: controla
bility of (A,B) and observability of (A,C) where  
Q = C ′C 

• The Riccati equation converges limk→−∞ Kk = 
K, where  K is pos. definite, and is the unique 
(within the class of pos. semidefinite matrices) so
lution of the algebraic Riccati equation 

( )
 
K = A′ K − KB(B′KB + R)−1B′K A + Q 

• The corresponding steady-state controller µ ∗(x) =  
Lx, where  

L = −(B′KB + R)−1B′KA, 

is stable in the sense that the matrix (A + BL) of  
the closed-loop system 

xk+1 = (A + BL)xk + wk 

satisfies limk→∞(A + BL)k = 0.  



( ) 

GRAPHICAL PROOF FOR SCALAR SYSTEMS
 

A 
2 
R 

B 
2 + Q  

P 0 

Q 

F(P ) 

4 50 

PP k P k + 1 
P * 

-
R 

B 
2 

• Riccati equation (with Pk = KN−k):
 

B2P 2 

Pk+1 = A2 Pk − k + Q,
B2Pk + R 

or Pk+1 = F (Pk), where 

A2RP 
F (P ) =  + Q.

B2P + R 

• Note the two steady-state solutions, satisfying 
P = F (P ), of which only one is positive. 



RANDOM SYSTEM MATRICES
 

• Suppose that {A0, B0}, . . . , {AN−1, BN−1} are 
not known but rather are independent random 
matrices that are also independent of the wk 

•	 DP algorithm is 

JN (xN ) =  xN 
′ QN xN , 

Jk(xk) = min  E 
{ 
xk 
′ Qkxk 

uk wk,Ak,Bk 

′	 } 
+ ukRkuk + Jk+1(Akxk + Bkuk + wk) 

•	 Optimal policy µk
∗ (xk) =  Lkxk, where 

Lk = − 
( 
Rk +	E{B′ Kk+1Bk} 

)−1 
E{B′ Kk+1Ak},k k 

and where the matrices Kk are given by 

KN = QN , 

Kk = E{A′ 
kKk+1Ak} − E{A′ 

kKk+1Bk} (	 )−1 
Rk + E{Bk 

′ Kk+1Bk} E{Bk 
′ Kk+1Ak} + Qk 



PROPERTIES
 

•	 Certainty equivalence may not hold 

• Riccati equation may not converge to a steady-
state 

R 
- P 
E{B

2
} 

Q 

4 50 

0 

F (P ) 

•	 We have Pk+1 = F̃ (Pk), where 

F̃ (P ) =  
E{A2}RP 

+ Q + 
TP  2 

,
E{B2}P + R	 E{B2}P + R 

( )2( )2 
T = E{A2}E{B2} −  E{A} E{B} 



INVENTORY CONTROL
 

• xk: stock, uk: inventory purchased, wk: de
mand 

xk+1 = xk + uk − wk, k = 0, 1, . . . , N  − 1 

• Minimize {	 }
 
N−1 ∑(	 )


E cuk + r(xk + uk − wk) 
k=0 

where, for some p > 0 and  h > 0, 

r(x) =  pmax(0,−x) +  hmax(0, x) 

•	 DP algorithm: 

JN (xN ) = 0, 
[	 { }] 

Jk(xk) =  min  cuk+H(xk+uk )+E Jk+1(xk+uk−wk ) , 
uk≥0 

where H(x + u) =  	E{r(x + u − w)}. 



{ 

OPTIMAL POLICY
 

•	 DP algorithm can be written as 

JN (xN ) = 0, 

Jk(xk) =  min Gk(xk + uk) − cxk, 
uk≥0 

where 

{	 } 
Gk(y) =  cy + H(y) +  E Jk+1(y − w) . 

• If Gk is convex and lim|x|→∞ Gk(x) → ∞, we  
have 

µ∗ 
k(xk) = 	

Sk − xk if xk < Sk, 
0  if  xk ≥ Sk, 

where Sk minimizes Gk(y). 

• This is shown, assuming that c < p, by showing 
that Jk is convex for all k, and  

lim Jk(x) → ∞  
|x|→∞ 



JUSTIFICATION
 

• Graphical inductive proof that Jk is convex.
 

y 

H(y) 

cy + H(y) 

S N - 1 

c SN - 1 

- cy 

JN - 1(xN - 1) 

S N - 1 xN - 1 - cy 
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LECTURE 7
 

LECTURE OUTLINE
 

• Stopping problems 

• Scheduling problems 

• Other applications 



PURE STOPPING PROBLEMS
 

•	 Two possible controls: 
− Stop (incur a one-time stopping cost, and 

move to cost-free and absorbing stop state) 
−	 Continue [using xk+1 = fk(xk, wk) and  in

curring the cost-per-stage] 

• Each policy consists of a partition of the set of 
states xk into two regions: 

− Stop region, where we stop
 

− Continue region, where we continue
 

STOP 
REGION 

CONTINUE 
REGION 

Stop State 



{ 

EXAMPLE: ASSET SELLING
 

• A person has an asset, and at k = 0, 1, . . . , N−1 
receives a random offer wk 

• May accept wk and invest the money at fixed 
rate of interest r, or reject wk and wait for wk+1. 
Must accept the last offer wN−1 

• DP algorithm (xk: current offer, T : stop state): 

= T ,
JN (xN ) =  	  

xN if xN � 
0  if  xN = T , 

{ [	 { }] 
Jk(xk) = 	 max (1 + r)N−kxk, E  Jk+1(wk) if xk �= T , 

0  if  xk = T . 

• Optimal policy; 

accept the offer xk if xk > αk, 

reject the offer xk if xk < αk, 

where { } 
E Jk+1(wk)

αk =	 .
(1 + r)N−k 



[ ] { } 

{ } 

FURTHER ANALYSIS
 

0 1 2 N - 1 N k 

ACCEPT 

REJECT 

a 1 

a N - 1 

a 2 

• Can show that αk ≥ αk+1 for all k 

• Proof: Let Vk(xk) =  Jk(xk)/(1 + r)N−k for 
xk �= T.  Then the DP algorithm is VN (xN ) =  xN 

and 

Vk(xk) = max  xk, (1 + r)−1 E Vk+1(w) . 
w 

We have αk = Ew Vk+1(w) /(1 + r), so it is enough 
to show that Vk(x) ≥ Vk+1(x) for all x and k. 
Start with VN−1(x) ≥ VN (x) and use the mono
tonicity property of DP. 

• We can also show that αk → a as k → −∞. 
Suggests that for an infinite horizon the optimal 
policy is stationary. 
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GENERAL STOPPING PROBLEMS 

• At time k, we may stop at cost t(xk) or  choose  
a control uk ∈ U(xk) and continue 

JN (xN ) =  t(xN ), 

Jk(xk) = min  t(xk), min E g(xk, uk, wk)
 
uk∈U(xk )
 

+ Jk+1 f(xk, uk, wk) 

• Optimal to stop at time k for states x in the 
set 

Tk = x ∣ t(x) ≤ min E g(x, u, w) +  Jk+1 f(x, u, w) 
u∈U(x) 

• Since JN−1(x) ≤ JN (x), we have Jk(x) ≤ 
Jk+1(x) for all k, so  

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1. 

• Interesting case is when all the Tk are equal (to 
TN−1, the set where it is better to stop than to go 
one step and stop). Can be shown to be true if 

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.  



SCHEDULING PROBLEMS
 

• Set of tasks to perform, the ordering is subject 
to optimal choice. 

•	 Costs depend on the order 

• There may be stochastic uncertainty, and prece
dence and resource availability constraints 

• Some of the hardest combinatorial problems 
are of this type (e.g., traveling salesman, vehicle 
routing, etc.) 

• Some special problems admit a simple quasi-
analytical solution method 

−	 Optimal policy has an “index form”, i.e., 
each task has an easily calculable “index”, 
and it is optimal to select the task that has 
the maximum value of index (multi-armed 
bandit problems - to be discussed later) 

−	 Some problems can be solved by an “inter
change argument”(start with some schedule, 
interchange two adjacent tasks, and see what 
happens) 



{ } 
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EXAMPLE: THE QUIZ PROBLEM
 

• Given a list of N questions. If question i is an
swered correctly (given probability pi), we receive 
reward Ri; if not the quiz terminates. Choose or
der of questions to maximize expected reward. 

• Let i and j be the kth and (k + 1)st questions 
in an optimally ordered list 

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1) 

E {reward of L} = E reward of {i0, . . . , ik−1} 

+ pi0 · · · pik−1(piRi + pipj Rj ) 

+ pi0 · · · pik−1pipj E reward of {ik+2, . . . , iN−1} 

Consider the list with i and j interchanged 

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1) 

Since L is optimal, E{reward of L} ≥ E{reward of L′}, 
so it follows that piRi + pipj Rj ≥ pj Rj + pj piRi 

or 
piRi/(1 − pi) ≥ pj Rj /(1 − pj ). 



[ 

MINIMAX CONTROL 

• Consider basic problem with the difference that 
the disturbance wk instead of being random, it is 
just  known to  belong to a  given set  Wk(xk, uk). 

•	 Find policy π that minimizes the cost 

[
 
Jπ(x0) =  max  gN (xN ) 

wk∈Wk (xk,µk(xk))
 
k=0,1,...,N−1
 

N−1	 ] ∑ (	 ) 
+	 gk xk, µk(xk), wk 

k=0 

•	 The DP algorithm takes the form 

JN (xN ) =  gN (xN ), 

Jk(xk) =  min  max gk(xk, uk, wk)
 
uk∈U(xk ) wk∈Wk(xk,uk )
 (	 )] 

+	Jk+1 fk(xk, uk, wk) 

(Exercise 1.5 in the text, solution posted on the 
www). 



{ 

{ 

} 

UNKNOWN-BUT-BOUNDED CONTROL
 

• For each	k, keep the xk of the controlled system 

(	 ) 
xk+1 = fk xk, µk(xk), wk 

inside a given set Xk, the  target set at time k. 

• This is a minimax control problem, where the 
cost at stage k is 

gk(xk) =  	  
0 if  xk ∈ Xk, 
1 if  xk ∈/ Xk. 

• We must reach at time k the set 

{	 } 
Xk = xk | Jk(xk) = 0  

in order to be able to maintain the state within 
the subsequent target sets. 

• Start with XN = XN , and  for  k = 0, 1, . . . , N − 
1, 

Xk = xk ∈ Xk | there exists uk ∈ Uk(xk) such that 

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk) 
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LECTURE 8
 

LECTURE OUTLINE
 

• Problems with imperfect state info 

• Reduction to the perfect state info case 

• Linear quadratic problems 

• Separation of estimation and control 



BASIC PROBLEM WITH IMPERFECT STATE INFO
 

• Same as basic problem of Chapter 1 with one 
difference: the controller, instead of knowing xk, 
receives at each time k an observation of the form 

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k  ≥ 1 

• The observation zk belongs to some space Zk. 
• The random observation disturbance vk is char
acterized by a probability distribution 

Pvk (· | xk, . . . , x0, uk−1, . . . , u0, wk−1, . . . , w0, vk−1, . . . , v0) 

• The initial state x0 is also random and charac
terized by a probability distribution Px0 . 

• The probability distribution P (· | xk, uk) of  wk 

wk is given, and it may depend explicitly on xk 

and uk but not on w0, . . . , wk−1, v0, . . . , vk−1. 

• The control uk is constrained to a given subset 
Uk (this subset does not depend on xk, which  is  
not assumed known). 



{ } ∑ ( ) 

( ) 
( )


INFORMATION VECTOR AND POLICIES
 

• Denote by Ik the information vector , i.e., the 
information available at time k: 

Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k  ≥ 1, 
I0 = z0 

• We consider policies π = {µ0, µ1, . . . , µN−1}, 
where each function µk maps the information vec
tor Ik into a control uk and 

µk(Ik) ∈ Uk, for all Ik, k  ≥ 0 

• We want to find a policy π that minimizes 

N−1 

Jπ = E gN (xN ) +  gk xk, µk(Ik), wk 
x0,wk,vk
 

k=0,...,N−1 k=0
 

subject to the equations 

xk+1 = fk xk, µk(Ik), wk , k ≥ 0, 

z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k  ≥ 1




{ } { } 
{ } 

{ } 

REFORMULATION AS PERFECT INFO PROBLEM
 

• We have 

Ik+1 = (Ik, zk+1, uk), k  = 0, 1, . . . , N−2, I0 = z0 

View this as a dynamic system with state Ik, con
trol uk, and random disturbance zk+1 

• We have 

P (zk+1 | Ik, uk) =  P (zk+1 | Ik, uk, z0, z1, . . . , zk), 

since z0, z1, . . . , zk are part of the information vec
tor Ik. Thus the probability distribution of zk+1 

depends explicitly only on the state Ik and control 
uk and not on the prior “disturbances” zk, . . . , z0 

• Write 

E gk(xk, uk, wk) = E E gk(xk, uk, wk) | Ik, uk 
xk,wk 

so the cost per stage of the new system is 

g̃k(Ik, uk) =  E gk(xk, uk, wk) | Ik, uk 
xk,wk 



} ] 

[ { ( ) 
} 
] 
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DP ALGORITHM
 

• Writing the DP algorithm for the (reformulated)
 
perfect state info problem and doing the algebra:
 

[ {
 
Jk(Ik) =  min  E gk(xk, uk, wk) 

uk∈Uk xk, wk, zk+1 

+ Jk+1(Ik, zk+1, uk) | Ik, uk 

for k = 0, 1, . . . , N  − 2, and for k = N − 1, 

JN−1(IN−1) =  min  
uN−1∈UN−1 

E gN fN−1(xN−1, uN−1, wN−1) 
xN−1, wN−1 

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 

• The optimal cost J∗ is given by 

J∗ = E J0(z0) 
z0 



∑ 

LINEAR-QUADRATIC PROBLEMS 

•	 System: xk+1 = Akxk + Bkuk + wk 

•	 Quadratic cost {	 } 
N−1 

E x′ 
N QN xN + (x′ 

kQkxk + u′ 
kRkuk) 

wk 
k=0,1,...,N−1 k=0 

where Qk ≥ 0 and  Rk > 0 

•	 Observations 

zk = Ckxk + vk, k = 0, 1, . . . , N  − 1 

•	 w0, . . . , wN−1, v0, . . . , vN−1 indep. zero mean 

•	 Key fact to show: 
− Optimal policy {µ0 

∗ , . . . , µ  ∗ } is of the form: N−1 

µ ∗ (Ik) =  LkE{xk | Ik}k 

Lk: same as for the perfect state info case 

− Estimation problem and control problem can 
be solved separately 



[ { 

} ] 

[ 

DP ALGORITHM I
 

• Last stage N − 1 (supressing index N − 1): 

JN−1(IN−1) =  min  ExN−1,wN−1 xN 
′

−1QxN−1 
uN−1 

+ u ′ RuN−1 + (AxN−1 + BuN−1 + wN−1)
′ 

N−1 

· Q(AxN−1 + BuN−1 + wN−1) | IN−1, uN−1 

• Since E{wN−1 | IN−1} = E{wN−1} = 0,  the  
minimization involves 

min uN 
′

−1(B
′QB + R)uN−1
 

uN−1
 

+ 2E{xN−1 | IN−1}′A′QBuN−1 

] 
The minimization yields the optimal µ ∗ :N−1 

u ∗ = µ ∗ (IN−1) =  LN−1E{xN−1 | IN−1}N−1 N−1 

where 

LN−1 = −(B′QB + R)−1B′QA 



DP ALGORITHM II 

•	 Substituting in the DP algorithm 

{	 } 
JN−1(IN−1) =  E x′ KN−1xN−1 | IN−1N−1 

xN−1 {(	 )′+	 E xN−1 − E{xN−1 | IN−1}
 
xN−1
 (	 ) } · PN−1 xN−1 − E{xN−1 | IN−1} | IN−1 

+ E {w′ QN wN−1},N−1 
wN−1 

where the matrices KN−1 and PN−1 are given by 

PN−1 = A′ QN BN−1(RN−1 + B′ QN BN−1)−1 
N−1 N−1 

· B′ QN AN−1,N−1 

KN−1 = A′ QN AN−1 − PN−1 + QN−1N−1 

• Note the structure of JN−1: in addition to 
the quadratic and constant terms, it involves a 
quadratic in the estimation error 

xN−1 − E{xN−1 | IN−1} 



{(	 )′ (	 ) } 

] 

DP ALGORITHM III
  

•	 DP equation for period N − 2:
 

[
 
JN−2(IN−2) =  min 	 E {x ′ QxN−2N−2 

uN−2 xN−2,wN−2,zN−1 

+ u ′ RuN−2 + JN−1(IN−1) | IN−2, uN−2}N−2 {	 }
 
= E x ′ QxN−2 |	IN−2N−2 [
 

+ min  u ′ RuN−2N−2 
uN−2 {	 }
]
 

+ E xN 
′ KN−1xN−1 | IN−2, uN−2−1

+ E xN−1 − E{xN−1 | IN−1} 

· PN−1 xN−1 − E{xN−1 | IN−1} | IN−2, uN−2 

′
+ EwN−1 {wN−1QN wN−1}
 

• Key point: We have excluded the next to last 
term from the minimization with respect to uN−2 

• This term turns out to be independent of uN−2 



QUALITY OF ESTIMATION LEMMA
 

• For every k, there is a function Mk such that 
we have 

xk−E{xk | Ik} = Mk(x0, w0, . . . , wk−1, v0, . . . , vk), 

independently of the policy being used 

• The following simplified version of the lemma 
conveys the main idea 

• Simplified Lemma: Let r, u, z be random vari
ables such that r and u are independent, and let 
x = r + u. Then  

x − E{x | z, u} = r − E{r | z}
 

• Proof: We have 

x − E{x | z, u} = r + u − E{r + u | z, u} 

= r + u − E{r | z, u} − u 

= r − E{r | z, u} 

= r − E{r | z} 



APPLYING THE QUALITY OF EST. LEMMA
 

•	 Using the lemma,


xN−1 − E{xN−1 | IN−1} = ξN−1,


where 

ξN−1: function of x0, w0, . . . , wN−2, v0, . . . , vN−1 

• Since ξN−1 is independent of uN−2, the condi
tional expectation of ξ′ PN−1ξN−1 satisfiesN−1 

E{ξ′	 PN−1ξN−1 | IN−2, uN−2}N−1 

= E{ξ′ PN−1ξN−1 | IN−2}N−1
 

and is independent of uN−2.
 

• So minimization in the DP algorithm yields 

u ∗ =	µ ∗ (IN−2) =  LN−2E{xN−2 | IN−2}N−2	 N−2 



FINAL RESULT
 

• Continuing similarly (using also the quality of 
estimation lemma) 

µ ∗ (Ik) =  LkE{xk | Ik},k 

where Lk is the same as for perfect state info: 

Lk = −(Rk + Bk 
′ Kk+1Bk)−1Bk 

′ Kk+1Ak, 

with Kk generated from KN = QN , using 

Kk = A′ 
kKk+1Ak − Pk + Qk, 

Pk = A′ 
kKk+1Bk(Rk + Bk 

′ Kk+1Bk)−1Bk 
′ Kk+1Ak 

xk + 1 = Akxk + Bkuk + wk 

Lk 

uk 

wk 

xk 
zk = Ckxk + vk 

Delay 

Estimator
E{xk | Ik} 

uk - 1 

zk 

vk 

zkuk 



SEPARATION INTERPRETATION
 

• The optimal controller can be decomposed into
 

(a) An estimator , which uses the data to gener
ate the conditional expectation E{xk | Ik}. 

(b) An actuator , which multiplies E{xk | Ik} by 
the gain matrix Lk and applies the control 
input uk = LkE{xk | Ik}. 

• Generically the estimate x̂ of a random vector x 
given some information (random vector) I, which  
minimizes the mean squared error 

Ex{‖x − x̂‖2 | I} = ‖x‖2 − 2E{x | I}x̂ + ‖x̂‖2 

is E{x | I} (set to zero the derivative with respect 
to x̂ of the above quadratic form). 

• The estimator portion of the optimal controller 
is optimal for the problem of estimating the state 
xk assuming the control is not subject to choice. 

• The actuator portion is optimal for the control 
problem assuming perfect state information. 



STEADY STATE/IMPLEMENTATION ASPECTS
 

• As N → ∞, the solution of the Riccati equation 
converges to a steady state and Lk → L. 

• If x0, wk, and  vk are Gaussian, E{xk | Ik} is 
a linear function of Ik and is generated by a nice 
recursive algorithm, the Kalman filter. 

• The Kalman filter involves also a Riccati equa
tion, so for N → ∞, and a stationary system, it 
also has a steady-state structure. 

• Thus, for Gaussian uncertainty, the solution is 
nice and possesses a steady state. 

• For nonGaussian uncertainty, computing E{xk | Ik}
maybe very difficult, so a suboptimal solution is 
typically used. 

• Most common suboptimal controller: Replace 
E{xk | Ik} by the estimate produced by the Kalman 
filter (act as if x0, wk, and  vk are Gaussian). 

• It can be shown that this controller is optimal 
within the class of controllers that are linear func
tions of Ik. 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 9
 

LECTURE OUTLINE
 

• DP for imperfect state info 

• Sufficient statistics 

• Conditional state distribution as a sufficient 
statistic 

• Finite-state systems 

• Examples 



{ } ∑ ( ) 
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EVIEW: PROBLEM WITH IMPERFECT STATE INF
 

• Instead of knowing xk, we receive observations 

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k  ≥ 0 

• Ik: information vector available at time k: 

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k  ≥ 1 

• Optimization over policies π = {µ0, µ1, . . . , µN−1}, 
where µk(Ik) ∈ Uk, for all Ik and k. 

• Find a policy π that minimizes 

N−1 

Jπ = E gN (xN ) +  gk xk, µk(Ik), wk 
x0,wk,vk
 

k=0,...,N−1 k=0
 

subject to the equations 

xk+1 = fk xk, µk(Ik), wk , k ≥ 0, 

z0 = h0(x0, v0), zk = hk xk, µk−1(Ik−1), vk , k  ≥ 1 

R



} ] 

[ { ( ) 
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DP ALGORITHM
 

• DP algorithm: 

[ {
 
Jk(Ik) =  min  E gk(xk, uk, wk) 

uk∈Uk xk, wk, zk+1 

+ Jk+1(Ik, zk+1, uk) | Ik, uk 

for k = 0, 1, . . . , N  − 2, and for k = N − 1, 

JN−1(IN−1) =  min  
uN−1∈UN−1 

E gN fN−1(xN−1, uN−1, wN−1) 
xN−1, wN−1 

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1 

• The optimal cost J∗ is given by 

{ }
 
J∗ = E J0(z0) . 

z0 



( ) 

( ) 

SUFFICIENT STATISTICS
 

• Suppose that we can find a function Sk(Ik) such  
that the right-hand side of the DP algorithm can 
be written in terms of some function Hk as 

min Hk Sk(Ik), uk . 
uk∈Uk 

• Such a function Sk is called a sufficient statistic. 

• An optimal policy obtained by the preceding 
minimization can be written as 

µ ∗ 
k(Ik) =  µk Sk(Ik) , 

where µk is an appropriate function. 

• Example of a sufficient statistic: Sk(Ik) =  Ik 

• Another important sufficient statistic 

Sk(Ik) =  Pxk|Ik 



( ) 

[ { 

( ) } ] 

DP ALGORITHM IN TERMS OF PXK |IK 

• It turns out that Pxk|Ik 
is generated recursively 

by a dynamic system (estimator) of the form 

Pxk+1|Ik+1 
= Φk Pxk|Ik 

, uk, zk+1 

for a suitable function Φk 

• DP algorithm can be written as 

Jk(Pxk|Ik 
) =  min  E gk(xk, uk, wk) 

uk∈Uk xk,wk,zk+1 

+ Jk+1 Φk(Pxk|Ik 
, uk, zk+1) | Ik, uk 

uk xk 

Delay 

Estimator 

uk - 1 

uk - 1 

vk 

zk 

zk 

wk 

f k  - 1 

Actuator 

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk) 

System Measurement 

P x 
k 

| I
k 

mk 



EXAMPLE: A SEARCH PROBLEM 

• At each period, decide to search or not search 
a site that may contain a treasure. 

• If we search and a treasure is present, we find 
it with prob. β and remove it from the site. 

• Treasure’s worth: V . Cost  of  search:  C 

• States: treasure present & treasure not present 

• Each search can be viewed as an observation of 
the state 

• Denote 

pk : prob. of treasure present at the start of time k 

with p0 given. 

• pk evolves at time k according to the equation 

 
pk if not search,  

pk+1 = 0 if search and find treasure,  pk(1−β) if search and no treasure. pk(1−β)+1−pk 



[ 
( ) ] 

SEARCH PROBLEM (CONTINUED) 


• DP algorithm 

Jk(pk) = max  0, −C + pkβV 

pk(1 − β)
+ (1  − pkβ)Jk+1 , 

pk(1 − β) + 1  − pk 

with JN (pN ) = 0.  

• Can be shown by induction that the functions 
Jk satisfy 

C 
Jk(pk) = 0, for all pk ≤ 

βV 

• Furthermore, it is optimal to search at period
 
k if and only if 

pkβV ≥ C 

(expected reward from the next search ≥ the cost 
of the search) 



FINITE-STATE SYSTEMS
 

• Suppose the system is a finite-state Markov 
chain, with states 1, . . . , n. 

• Then the conditional probability distribution 
Pxk|Ik 

is a vector 

( )
 
P (xk = 1  | Ik), . . . , P (xk = n | Ik) 

• The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding 
with increasing k) 

• When the control and observation spaces are 
also finite sets, it turns out that the cost-to-go 
functions Jk in the DP algorithm are piecewise 
linear and concave (Exercise 5.7). 

• This is conceptually important and also (mod
erately) useful in practice. 



INSTRUCTION EXAMPLE
 

• Teaching a student some item. Possible states 
are L: Item learned, or L: Item not learned. 

• Possible decisions: T : Terminate the instruc
tion, or T : Continue the instruction for one period 
and then conduct a test that indicates whether the 
student has learned the item. 

• The test has two possible outcomes: R: Student 
gives a correct answer, or R: Student gives an 
incorrect answer. 

• Probabilistic structure 

L L R 

rt 

1 1 

1 - r 1 - t 
L RL 

• Cost of instruction is I per period 

• Cost of terminating instruction; 0 if student has 
learned the item, and C > 0 if  not.  



{ 
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INSTRUCTION EXAMPLE II
 

• Let pk: prob. student has learned the item given 
the test results so far 

pk = P (xk|Ik) =  P (xk = L | z0, z1, . . . , zk). 

• Using Bayes’ rule we can  obtain  

pk+1 = Φ(pk, zk+1) 
1−(1−t)(1−pk) if zk+1 = R, 

= 1−(1−t)(1−r)(1−pk ) 

0  if  zk+1 = R. 

• DP algorithm: 

Jk(pk ) = min  (1 − pk)C, I + E Jk+1 Φ(pk , zk+1) . 
zk+1 

starting with 

JN−1(pN−1) = min  (1−pN−1)C, I+(1−t)(1−pN−1)C . 



[ ] 
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INSTRUCTION EXAMPLE III
 

• Write the DP algorithm as 

Jk(pk) = min  (1 − pk)C, I + Ak(pk) , 

where 

Ak(pk) =  P (zk+1 = R | Ik)Jk+1 Φ(pk, R) 

+ P (zk+1 = R | Ik)Jk+1 Φ(pk, R) 

• Can show by induction that Ak(p) are piecewise 
linear, concave, monotonically decreasing, with 

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1]. 

0 p 

C 

I 

I + AN - 1(p )  

I + AN - 2(p )  

I + AN - 3(p )  

1a N - 1 a N - 3 a N - 2 I
1 -

C 
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LECTURE OUTLINE 

• Suboptimal control 

• Certainty equivalent control 

• Limited lookahead policies 

• Performance bounds 

• Problem approximation approach 

• Heuristic cost-to-go approximation 



PRACTICAL DIFFICULTIES OF DP
 

•	 The curse of modeling 

•	 The curse of dimensionality 

− Exponential growth of the computational and 
storage requirements as the number of state 
variables and control variables increases 

− Quick explosion of the number of states in 
combinatorial problems 

−	 Intractability of imperfect state information 
problems 

•	 There may be real-time solution constraints 
− A family of problems may be addressed. The 

data of the problem to be solved is given with 
little advance notice 

− The problem data may change as the system
 
is controlled – need for on-line replanning
 



∑ ( ) 

( ) 

CERTAINTY EQUIVALENT CONTROL (CEC)
 

• Replace the stochastic problem with a deter
ministic problem 

• At each time k, the uncertain quantities are 
fixed at some “typical” values 

• Implementation for an imperfect info problem. 
At each time k: 

(1) Compute a state estimate xk(Ik) given  the  
current information vector Ik. 

(2) Fix the wi, i ≥ k, at some  wi(xi, ui). Solve 
the deterministic problem: 

N−1 

minimize gN (xN )+ gi xi, ui, wi(xi, ui) 
i=k 

subject to xk = xk(Ik) and  for  i ≥ k, 

ui ∈ Ui, xi+1 = fi xi, ui, wi(xi, ui) . 

(3) Use as control the first element in the opti
mal control sequence found. 



{ }
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ALTERNATIVE IMPLEMENTATION
 

 

 Let µd

0 (x0), . . . , µd 
N 1 (xN 1) be an optimal • −−

controller obtained from the DP algorithm for the 
deterministic problem 

N−1 

minimize gN (xN ) +  gk xk, µk (xk), wk(xk, uk) 

k=0 

subject to xk+1 = fk xk, µk (xk), wk(xk, uk) , µk(xk) ∈ Uk 

The CEC applies at time k the control input 

µ̃k(Ik) =  µk
d xk(Ik) 

xk 

Delay 

Estimator 

uk - 1 

uk - 1 

vk 

zk 

zk 

wk 

Actuator 

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk) 

System Measurement 

mk 
d 

u k =mk 
d (xk) 

xk(Ik) 



CEC WITH HEURISTICS
 

• Solve the “deterministic equivalent” problem 
using a heuristic/suboptimal policy 

• Improved version of this idea: At time k min
imize the stage k cost and plus the heuristic cost 
of the remaining stages, i.e., apply at time k a 
control ũk that minimizes over uk ∈ Uk(xk) 

( ) ( ( )) 
gk xk, uk, wk(xk, uk) +Hk+1 fk xk, uk, wk(xk, uk) 

where Hk+1 is the cost-to-go function correspond
ing to the heuristic. 

• This an example of an important suboptimal 
control idea: 

Minimize at each stage k the sum of approxima
tions to the current stage cost and the optimal 
cost-to-go. 

• This is a central idea in several other suboptimal 
control schemes, such as limited lookahead, and 
rollout algorithms. 

• Hk+1(xk+1) may be computed off-line or on
line. 



[ ] 

PARTIALLY STOCHASTIC CEC
 

• Instead of fixing all future disturbances to their 
typical values, fix only some, and treat the rest as 
stochastic. 

• Important special case: Treat an imperfect state 
information problem as one of perfect state infor
mation, using an estimate xk(Ik) of  xk as if it were 
exact. 

• Multiaccess Communication Example: Con
sider controlling the slotted Aloha system (dis
cussed in Ch. 5) by optimally choosing the prob
ability of transmission of waiting packets. This 
is a hard problem of imperfect state info, whose 
perfect state info version is easy. 

• Natural partially stochastic CEC: 

1 
µ̃k(Ik) = min  1, , 

xk(Ik) 

where xk(Ik) is an estimate of the current packet 
backlog based on the entire past channel history 
of successes, idles, and collisions (which is Ik). 
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LIMITED LOOKAHEAD POLICIES
 

• One-step lookahead (1SL) policy : At  each  k and 
state xk, use the control µk(xk) that  

min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 
uk∈Uk (xk) 

where 

− J̃N = gN . 
− J̃k+1: approximation to true cost-to-go Jk+1 

• Two-step lookahead policy : At  each  k and xk, 
use the control µ̃k(xk) attaining the minimum above, 
where the function J̃k+1 is obtained using a 1SL 
approximation (solve a 2-step DP problem). 

• If J̃k+1 is readily available and the minimiza
tion above is not too hard, the 1SL policy is im
plementable on-line. 

• Sometimes one also replaces Uk(xk) above  with  
a subset of “most promising controls” Uk(xk). 

• As the length of lookahead increases, the re
quired computation quickly explodes. 



{ 
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PERFORMANCE BOUNDS FOR 1SL
 

• Let Jk(xk) be the cost-to-go from (xk, k) of the  
1SL policy, based on functions J̃k. 

• Assume that for all (xk, k), we have 

Ĵk(xk) ≤ J̃k(xk), (*) 

where ĴN = gN and for all k, 

Ĵk(xk) =  min  E gk(xk, uk, wk)
 
uk∈Uk (xk)
 

+ J̃k+1 fk(xk, uk, wk) , 

[so Ĵk(xk) is computed along with µk(xk)]. Then 

Jk(xk) ≤ Ĵk(xk), for all (xk, k). 

• Important application: When J̃k is the cost-to
go of some heuristic policy (then the 1SL policy is 
called the rollout policy). 

• The bound can be extended to the case where 
there is a δk in the RHS of (*). Then 

Jk(xk) ≤ J̃k(xk) +  δk + · · · + δN−1 



COMPUTATIONAL ASPECTS
 

• Sometimes nonlinear programming can be used 
to calculate the 1SL or the multistep version [par
ticularly when Uk(xk) is not a discrete set]. Con
nection with stochastic programming methods. 

• The choice of the approximating functions J̃k 

is critical, and is calculated in a variety of ways. 

• Some approaches: 

(a)	 Problem Approximation: Approximate the 
optimal cost-to-go with some cost derived 
from a related but simpler problem 

(b)	 Heuristic Cost-to-Go Approximation: Ap
proximate the optimal cost-to-go with a func
tion of a suitable parametric form, whose pa
rameters are tuned by some heuristic or sys
tematic scheme (Neuro-Dynamic Program
ming) 

(c)	 Rollout Approach: Approximate the optimal 
cost-to-go with the cost of some suboptimal 
policy, which is calculated either analytically 
or by simulation 



PROBLEM APPROXIMATION
 

•	 Many (problem-dependent) possibilities 
− Replace uncertain quantities by nominal val

ues, or simplify the calculation of expected 
values by limited simulation 

− Simplify difficult constraints or dynamics 

• Example of enforced decomposition : Route  m 
vehicles that move over a graph. Each node has a 
“value.” The first vehicle that passes through the 
node collects its value. Max the total collected 
value, subject to initial and final time constraints 
(plus time windows and other constraints). 

• Usually the 1-vehicle version of the problem is 
much simpler. This motivates an approximation 
obtained by solving single vehicle problems. 

• 1SL scheme: At time k and state xk (position 
of vehicles and “collected value nodes”), consider 
all possible kth moves by the vehicles, and at the 
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the 
vehicle routes one-at-a-time 



HEURISTIC COST-TO-GO APPROXIMATION
 

• Use a cost-to-go approximation from a paramet
ric class J̃(x, r) where  x is the current state and 
r = (r1, . . . , rm) is a vector of “tunable” scalars 
(weights). 

• By adjusting the weights, one can change the 
“shape” of the approximation J̃  so that it is rea
sonably close to the true optimal cost-to-go func
tion. 

•	 Two key issues: 
− The choice of parametric  class  J̃(x, r) (the 

approximation architecture). 
−	 Method for tuning the weights (“training” 

the architecture). 

• Successful application strongly depends on how 
these issues are handled, and on insight about the 
problem. 

• Sometimes a simulator is used, particularly 
when there is no mathematical model of the sys
tem. 



( ) 

APPROXIMATION ARCHITECTURES
 

• Divided in linear and nonlinear [i.e., linear or 
nonlinear dependence of J̃(x, r) on  r]. 

• Linear architectures are easier to train, but non
linear ones (e.g., neural networks) are richer. 

• Architectures based on feature extraction 

State x  
Feature Extraction 
Mapping 

Cost Approximator w/ 
Parameter Vector r 

Feature 
Vector y 

Cost Approximation 

J (y,r ) 

• Ideally, the features will encode much of the 
nonlinearity that is inherent in the cost-to-go ap
proximated, and the approximation may be quite 
accurate without a complicated architecture. 

• Sometimes the state space is partitioned, and 
“local” features are introduced for each subset of 
the partition (they are 0 outside the subset). 

• With a well-chosen feature vector y(x), we can 
use a linear architecture 

J̃(x, r) =  Ĵ  y(x), r  = 
∑ 

riyi(x) 
i 



COMPUTER CHESS
 

• Programs use a feature-based position evaluator 
that assigns a score to each move/position 

Feature 
Extraction 

Weighting 
of Features 

Score 

Features: 
Material balance, 
Mobility, 
Safety, etc 

Position Evaluator 

• Most often the weighting of features is linear 
but multistep lookahead is involved. 

• Most often the training is done by trial and 
error. 

•	 Additional features: 
− Depth first search 

− Variable depth search when dynamic posi
tions are involved
 

− Alpha-beta pruning
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LECTURE OUTLINE
 

• Rollout algorithms 

• Cost improvement property 

• Discrete deterministic problems 

• Sequential consistency and greedy algorithms
 

• Sequential improvement 



ROLLOUT ALGORITHMS
 

• One-step lookahead policy: At each k and 
state xk, use the control µk(xk) that  

{	 ( )} 
min E gk(xk, uk, wk)+J̃k+1 fk(xk, uk, wk) , 

uk∈Uk (xk) 

where 

−	 J̃N = gN . 
−	 J̃k+1: approximation to true cost-to-go Jk+1 

• Rollout algorithm: When J̃k is the cost-to-go 
of some heuristic policy (called the base policy) 

• Cost improvement property (to be shown): The 
rollout algorithm achieves no worse (and usually 
much better) cost than the base heuristic starting 
from the same state. 

• Main difficulty: Calculating J̃k(xk) may  be  
computationally intensive if the cost-to-go of the 
base policy cannot be analytically calculated. 

−	 May involve Monte Carlo simulation if the 
problem is stochastic. 

− Things improve in the deterministic case. 



EXAMPLE: THE QUIZ PROBLEM
 

• A person is given N questions; answering cor
rectly question i has probability pi, reward  vi. 
Quiz terminates at the first incorrect answer. 

• Problem: Choose the ordering of questions so 
as to maximize the total expected reward. 

• Assuming no other constraints, it is optimal to 
use the index policy : Answer questions in decreas
ing order of pivi/(1 − pi). 

• With minor changes in the problem, the index 
policy need not be optimal. Examples: 

− A limit (< N) on the maximum number of 
questions that can be answered. 

−	 Time windows, sequence-dependent rewards, 
precedence constraints. 

• Rollout with the index policy as base policy: 
Convenient because at a given state (subset of 
questions already answered), the index policy and 
its expected reward can be easily calculated. 

• Very effective for solving the quiz problem and
 
important generalizations in scheduling (see Bert
 
sekas and Castanon, J. of Heuristics, Vol. 5, 1999).
 



COST IMPROVEMENT PROPERTY
 

• Let 

Jk(xk): Cost-to-go of the rollout policy
 

Hk(xk): Cost-to-go of the base policy
 

• We claim that Jk(xk) ≤ Hk(xk) for all xk, k 

• Proof by induction: We have JN (xN ) =  HN (xN ) 
for all xN . Assume that 

Jk+1(xk+1) ≤ Hk+1(xk+1), ∀ xk+1. 

Then, for all xk { ( ) ( ( ))} 
Jk(xk ) = E gk xk, µk(xk), wk + Jk+1 fk xk, µk(xk), wk { ( ) ( ( ))} 

≤ E gk xk, µk(xk), wk + Hk+1 fk xk, µk(xk), wk { ( ) ( ( ))} 
≤ E gk xk, µk(xk), wk + Hk+1 fk xk, µk (xk), wk 

= Hk(xk) 

− Induction hypothesis ==> 1st inequality


− Min selection of µk(xk) ==> 2nd inequality


− Definition of Hk, µk ==> last equality




EXAMPLE: THE BREAKTHROUGH PROBLEM
 

root 

• Given a binary tree with N stages. 

• Each arc is either free or is blocked (crossed out 
in the figure). 

• Problem: Find a free path from the root to the 
leaves (such as the one shown with thick lines). 

• Base heuristic (greedy): Follow the right branch 
if free; else follow the left branch if free. 

• For large N and given prob. of free branch: 
the rollout algorithm requires O(N) times  more  
computation, but has O(N) times larger prob. of 
finding a free path than the greedy algorithm. 



DISCRETE DETERMINISTIC PROBLEMS
 

• Any discrete optimization problem (with finite 
number of choices/feasible solutions) can be rep
resented as a sequential decision process by using 
a tree. 

• The leaves of the tree correspond to the feasible 
solutions. 

• The problem can be solved by DP, starting from 
the leaves and going back towards the root. 

• Example: Traveling salesman problem. Find a 
minimum cost tour that goes exactly once through 
each of N cities. 

ABC ABD ACB ACD ADB ADC 

ABCD 

AB AC AD 

ABDC ACBD ACDB ADBC ADCB 

Origin Node s A 

Traveling salesman problem with four cities A, B, C, D 



A CLASS OF GENERAL DISCRETE PROBLEMS
 

•	 Generic problem: 
− Given a graph with directed arcs 
− A special node s called the origin 

− A set of terminal nodes, called destinations, 
and a cost g(i) for each destination i. 

− Find min cost path starting at the origin, 
ending at one of the destination nodes. 

• Base heuristic: For any nondestination node i,
 
constructs a path (i, i1, . . . , im, i) starting at i and
 
ending at one of the destination nodes i. We  call  
  
i the projection of i, and we denote H(i) =  g(i).
 

• Rollout algorithm: Start at the origin; choose 
the successor node with least cost projection 

j1	 p(j1) 

s i1 im 

j2 

j3 

j4 

p(j2) 

p(j3) 

p(j4) 

im-1 

Neighbors of im 
Projections of 

Neighbors of im 



EXAMPLE: ONE-DIMENSIONAL WALK
 

• A person takes either a unit step to the left or 
a unit step to the right. Minimize the cost g(i) of  
the point i where he will end up after N steps. 

(0,0) 

_
(N,-N) (N,0) i (N,N) 

g(i) 

_ 
-N 0 i N - 2 N i 

• Base heuristic: Always go to the right. Rollout 
finds the rightmost local minimum. 

• Base heuristic: Compare always go to the right 
and always go the left. Choose the best of the two. 
Rollout finds a global minimum. 



SEQUENTIAL CONSISTENCY
 

• The base heuristic  is  sequentially consistent if
 
all nodes of its path have the same projection, i.e.,
 
for every node i, whenever it generates the path
 
(i, i1, . . . , im, i) starting at i, it also generates the
 
path (i1, . . . , im, i) starting at i1. 

• Prime example of a sequentially consistent heuris
tic is a greedy algorithm. It  uses  an  estimate F (i) 
of the optimal cost starting from i. 

• At the typical step, given a path (i, i1, . . . , im), 
where im is not a destination, the algorithm adds 
to the path a node im+1 such that 

im+1 = arg  min  F (j) 
j∈N(im) 

• Prop.: If the base heuristic is sequentially con
sistent, the cost of the rollout algorithm is no more 
than the cost of the base heuristic. In particular, 
if (s, i1, . . . , im̄ ) is the rollout path, we have 

H(s) ≥ H(i1) ≥ · · · ≥ H(i ¯ mm−1) ≥ H(i ¯ ) 

where H(i) = cost of the heuristic starting at i. 

• Proof: Rollout deviates from the greedy path 
only when it discovers an improved path. 



SEQUENTIAL IMPROVEMENT
 

• We say that the base heuristic is sequentially 
improving if for every non-destination node i, we  
have 

H(i) ≥ min H(j) 
j is neighbor of i 

• If the base heuristic is sequentially improving, 
the cost of the rollout algorithm is no more than 
the cost of the base heuristic, starting from any 
node. 

•	 Fortified rollout algorithm: 
− Simple variant of the rollout algorithm, where 

we keep the best path found so far through 
the application of the base heuristic. 

− If the rollout path deviates from the best 
path found, then follow the best path. 

− Can be shown to be a rollout algorithm with 
sequentially improving base heuristic for a 
slightly modified variant of the original prob
lem.
 

− Has the cost improvement property.
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LECTURE OUTLINE
 

• More on rollout algorithms - Stochastic prob
lems 

• Simulation-based methods for rollout 

• Approximations of rollout algorithms 

• Rolling horizon approximations 

• Discretization of continuous time 

• Discretization of continuous space 

• Other suboptimal approaches 
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OLLOUT ALGORITHMS - STOCHASTIC PROBLEM
 

• Rollout policy: At each k and state xk, use  
the control µk(xk) that  

min Qk(xk, uk), 
uk∈Uk (xk) 

where 

Qk(xk, uk) =  E gk(xk, uk, wk)+Hk+1 fk(xk, uk, wk) 

and Hk+1(xk+1) is the cost-to-go of the heuristic. 

• Qk(xk, uk) is called the Q-factor of (xk, uk), 
and for a stochastic problem, its computation may 
involve Monte Carlo simulation. 

• Potential difficulty: To minimize over uk the Q-
factor, we must form Q-factor differences Qk(xk, u)− 
Qk(xk, u). This differencing often amplifies the 
simulation error in the calculation of the Q-factors. 

• Potential remedy: Compare any two controls 
u and u by simulating the Q-factor differences 
Qk(xk, u) − Qk(xk, u) directly. This may effect 
variance reduction of the simulation-induced er
ror. 
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Q-FACTOR APPROXIMATION 

• Here, instead of simulating the Q-factors, we 
approximate the costs-to-go Hk+1(xk+1). 

• Certainty equivalence approach: Given xk, fix  
future disturbances at “typical” values wk+1, . . . , wN−1 
and approximate the Q-factors with 

Q̃ 
k(xk, uk) =  E gk(xk, uk, wk)+H̃ 

k+1 fk(xk, uk, wk) 

where H̃k+1 fk(xk, uk, wk) is the cost of the heuris
tic with the disturbances fixed at the typical val
ues. 

• This is an approximation of Hk+1 fk(xk, uk, wk) 
by using a “single sample simulation.” 

• Variant of the certainty equivalence approach:
 
Approximate Hk+1 fk(xk, uk, wk) by simulation 
using a small number of “representative samples” 
(scenarios). 

• Alternative: Calculate (exact or approximate) 
values for the cost-to-go of the base policy at a 
limited set of state-time pairs, and then approx
imate Hk+1 using an approximation architecture 
and a “training algorithm” or “least-squares fit.” 



ROLLING HORIZON APPROACH
 

• This is an l-step lookahead policy where the 
cost-to-go approximation is just 0. 

• Alternatively, the cost-to-go approximation is 
the terminal cost function gN . 

• A short rolling horizon saves computation. 

• “Paradox”: It is not true that a longer rolling 
horizon always improves performance. 

• Example: At the initial state, there are two 
controls available (1 and 2). At every other state, 
there is only one control. 

Optimal Trajectory 

Current 
Sta te  

... ... 

... ... 

1 

2 

High Low Highl  S t a g e s  
Cost Cost Cost 



ROLLING HORIZON COMBINED WITH ROLLOUT
 

• We can use a rolling horizon approximation in 
calculating the cost-to-go of the base heuristic. 

• Because the heuristic is suboptimal, the ratio
nale for a long rolling horizon becomes weaker. 

• Example: N -stage stopping problem where 
the stopping cost is 0, the continuation cost is ei
ther −ε or 1, where 0 < ε << 1, and the first state 
with continuation cost equal to 1 is state m. Then  
the optimal policy is to stop at state m, and  the  
optimal cost is −mε. 

0 1 2 m N 

Stopped State 

-  e  - e  1 ... ... 

• Consider the heuristic that continues at every 
state, and the rollout policy that is based on this 
heuristic, with a rolling horizon of l ≤ m steps. 

• It will continue up to the first m− l + 1 stages, 
thus compiling a cost of −(m−l+1)ε. The rollout 
performance improves as l becomes shorter! 

• Limited vision may work to our advantage! 



DISCRETIZATION
 

• If the state space and/or control space is con
tinuous/infinite, it must be replaced by a finite 
discretization. 

• Need for consistency, i.e., as the discretization 
becomes finer, the cost-to-go functions of the dis
cretized problem converge to those of the contin
uous problem. 

• Pitfalls with discretizing continuous time. 

• The control constraint set changes a lot as we 
pass to the discrete-time approximation. 

• Continuous-Time Shortest Path Pitfall: 

ẋ 1(t) =  u1(t), ẋ 2(t) =  u2(t), 

with control constraint ui(t) ∈ {−1, 1} and cost ∫ T ( ) 
g x(t) dt. Compare with naive discretization
 

x1(t+∆t) =  x1(t)+∆tu1(t), x2(t+∆t) =  x2(t)+∆tu2(t) 

with ui(t) ∈ {−1, 1}. 
• “Convexification effect” of continuous time. 

0 
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SPACE DISCRETIZATION I
 

• Given a discrete-time system with state space
 
S, consider a finite subset S; for example S could
 
be a finite grid within a continuous state space S.
 

• Difficulty: f(x, u, w) ∈/ S for x ∈ S. 

• We define an approximation to the original 
problem, with state space S, as follows: 

• Express each x ∈ S as a convex combination of 
states in S, i.e., 

x = γi(x)xi where γi(x) ≥ 0, γi(x) = 1  

xi∈S i 

• Define a “reduced” dynamic system with state 
space S, whereby  from  each  xi ∈ S we move to 
x = f(xi, u, w) according to the system equation 
of the original problem, and then move to xj ∈ S 
with probabilities γj (x). 

• Define similarly the corresponding cost per stage 
of the transitions of the reduced system. 



∑ 

SPACE DISCRETIZATION II
 

• Let Jk(xi) be the optimal cost-to-go of the “re
duced” problem from each state xi ∈ S and time 
k onward. 

• Approximate the optimal cost-to-go of any x ∈ 
S for the original problem by 

J̃k(x) =  γi(x)Jk(xi), 
xi∈S 

and use one-step-lookahead based on J̃k. 

• The choice of coefficients γi(x) is in principle 
arbitrary, but should aim at consistency, i.e., as 
the number of states in S increases, J̃k(x) should 
converge to the optimal cost-to-go of the original 
problem. 

• Interesting observation: While the original prob
lem may be deterministic, the reduced problem is 
always stochastic. 

• Generalization: The set S may be any finite set 
(not a subset of S) as long as the coefficients γi(x) 
admit a meaningful interpretation that quantifies 
the degree of association of x with xi. 



{ 
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OTHER SUBOPTIMAL CONTROL APPROACHES
 

• Minimize the DP equation error: Approxi
mate the optimal cost-to-go functions Jk(xk) with  
functions J̃k(xk, rk), where rk is a vector of un
known parameters, chosen to minimize some form 
of error in the DP equations. 

• Direct approximation of control policies: 
For a subset of states xi, i = 1, . . . ,m, find 

µ̂k(xi) =  arg  min  E g(xi, uk, wk) 
uk ∈Uk(xi) 

+ J̃k+1 fk(xi, uk, wk), rk+1 . 

Then find µ̃k(xk, sk), where sk is a vector of pa
rameters obtained by solving the problem 

m 

min ‖µ̂k(xi) − µ̃k(xi, s)‖2. 
s 

i=1 

• Approximation in policy space: Do not 
bother with cost-to-go approximations. Parametrize 
the policies as µ̃k(xk, sk), and minimize the cost 
function of the problem over the parameters sk. 
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LECTURE OUTLINE 

• Infinite horizon problems 

• Stochastic shortest path problems 

• Bellman’s equation 

• Dynamic programming – value iteration 

• Examples 



TYPES OF INFINITE HORIZON PROBLEMS
 

•	 Same as the basic problem, but:
 
− The number of stages is infinite.
 
− The system is stationary.
 

•	 Total cost problems: Minimize 

{	 } 
N−1 ∑ (	 ) 

Jπ(x0) = lim E	 αkg xk, µk(xk), wk 
N→∞ wk 

k=0,1,... k=0 

− Stochastic shortest path problems (α = 1,  
finite-state system with a termination state) 

− Discounted problems (α <  1, bounded cost 
per stage) 

− Discounted and undiscounted problems with 
unbounded cost per stage 

•	 Average cost problems 

{	 } 
N−11 ∑
 ( ) 

lim E g xk, µk(xk), wk 
N→∞ N wk
 

k=0,1,... k=0
 



{ ( )} 
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PREVIEW OF INFINITE HORIZON RESULTS
 

• Key issue: The relation between the infinite and 
finite horizon optimal cost-to-go functions. 

• Illustration: Let α = 1  and  JN (x) denote  the  
optimal cost of the N -stage problem, generated 
after N DP iterations, starting from J0(x) ≡ 0 

Jk+1(x) =  min  E g(x, u, w) +  Jk f(x, u, w) , ∀ x 
u∈U(x) w 

• Typical results for total cost problems: 

J∗(x) = lim JN (x), ∀ x 
N→∞ 

J∗(x) =  min  E g(x, u, w) +  J∗ f(x, u, w) , ∀ x 
u∈U(x) w 

(Bellman’s Equation). If µ(x) minimizes in Bell-
 
man’s Eq., the policy {µ, µ, . . .} is optimal. 

• Bellman’s Eq. always holds. The other re
sults are true for SSP (and bounded/discounted; 
unusual exceptions for other problems). 
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STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n  and 
special cost-free termination state t 

− Transition probabilities pij (u) 
− Control constraints u ∈ U(i)
 
− Cost of policy π = {µ0, µ1, . . .} is
 

N−1 ∣ ∑
 ( ) 
Jπ (i) = lim E g xk, µk(xk) ∣ x0 = i 

N→∞ 
k=0 

− Optimal policy if Jπ (i) =  J∗(i) for all i. 
− Special notation: For stationary policies π = 

{µ, µ, . . .}, we use  Jµ(i) in place  of  Jπ(i). 

• Assumption (Termination inevitable): There ex
ists integer m such that for every policy and initial 
state, there is positive probability that the termi
nation state will be reached after no more that m 
stages; for all π, we have  

ρπ = max  P{xm � = i, π} < 1= t | x0 
i=1,...,n 
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FINITENESS OF POLICY COST-TO-GO FUNCTIONS
 

•	 Let
 
ρ = max  ρπ.
 

π 

Note that ρπ depends only on the first m compo
nents of the policy π, so that  ρ < 1. 

• For any π and any initial state i 

P { � = i, π} = P { =� t | xm =� t, x0 = i, π}x2m = t | x0	 x2m 

× P {xm =� t | x0 = i, π} ≤ ρ2 

and similarly 

P{xkm �= t | x0 =	i, π} ≤ ρk, i = 1, . . . , n  

• So E{Cost between times km and (k + 1)m − 1 } 

≤ mρk max ∣g(i, u)
i=1,...,n
 

and u∈U(i)
 

∞ ∣ ∣ ∑ ∣ ∣ m ∣ ∣ ∣Jπ (i)∣ ≤ mρk max ∣g(i, u)∣ = max ∣g(i, u)∣ 
i=1,...,n 1 − ρ i=1,...,n 

k=0 u∈U(i) u∈U(i) 



∑ 

∑ 
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MAIN RESULT
 

• Given any initial conditions J0(1), . . . , J0(n), 
the sequence Jk(i) generated by the DP iteration   

n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 
u∈U(i) 

j=1 

converges to the optimal cost J∗(i) for  each  i. 

• Bellman’s equation has J∗(i) as unique solution: 

  
n 

J∗(i) =  min  g(i, u) +  pij (u)J∗(j) , ∀ i 
u∈U(i) 

j=1 

• A stationary policy µ is optimal if and only 
if for every state i, µ(i) attains the minimum in 
Bellman’s equation. 

• Key proof idea: The “tail” of the cost series, 

∞ 

E g xk, µk(xk) 
k=mK 

vanishes as K increases to ∞.
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OUTLINE OF PROOF THAT JN → J∗ 

• Assume for simplicity that J0(i) = 0 for all i, 
and for any K ≥ 1, write the cost of any policy π 
as 

mK−1 ∞ { ( )} { ( )} 
Jπ(x0) =  E g xk, µk (xk) + E g xk, µk(xk ) 

k=0 k=mK 

mK−1 ∞ 

≤ E g xk, µk (xk) + ρk m max |g(i, u)|
i,u 

k=0 k=K 

Take the minimum of both sides over π to obtain 

ρK 
J∗(x0) ≤ JmK (x0) +  mmax |g(i, u)|.

1 − ρ i,u 

Similarly, we have 

ρK 
JmK (x0) − mmax |g(i, u)| ≤ J∗(x0).1 − ρ i,u 

It follows that limK→∞ JmK (x0) =  J∗(x0). 

• It can be seen that JmK (x0) and  JmK+k(x0) 
converge to the same limit for k = 1, . . . ,m − 1, 
so JN (x0) → J∗(x0) 



∑ 

∑ 

EXAMPLE I
 

• Minimizing the E{Time to Termination}: Let  

g(i, u) = 1, ∀ i = 1, . . . , n,  u ∈ U(i) 

• Under our assumptions, the costs J∗(i) uniquely 
solve Bellman’s equation, which has the form 

 
 
n J∗(i) =  min  1 +  pij (u)J∗(j) , i = 1, . . . , n  

u∈U(i) 
j=1 

• In the special case where there is only one con
trol at each state, J∗(i) is the mean first passage 
time from i to t. These times, denoted mi, are  the  
unique solution of the equations 

n 

mi = 1 +  pij mj , i = 1, . . . , n.  
j=1 



EXAMPLE II
 

• A spider and a fly move along a straight line.
 

• The fly moves one unit to the left with proba
bility p, one unit to the right with probability p, 
and stays where it is with probability 1 − 2p. 

• The spider moves one unit towards the fly if its 
distance from the fly is more that one unit. 

• If the spider is one unit away from the fly, it 
will either move one unit towards the fly or stay 
where it is. 

• If the spider and the fly land in the same posi
tion, the spider captures the fly. 

• The spider’s objective is to capture the fly in 
minimum expected time. 

• This is an SSP w/ state = the distance be
tween spider and fly (i = 1, . . . , n  and t = 0  the  
termination state). 

• There is control choice only at state 1. 



EXAMPLE II (CONTINUED) 

•	 For M = move,  and  M = don’t  move  

p11(M) = 2p, p10(M) = 1  − 2p, 

p12(M) =  p, p11(M ) = 1  − 2p, p10(M) =  p, 

pii = p, pi(i−1) = 1−2p, pi(i−2) = p, i ≥ 2, 

with all other transition probabilities being 0. 

• Bellman’s equation: 

J∗(i) =  1+pJ∗(i)+(1−2p)J∗(i−1)+pJ∗(i−2), i  ≥ 2 

[	 ] 
J∗(1) = 1+min 2pJ∗(1), pJ∗(2)+ (1 − 2p)J∗(1) 

w/ J∗(0) = 0. Substituting J∗(2) in Eq. for J∗(1), 

[	 ] 
p (1	− 2p)J∗(1)

J∗(1) = 1+min 2pJ∗(1), +	 .
1 − p	 1 − p 

• Work from here to find that when one unit away 
from the fly it is optimal not to move if and only 
if p ≥ 1/3. 
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LECTURE OUTLINE
 

•	 Review of stochastic shortest path problems
 

•	 Computational methods 
− Value iteration 

− Policy iteration 

− Linear programming 

•	 Discounted problems as special case of SSP
 



{ } ∣ 

STOCHASTIC SHORTEST PATH PROBLEMS
 

• Assume finite-state system: States 1, . . . , n  and 
special cost-free termination state t 

− Transition probabilities pij (u) 
− Control constraints u ∈ U(i)
 
− Cost of policy π = {µ0, µ1, . . .} is
 

N−1 ∣ ∑
 ( ) 
Jπ (i) = lim E g xk, µk(xk) ∣ x0 = i 

N→∞ 
k=0 

− Optimal policy if Jπ (i) =  J∗(i) for all i. 
− Special notation: For stationary policies π = 

{µ, µ, . . .}, we use  Jµ(i) in place  of  Jπ(i). 

• Assumption (Termination inevitable): There ex
ists integer m such that for every policy and initial 
state, there is positive probability that the termi
nation state will be reached after no more that m 
stages; for all π, we have  

ρπ = max  P{xm � = i, π} < 1= t | x0 
i=1,...,n 



∑ 

∑ 

∑ { ( )} 

MAIN RESULT
 

• Given any initial conditions J0(1), . . . , J0(n), 
the sequence Jk(i) generated by value iteration   

n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 
u∈U(i) 

j=1 

converges to the optimal cost J∗(i) for  each  i. 

• Bellman’s equation has J∗(i) as unique solution: 

  
n 

J∗(i) =  min  g(i, u) +  pij (u)J∗(j) , ∀ i 
u∈U(i) 

j=1 

• A stationary policy µ is optimal if and only 
if for every state i, µ(i) attains the minimum in 
Bellman’s equation. 

• Key proof idea: The “tail” of the cost series, 

∞ 

E g xk, µk(xk) 
k=mK 

vanishes as K increases to ∞.
 



( ) ( ) ∑ 

BELLMAN’S EQUATION FOR A SINGLE POLICY
 

• Consider a stationary policy µ 

• Jµ(i), i = 1, . . . , n, are the unique solution of 
the linear system of n equations 

n 

Jµ(i) =  g i, µ(i) + pij µ(i) Jµ(j), ∀ i = 1, . . . , n  
j=1 

• Proof: This is just Bellman’s equation for a 
modified/restricted problem where there is only 
one policy, the stationary policy µ, i.e., the control 
constraint set at state i is Ũ(i) =  {µ(i)} 

• The equation provides a way to compute Jµ(i), 
i = 1, . . . , n, but the computation is substantial 
for large n [O(n3)] 

• For large n, value iteration may be preferable. 
(Typical case of a large linear system of equations, 
where an iterative method may be better than a 
direct solution method.) 



( ) ( ) ∑ 

∑ 

POLICY ITERATION
 

• It generates a sequence µ1, µ2 , . . .  of stationary 
policies, starting with any stationary policy µ0. 

• At the typical iteration, given µk, we  perform  
a policy evaluation step, that computes the Jµk (i) 
as the solution of the (linear) system of equations 

n 

J(i) =  g i, µk(i) + pij µk(i) J(j), i = 1, . . . , n,  
j=1 

in the n unknowns J(1), . . . , J(n). We then per
form a policy improvement step, which computes 
a new policy µk+1 as 

  
n µk+1(i) =  arg  min  g(i, u) +  pij (u)J k (j) , ∀ i 

u∈U(i) 
µ 

j=1 

• The algorithm stops when Jµk (i) =  J µk+1 (i) for  
all i 

• Note the connection with the rollout algorithm, 
which is just a single policy iteration 



( ) ( ) ∑ 

( ) ( ) ∑ 

JUSTIFICATION OF POLICY ITERATION
 

 We can show thatJ  µk+1 (i) Jµ k(i) for all i, k • ≤
• Fix k and consider the sequence generated by 

n 

JN+1(i) =  g i, µk+1(i) + pij µk+1(i) JN (j)
 
j=1
 

where J0(i) =  Jµk (i). We have
 
n
 

J0(i) =  g i, µk(i) + pij µk(i) J0(j)
 
j=1
 

n
 ( ) ∑
 ( ) ≥ g i, µk+1(i) + pij µk+1(i) J0(j) =  J1(i) 
j=1 

Using the monotonicity property of DP, 

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i 

Since JN (i) → Jµk+1 (i) as  N → ∞, we  obtain  
J µk (i) =  J0(i) ≥ J µk+1 (i) for all i. Also  if  J µk (i) =  
J µk+1 (i) for all i, J µk solves Bellman’s equation 
and is therefore equal to J∗ 

• A policy cannot be repeated, there are finitely
 
many stationary policies, so the algorithm termi
 
nates with an optimal policy
 



∑ 

( ) 

∑ 

∑ 

LINEAR PROGRAMMING
 

• We claim that J∗ is the “largest” J that satisfies 
the constraint 

n 

J(i) ≤ g(i, u) +  pij (u)J(j), (1) 
j=1 

for all i = 1, . . . , n  and u ∈ U(i). 

• Proof: If we use value iteration to generate a se
 
quence of vectors Jk = Jk(1), . . . , Jk(n) starting 
with a J0 such that   

n 

J0(i) ≤ min g(i, u) +  pij (u)J0(j) , ∀ i 
u∈U(i) 

j=1 

Then, Jk(i) ≤ Jk+1(i) for all k and i (mono
tonicity property of DP) and Jk → J∗, so  that  
J0(i) ≤ J∗(i) for all i. 

• So J∗ = (J∗(1), . . . , J∗(n)) is the solution of the 
linear program of maximizing i

n 
=1 J(i) subject 

to the constraint (1). 



LINEAR PROGRAMMING (CONTINUED)
 

J (1) 

J (2) 

0 

J* = (J*(1),J*(2)) 

J (1)  =  g(1,u2) +  p  11(u 2)J (1) + p  12(u 2)J (2) 

J (1)  =  g(1,u1 ) +  p  11(u
1 )J (1) + p 12(u

1 )J (2) 

J (2)  =  g(2,u1) +  p 21(u
1 )J (1) + p 22(u

1)J (2) 

J (2)  =  g(2,u2) +  p 21(u 2)J (1) + p 22(u
2)J (2) 

• Drawback: For large n the dimension of this 
program is very large. Furthermore, the num
ber of constraints is equal to the number of state-
control pairs. 



∑ 

∑ 

DISCOUNTED PROBLEMS
 

• Assume a discount factor α <  1. 

• Conversion to an SSP problem. 

pij(u) a pij(u) 

pii(u) i j a pjj(u) 

pji(u) 

p jj(u ) a pii(u) 

1 - a 

i j 

p ji(u) a 
1 - a 

t 

• Value iteration converges to J∗ for all initial J0:   
n Jk+1(i) =  min  g(i, u) +  α pij (u)Jk(j) , ∀ i 

u∈U(i) 
j=1 

• J∗ is the unique solution of Bellman’s equation: 

  
n J∗(i) =  min  g(i, u) +  α pij (u)J∗(j) , ∀ i 

u∈U(i) 
j=1 



[ ] { } 

{ } 

DISCOUNTED PROBLEMS (CONTINUED)
 

• Policy iteration converges finitely to an optimal 
policy, and linear programming works. 

• Example: Asset selling over an infinite horizon. 
If accepted, the offer xk of period k, is invested at 
a rate of interest r. 

• By depreciating the sale amount to period 0 
dollars, we view (1 + r)−kxk as the reward for 
selling the asset in period k at a price xk, where  
r >  0 is the rate of interest. So the discount factor 
is α = 1/(1 + r). 

• J∗ is the unique solution of Bellman’s equation 

E J∗(w)
J∗(x) = max  x, .

1 +  r 

• An optimal policy is to sell if and only if the cur
 
rent offer xk is greater than or equal to ᾱ, where  
  

E J∗(w)
ᾱ = .


1 +  r 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 15
 

LECTURE OUTLINE
 

• Average cost per stage problems 

• Connection with stochastic shortest path prob
lems 

• Bellman’s equation 

• Value iteration 

• Policy iteration 



∑ 

AVERAGE COST PER STAGE PROBLEM
 

• Stationary system with finite number of states 
and controls 

•	 Minimize over policies π = {µ0, µ1, ...} 

{	 } 
1 

N−1 ( ) 
Jπ(x0) = lim E g xk, µk(xk), wk 

N→∞ N wk 
k=0,1,... k=0 

• Important characteristics (not shared by other 
types of infinite horizon problems) 

−	 For any fixed K, the cost incurred up to time 
K does not matter (only the state that we 
are at time K matters) 

−	 If all states “communicate” the optimal cost 
is independent of the initial state [if we can 
go from i to j in finite expected time, we 

∗must have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ for 
all	i. 

−	 Because “communication” issues are so im
portant, the methodology relies heavily on 
Markov chain theory. 



CONNECTION WITH SSP
 

• Assumption: State n is such that for some 
integer m >  0, and for all initial states and all 
policies, n is visited with positive probability at 
least once within the first m stages. 

• Divide the sequence of generated states into 
cycles marked by successive visits to n. 

• Each of the cycles can be viewed as a state 
trajectory of a corresponding stochastic shortest 
path problem with n as the termination state. 

i j 

p ij(u) 

pii(u) pjj(u) pji(u) 

n 

pin(u) pjn(u) 

pn n(u) 

pnj(u) pni(u) 

i j 

p ij(u) 

pii(u) pjj(u) pji(u) 

n 

t 

Artificial Termination State 

Special 
State n 

pni(u) 

pin(u) 

pn n(u) 

pnj(u) 

pjn(u) 

• Let the cost at i of the SSP be g(i, u) − λ∗ 

• We will show that 

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl. 



CONNECTION WITH SSP (CONTINUED)
 

• Consider a minimum cycle cost problem: Find  
  
a stationary policy µ that minimizes the expected
 
cost per transition within a cycle
 

Cnn(µ)
 
Nnn(µ) 

,
 

where for a fixed µ, 

Cnn(µ) :  E{cost from n up to the first return to n} 

Nnn(µ) :  E{time from n up to the first return to n} 

• Intuitively, optimal cycle cost = λ∗, so  

Cnn(µ) − Nnn(µ)λ∗ ≥ 0, 

with equality if µ is optimal. 

• Thus, the optimal µ must minimize over µ the
 
expression Cnn(µ) − Nnn(µ)λ∗, which  is  the  ex 
  
pected cost of µ starting from n in the SSP with
 
stage costs g(i, u) − λ∗. Also:  Optimal SSP Cost
 
= 0.  
  



∑ 

∑ 

BELLMAN’S EQUATION
 

• Let h∗(i) the optimal cost of this SSP problem 
when starting at the nontermination states i = 
1, . . . , n. Then, h∗(1), . . . , h∗(n) solve uniquely 
the corresponding Bellman’s equation 

  
n−1 

h∗(i) =  min  g(i, u) − λ∗ + pij (u)h∗(j) , ∀ i 
u∈U(i) 

j=1 

∗ • If µ is an optimal stationary policy for the SSP 
problem, we have 

h∗(n) =  Cnn(µ ∗) − Nnn(µ ∗)λ∗ = 0  

• Combining these equations, we have 

  
n λ∗+h∗(i) =  min  g(i, u) +  pij (u)h∗(j) , ∀ i 

u∈U(i) 
j=1 

∗ • If µ ∗(i) attains the min for each i, µ is optimal. 



MORE ON THE CONNECTION WITH SSP 

• Interpretation of h∗(i) as  a  relative or differen
 
tial cost : It is the minimum of
 

E{cost to reach n from i for the first time}
∗−	E{cost if the stage cost were λ and not g(i, u)} 

• We don’t know λ∗, so we can’t solve the aver
 
age cost problem as an SSP problem. But similar
 
value and policy iteration algorithms are possible.
 

•	 Example: A manufacturer at each time:
 
− Receives an order with prob. p and no order
 

with prob. 1 − p.
 
− May process all unfilled orders at cost K >  
  

0, or process no order at all. The cost per
 
unfilled order at each time is c > 0.
 

− Maximum number of orders that can remain
 
unfilled is n.
 

−	 Find a processing policy that minimizes the 
total expected cost per stage. 



[ 
] 

EXAMPLE (CONTINUED) 

• State = number of unfilled orders. State 0 is 
the special state for the SSP formulation. 

• Bellman’s equation: For states i = 0, 1, . . . , n−1 

λ∗ + h∗(i) = min  K + (1  − p)h∗(0) + ph∗(1), 

ci + (1  − p)h∗(i) +  ph∗(i + 1)  , 

and for state n 

λ∗ + h∗(n) =  K + (1  − p)h∗(0) + ph∗(1) 

• Optimal policy: Process i unfilled orders if 

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1). 

• Intuitively, h∗(i) is monotonically nondecreas
ing with i (interpret h∗(i) as optimal costs-to-go 
for the associate SSP problem). So a threshold pol
icy is optimal: process the orders if their number 
exceeds some threshold integer m ∗ . 



∑ 

∣ ∣ ∣ ∣ 

VALUE ITERATION
 

• Natural value iteration method: Generate op
timal k-stage costs by DP algorithm starting with 
any J0:   

n Jk+1(i) =  min  g(i, u) +  pij (u)Jk(j) , ∀ i 
u∈U(i) 

j=1 

• Result: limk→∞ Jk(i)/k = λ∗ for all i. 

• Proof outline: Let Jk 
∗ be so generated from the 

initial condition J0 
∗ = h∗ . Then, by induction, 

Jk 
∗(i) =  kλ∗ + h∗(i), ∀i, ∀ k. 

On the other hand, 

∣Jk(i) − Jk 
∗(i)∣ ≤ max ∣J0(j) − h∗(j)∣, ∀ i 

j=1,...,n 

since Jk(i) and  Jk 
∗(i) are optimal costs for two 

k-stage problems that differ only in the terminal 
cost functions, which are J0 and h∗ . 



∑ 

RELATIVE VALUE ITERATION
 

• The value iteration method just described has 
two drawbacks: 

−	 Since typically some components of Jk di
verge to ∞ or −∞, calculating limk→∞ Jk(i)/k 
is numerically cumbersome. 

−	 The method will not compute a correspond
ing differential cost vector h∗ . 

• We can bypass both difficulties by subtracting 
a constant from all components of the vector Jk, 
so that the difference, call it hk, remains bounded. 

• Relative value iteration algorithm: Pick any 
state s, and iterate according to 	  

n hk+1(i) =  min  g(i, u) +  pij (u)hk(j) 
u∈U(i) 

j=1 	  
n ∑
 

−	 min g(s, u) +  psj (u)hk(j) , ∀ i 
u∈U(s) 

j=1 

• Then we can show hk → h∗ (under an extra 
assumption). 



( ) ( ) ∑ 

∑ 

POLICY ITERATION
 

 At the typical iteration, we have a station• ary 
µk. 

• Policy evaluation: Compute λk and hk(i) of  µk, 
using the n + 1  equations  hk(n) = 0  and  

n 

λk + hk(i) =  g i, µk(i) + pij µk(i) hk(j), ∀ i 
j=1 

• Policy improvement: Find for all i   
n µk+1(i) = arg  min  g(i, u) +  pij (u)hk(j)
 

u∈U(i)
 
j=1 

• If λk+1 = λk and hk+1(i) =  hk(i) for all i, stop; 
otherwise, repeat with µk+1 replacing µk. 

• Result: For each k, we  either have  λk+1 < λk 

or 

λk+1 = λk , hk+1(i) ≤ hk(i), i = 1, . . . , n.  

The algorithm terminates with an optimal policy.
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LECTURE OUTLINE
 

• Control of continuous-time Markov chains – 
Semi-Markov problems 

• Problem formulation – Equivalence to discrete-
time problems 

• Discounted problems 

• Average cost problems 



CONTINUOUS-TIME MARKOV CHAINS
 

• Stationary system with finite number of states 
and controls 

• State transitions occur at discrete times 

• Control applied at these discrete times and stays 
constant between transitions 

• Time between transitions is random 

• Cost accumulates in continuous time (may also 
be incurred at the time of transition) 

• Example: Admission control in a system with 
restricted capacity (e.g., a communication link) 

− Customer arrivals: a Poisson process 
− Customers entering the system, depart after 

exponentially distributed time 

− Upon arrival we must decide whether to ad
mit or to block  a customer  

− There is a cost for blocking a customer 
− For each customer that is in the system, there 

is a customer-dependent reward per unit time 

− Minimize time-discounted or average cost 



PROBLEM FORMULATION 

• x(t) and  u(t): State and control at time t 

• tk: Time  of  kth transition (t0 = 0)  

• xk = x(tk); x(t) =  xk for tk ≤ t < tk+1. 

• uk = u(tk); u(t) =  uk for tk ≤ t < tk+1. 

• No transition probabilities; instead transition 
distributions (quantify the uncertainty about both 
transition time and next state) 

Qij (τ, u) =  P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u} 

• Two important formulas: 

(1) Transition probabilities are specified by 

pij (u) =  P{xk+1 = j | xk = i, uk = u} = lim Qij (τ, u) 
τ →∞ 

(2) The Cumulative Distribution Function (CDF) 
of τ given i, j, u is (assuming pij (u) > 0) 

Qij (τ, u)
P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} = 

pij (u) 

Thus, Qij (τ, u) can be viewed as a “scaled CDF” 



EXPONENTIAL TRANSITION DISTRIBUTIONS
 

•	 Important example of transition distributions:
 

(	 ) 
Qij (τ, u) =  pij (u) 1 − e−νi(u)τ , 

where pij (u) are transition probabilities, and νi(u) 
is called the transition rate at state i. 

• Interpretation: If the system is in state i and 
control u is applied 

− the next state will be j with probability pij (u) 
−	 the time between the transition to state i 

and the transition to the next state j is ex
ponentially distributed with parameter νi(u) 
(independently of j): 

P{transition time interval > τ  | i, u} = e−νi(u)τ 

• The exponential distribution is memoryless. 
This implies that for a given policy, the system 
is a continuous-time Markov chain (the future de
pends on the past through the present). 

• Without the memoryless property, the Markov 
property holds only at the times of transition. 



{ } 

{ } 

COST STRUCTURES
 

• There is cost g(i, u) per unit time, i.e. 

g(i, u)dt = the cost incurred in time dt
 

• There may be an extra “instantaneous” cost 
ĝ(i, u) at the time of a transition (let’s ignore this 
for the moment) 

• Total discounted cost of π = {µ0, µ1, . . .} start
ing from state i (with discount factor β >  0) 

N−1∫ ∣ ∑ tk+1 −βt 
( ) ∣

lim E e g xk, µk(xk) dt ∣ x0 = i
 
N→∞
 

k=0 tk
 

• Average cost per unit time 

N−1∫ ∣ 
1 ∑ tk+1 ( ) ∣


lim E g xk, µk(xk) dt ∣ x0 = i
 
N→∞ E{tN } 

k=0 tk 

• We will see that both problems have equivalent 
discrete-time versions. 



A NOTE ON NOTATION
 

 The scaled CDF Qij (τ, u) can be used to model •
discrete, continuous, and mixed distributions for 
the transition time τ . 

• Generally, expected values of functions of τ can 
be written as integrals involving dQij (τ, u). For 
example, the conditional expected value of τ given 
i, j, and  u is written as ∫
 ∞ dQij (τ, u)

E{τ | i, j, u} = 
0 

τ
pij (u) 

• If Qij (τ, u) is continuous with respect to τ , its  
derivative 

qij (τ, u) =  
dQij (τ, u)
dτ 

can be viewed as a “scaled” density function. Ex
pected values of functions of τ can then be written  
in terms of qij (τ, u). For example ∫
 ∞ qij (τ, u)

E{τ | i, j, u} = 
0 

τ
pij (u) 

dτ 

• If Qij (τ, u) is discontinuous and “staircase-like,” 
expected values can be written as summations. 



DISCOUNTED PROBLEMS – COST CALCULATION
 

• For a policy π = {µ0, µ1, . . .}, write  

Jπ (i) =  E{1st transition cost}+E{e −βτ Jπ1(j) | i, µ0(i)} 

where Jπ1(j) is the cost-to-go of the policy π1 = 
{µ1, µ2, . . .} 

• We calculate the two costs in the RHS. The
 
E{1st transition cost}, if  u is applied at state i, is  
  

{ }
 
G(i, u) =  Ej Eτ {1st transition cost | j} 

n ∫ ∞ (∫ ) ∑ τ 
dQij (τ, u) 

= pij (u) e −βt g(i, u)dt 

j=1 0 0 
pij (u) 

n ∫ ∞ ∑ −βτ1 − e 
= g(i, u)dQij (τ, u)

β 
j=1 0 

• Thus the E{1st transition cost} is 

n ∫ ∞ ( ) ( )∑ 1 − e −βτ ( ) 
G i, µ0(i) = g i, µ0(i) dQij τ, µ0(i)

β 
j=1 0 



{ } 

{ } 

∑ ( ) 

( ) 

( ) ( ) ∑ 

COST CALCULATION (CONTINUED) 

• Also the expected (discounted) cost from the 
next state j is 

E e−βτ Jπ1(j) | i, µ0(i) 

= Ej E{e−βτ | i, µ0(i), j}Jπ1(j) | i, µ0(i) 
n ∫ ∞ ∑ ( 

dQij (τ, u) 
) 

= pij (u) e−βτ Jπ1(j) 
0 pij (u)

j=1
 

n
 

= mij µ(i) Jπ1(j)
 
j=1
 

where mij (u) is  given  by  

∫ ∞ ∫ ∞ 

mij (u) =  e −βτ dQij (τ, u) < dQij (τ, u) = pij (u) 
0 0 

and can be viewed as the “effective discount fac
tor” [the analog of αpij (u) in the discrete-time 
case]. 

• So Jπ(i) can be written as 

n 

Jπ(i) =  G i, µ0(i) + mij µ0(i) Jπ1(j) 
j=1 



∑ 

∑ 

∑ 

EQUIVALENCE TO AN SSP
 

• Similar to the discrete-time case, introduce a 
stochastic shortest path problem with an artificial 
termination state t 

• Under control u, from state i the system moves 
to state j with probability mij (u) and to the ter
mination state t with probability 1 − n

j=1 mij (u) 

• Bellman’s equation: For i = 1, . . . , n,   
n J∗(i) =  min  G(i, u) +  mij (u)J∗(j)


u∈U(i)

j=1 

• Analogs of value iteration, policy iteration, and 
linear programming. 

• If in addition to the cost per unit time g, there  
is an extra (instantaneous) one-stage cost ĝ(i, u), 
Bellman’s equation becomes 

  
n 

J∗(i) =  min  ĝ(i, u) +  G(i, u) +  mij (u)J∗(j) 
u∈U(i) 

j=1 



[ ] 

MANUFACTURER’S EXAMPLE REVISITED
 

• A manufacturer receives orders with interarrival 
times uniformly distributed in [0, τmax]. 

• He may process all unfilled orders at cost K >  0, 
or process none. The cost per unit time of an 
unfilled order is c. Max number of unfilled orders 
is n. 

• The nonzero transition distributions are 

τ 
Qi1(τ, Fill) = Qi(i+1)(τ, Not Fill) = min 1, 

τmax 

• The one-stage expected cost G is 

G(i, Fill) = 0, G(i, Not Fill) = γ c i,  
  

where 

n ∫ ∫ ∑ ∞ 1 − e−βτ τmax 1 − e−βτ 
γ = dQij(τ, u) =  dτ 

0 β 0 βτmax
j=1 

• There is an “instantaneous” cost 

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0




[	 ]


MANUFACTURER’S EXAMPLE CONTINUED
 

• The “effective discount factors” mij (u) in Bell-
man’s Equation are 

mi1(Fill) = mi(i+1)(Not Fill) = α,
 

where
 ∫ ∞	 ∫ τmax −βτ	 −βτmax 

α = e −βτ dQij(τ, u) = 	
e 

dτ =
1 − e 

τmax βτmax0	 0 

• Bellman’s equation has the form 

J∗(i) =  min  K+αJ∗(1), γci+αJ∗(i+1) , i = 1, 2, . . .  

• As in the discrete-time case, we can conclude 
that there exists an optimal threshold i∗: 

fill the orders <==> their number i exceeds i∗ 



∫ 

∑ 

( ) 

AVERAGE COST
 

• Minimize 

1 
{ tN 

} 

lim E g x(t), u(t) dt 
N→∞ E{tN } 0 

assuming there is a special state that is “recurrent 
under all policies” 

• Total expected cost of a transition 

G(i, u) =  g(i, u)τ i(u), 
where τ i(u): Expected transition time. 

• We now apply the SSP argument used for the 
discrete-time case. Divide trajectory into cycles 
marked by successive visits to n. The  cost  at  (i, u) 
is G(i, u) − λ∗τ i(u), where λ∗ is the optimal ex
pected cost per unit time. Each cycle is viewed as 
a state trajectory of a corresponding SSP problem 
with the termination state being essentially n. 

• So Bellman’s Eq. for the average cost problem:   
n h∗(i) =  min  G(i, u) − λ∗τ i(u) +  pij (u)h∗(j) 

u∈U(i) 
j=1 



[ 
] 

AVERAGE COST MANUFACTURER’S EXAMPLE
 

•	 The expected transition times are
 

τ i(Fill) = τ i(Not Fill) = 
τmax
 

2
 

the expected transition cost is
 

G(i, Fill) = 0, G(i, Not Fill) = 
c i τmax 

2
 

and there is also the “instantaneous” cost
 

ĝ(i, Fill) = K, ĝ(i, Not Fill) = 0
 

• Bellman’s equation: 

h∗(i) =  min  K − λ∗ 
τmax + h∗(1),

2 

ci
τmax −	λ∗ 

τmax + h∗(i + 1)  
2	 2 

• Again it can be shown that a threshold policy 
is optimal. 
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LECTURE OUTLINE
 

• We start a four-lecture sequence on advanced 
infinite horizon DP 

• We allow infinite state space, so the stochastic
 
shortest path framework cannot be used any more
 

• Results are rigorous assuming a countable dis
turbance space 

−	 This includes deterministic problems with 
arbitrary state space, and countable state 
Markov chains 

−	 Otherwise the mathematics of measure the
ory make analysis difficult, although the fi
nal results are essentially the same as for 
countable disturbance space 

• The discounted problem is the proper starting 
point for this analysis 

• The central mathematical structure is that the 
DP mapping is a contraction mapping (instead of 
existence of a termination state) 



{ } ∑
 ( ) 

{ ( )} 

DISCOUNTED PROBLEMS W/ BOUNDED COST
 

• Stationary system with arbitrary state space 

xk+1 = f(xk, uk, wk), k = 0, 1, . . .  

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E αkg xk, µk(xk), wk 
N→∞ wk
 

k=0,1,... k=0
 

with α < 1, and for some M , we  have  |g(x, u, w)| ≤
M for all (x, u, w) 

• Shorthand notation for DP mappings (operate
 
on functions of state to produce other functions)
 

(TJ)(x) =  min  E g(x, u, w) + αJ f(x, u, w) , ∀ x
 
u∈U(x) w 

TJ  is the optimal cost function for the one-stage
 
problem with stage cost g and terminal cost αJ .
 

• For any stationary policy µ 

{ ( ) ( )} 
(TµJ)(x) = E g x, µ(x), w  + αJ f(x, µ(x), w) , ∀ x 

w 



“SHORTHAND” THEORY – A SUMMARY
 

• Cost function expressions [with J0(x) ≡ 0] 

Jπ (x) = lim (Tµ0 Tµ1 · · ·Tµk J0)(x), Jµ(x) = lim (Tµ
k J0)(x) 

k→∞ k→∞ 

• Bellman’s equation: J∗ = TJ∗ , Jµ = TµJµ 

•	 Optimality condition:
 

µ: optimal  <==> TµJ∗ = TJ∗
 

• Value iteration: For any (bounded) J and all
 
x,
 

J∗(x) = lim (T kJ)(x)
 
k→∞ 

•	 Policy iteration: Given µk,
 
− Policy evaluation: Find Jµk by solving
 

J k = T k J kµ µ µ 

− Policy improvement: Find µk+1 such that 

T	 k+1 J k = TJ  kµ µ µ 



( ) 
( ) 

TWO KEY PROPERTIES
 

• Monotonicity property: For any functions J 
and J ′ such that J(x) ≤ J ′(x) for all x, and  any  
µ 

(TJ)(x) ≤ (TJ ′)(x), ∀ x, 

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x. 

• Additivity property: For any J , any scalar 
r, and  any  µ 

T (J + re) (x) = (TJ)(x) +  αr, ∀ x,
 

Tµ(J + re) (x) = (TµJ)(x) +  αr, ∀ x, 

where e is the unit function [e(x) ≡ 1]. 



{ } ∑ ( ) 
{ } ∑ ( ) 
{ } ∑ ( ) 

∣ ∣ ∣ ∣ { } 

CONVERGENCE OF VALUE ITERATION
 

• If J0 ≡ 0, 

J∗(x) = lim (TN J0)(x), for all x 
N→∞ 

Proof: For any initial state x0, and policy π = 
{µ0, µ1, . . .}, 

∞ 

Jπ(x0) =  E αkg xk, µk(xk), wk
 

k=0
 

N−1 

= E αkg xk, µk(xk), wk 

k=0 

∞ 

+ E αkg xk, µk(xk), wk 

k=N 

The tail portion satisfies 

∣ ∞ ∣ ∑ ( ) αN M ∣ E αkg xk, µk(xk), wk ∣ ≤ , ∣ ∣ 1 − α
 
k=N 

where M ≥ |g(x, u, w)|. Take  the  min  over  π of 
both sides. Q.E.D. 



BELLMAN’S EQUATION
 

• The optimal cost function J∗ satisfies Bellman’s 
Eq., i.e. J∗ = T (J∗). 

Proof: For all x and N , 

αN M αN M 
J∗(x) − ≤ (TN J0)(x) ≤ J∗(x) +  ,

1 − α 1 − α 

where J0(x) ≡ 0 and  M ≥ |g(x, u, w)|. Applying 
T to this relation, and using Monotonicity and 
Additivity, 

αN+1M

(TJ∗)(x) − ≤ (TN+1J0)(x)


1 − α 
αN+1M ≤ (TJ∗)(x) +  
1 − α 

Taking the limit as N → ∞ and using the fact 

lim (TN+1J0)(x) =  J∗(x) 
N→∞ 

we obtain J∗ = TJ∗ . Q.E.D. 



∣ ∣ ∣ ∣ ∣ ∣ 
∣ ∣ ∣ ∣ ∣ ∣ 

∣ ∣ ∣ 

∣ ∣ ∣ 

THE CONTRACTION PROPERTY
 

• Contraction property: For any bounded func
tions J and J ′, and  any  µ, 

max∣(TJ)(x) − (TJ ′)(x) ≤ α max∣J(x) − J ′(x) , 
x x 

max∣(TµJ)(x)−(TµJ ′)(x) ≤ α max∣J(x)−J ′(x) . 
x x 

Proof: Denote c = maxx∈S ∣J(x) − J ′(x) . Then 

J(x) − c ≤ J ′(x) ≤ J(x) +  c, ∀ x 

Apply T to both sides, and use the Monotonicity 
and Additivity properties: 

(TJ)(x) − αc ≤ (TJ ′)(x) ≤ (TJ)(x)+  αc, ∀ x 

Hence 

∣(TJ)(x) − (TJ ′)(x) ≤ αc, ∀ x. 

Q.E.D.
 



∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 

∣ ∣ 

IMPLICATIONS OF CONTRACTION PROPERTY
 

• Bellman’s equation J = TJ  has a unique solu
tion, namely J∗, and for any bounded J , we have  

lim (T kJ)(x) =  J∗(x), ∀ x 
k→∞ 

Proof: Use 

max∣(T kJ)(x) − J∗(x) ≤ max∣(T kJ)(x) − (T kJ∗)(x) 
x x 

≤ αk max∣J(x) − J∗(x) 
x 

• Convergence rate: For all k, 

∣ ∣ ∣ ∣
 
max∣(T kJ)(x) − J∗(x) ≤ αk max∣J(x) − J∗(x) 

x x 

• Also, for each stationary µ, Jµ is the unique 
solution of J = TµJ and 

lim (Tµ
kJ)(x) =  Jµ(x), ∀ x, 

k→∞ 

for any bounded J . 



NEC. AND SUFFICIENT OPT. CONDITION
 

• A stationary policy µ is optimal if and only if 
µ(x) attains the minimum in Bellman’s equation 
for each x; i.e., 

TJ∗ = TµJ∗ . 

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa
tion (J∗ = TJ∗), we have 

J∗ = TµJ∗ , 

so by uniqueness of the fixed point of Tµ, we  obtain  
J∗ = Jµ; i.e., µ is optimal. 

• Conversely, if the stationary policy µ is optimal, 
we have J∗ = Jµ, so  

J∗ = TµJ∗ . 

Combining this with Bellman’s equation (J∗ = 
TJ∗), we obtain TJ∗ = TµJ∗ . Q.E.D. 



∑ 

∑ 

COMPUTATIONAL METHODS
 

•	 Value iteration and variants 
− Gauss-Seidel version 

− Approximate value iteration 

•	 Policy iteration and variants 
− Combination with value iteration 

− Modified policy iteration 

− Asynchronous policy iteration 

• Linear programming
 

n 

maximize J(i) 
i=1 

n 

subject to J(i) ≤ g(i, u) +  α pij (u)J(j), ∀ (i, u) 
j=1 

• Approximate linear programming: use in place 
of J(i) a low-dim. basis function representation 

m ∑
 
J̃(i, r) =  rkwk(i) 

k=1 

and low-dim. LP (with many constraints)
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• One-step lookahead and rollout for discounted 
problems 

• Approximate policy iteration: Infinite state 
space 

• Contraction mappings in DP 

• Discounted problems: Countable state space 
with unbounded costs 



ONE-STEP LOOKAHEAD POLICIES
 

• At state i use the control µ(i) that attains  the  
minimum in 	  

n 

(T J̃)(i) =  min  g(i, u) +  α 
∑ 

pij (u)J̃(j) , 
u∈U(i) 

j=1 

where J̃  is some approximation to J∗ . 

• Assume that 

T J̃  ≤ J̃ + δe,
 

for some scalar δ, where  e is the unit vector. Then
 

Jµ ≤ T J̃ + 
αδ 

e ≤ J̃ + 
δ 

e.
1 − α	 1 − α 

•	 Assume that 

J∗ − εe ≤ J̃  ≤ J∗ + εe, 

for some scalar ε. Then  

2αε 
Jµ ≤ J∗ + e.

1 − α 



∑ 

APPLICATION TO ROLLOUT POLICIES
 

• Let µ1, . . . , µM be stationary policies, and let 

J̃(i) = min  
{	 
Jµ1(i), . . . , JµM (i) 

}
 
, ∀ i. 

• Then, for all i, and  m = 1, . . . ,M , we  have  
  

	  
n 

(T J̃)(i) =  min  g(i, u) +  α 
∑ 

pij (u)J̃(j) 
u∈U(i) 

j=1 	  
n ≤ min g(i, u) +  α pij (u)Jµm (j) 

u∈U(i) 
j=1 

≤ Jµm (i) 

•	 Taking minimum over m, 

(T J̃)(i) ≤ J̃(i), ∀ i. 

• Using the preceding slide result with δ = 0,  
  

Jµ(i) ≤ J̃(i) =  min  
{	 
Jµ1(i), . . . , JµM (i) 

} 
, ∀ i, 

i.e., the rollout policy µ improves over each µm.
 



APPROXIMATE POLICY ITERATION
 

• Suppose that the policy evaluation is approxi
mate, according to, 

max |Jk(x) − Jµk (x)| ≤ δ, k = 0, 1, . . .  
x 

and policy improvement is approximate, according 
to, 

max |(Tµk+1 Jk)(x)−(TJk)(x)| ≤ ε, k = 0, 1, . . .  
x 

where δ and ε are some positive scalars. 

• Error Bound: The sequence {µk} generated 
by approximate policy iteration satisfies 

( ) ε + 2αδ
lim supmax Jµk (x) − J∗(x) ≤ 

k→∞ x∈S (1 − α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
Jµk oscillate within a neighborhood of J∗ . 



CONTRACTION MAPPINGS
 

• Given a real vector space Y with a norm ‖ · ‖  
(i.e., ‖y‖ ≥ 0 for all y ∈ Y , ‖y‖ = 0  if  and  only  if  
y = 0,  and  ‖y + z‖ ≤ ‖y‖ + ‖z‖ for all y, z ∈ Y ) 

• A function F : Y → Y is said to be a contraction 
mapping if for some ρ ∈ (0, 1), we have 

‖F (y) − F (z)‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.
 

ρ is called the modulus of contraction of F . 

• For m >  1, we say that F is an m-stage con
traction if Fm is a contraction. 

• Important example: Let S be a set (e.g., state 
space in DP), v : S → � be a positive-valued 
function. Let B(S) be the set of all functions J : 
S → � such that J(s)/v(s) is bounded over s.
 

• We define a norm on B(S), called the weighted
 
sup-norm, by  

|J(s)|‖J‖ = max  .
 
s∈S v(s) 

• Important special case: The discounted prob
lem mappings T and Tµ [for v(s) ≡ 1, ρ = α]. 



• Contraction   

CONTRACTION MAPPING FIXED-POINT TH.
 

Mapping Fixed-Point Theo
rem: If F : B(S) → B(S) is a contraction with 
modulus ρ ∈ (0, 1), then there exists a unique 
J∗ ∈ B(S) such that 

J∗ = FJ∗ . 

Furthermore, if J is any function in B(S), then 
{F kJ} converges to J∗ and we have 

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2, . . . .  

• Similar result if F is an m-stage contraction 
mapping. 

• This is a special case of a general result for 
contraction mappings F : Y → Y over normed 
vector spaces Y that are complete: every sequence 
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as  
m,n → ∞) converges.  

• The space B(S) is complete (see the text for a 
proof). 



∑ 

∑ 

A DP-LIKE CONTRACTION MAPPING I
 

• Let S = {1, 2, . . .}, and  let  F : B(S) → B(S) 
be a linear mapping of the form 

(FJ)(i) =  b(i) +  a(i, j) J(j), ∀ i
 
j∈S 

where b(i) and  a(i, j) are some scalars. Then F is
 
a contraction with modulus ρ if 

|a(i, j)| v(j)j∈S 

v(i) 
≤ ρ, ∀ i 

• Let F : B(S) → B(S) be a mapping of the form
 

(FJ)(i) =  min(FµJ)(i), ∀ i 
µ∈M 

where M is parameter set, and for each µ ∈ M , 
Fµ is a contraction mapping from B(S) to  B(S) 
with modulus ρ. Then  F is a contraction mapping 
with modulus ρ. 



{ } { } 

{ } { }


∑ ∣ ∣ 

A DP-LIKE CONTRACTION MAPPING II
 

• Let S = {1, 2, . . .}, let  M be a parameter set,

and for each µ ∈ M , let 
∑
 

(FµJ)(i) =  b(i, µ) +  a(i, j, µ) J(j), ∀ i 
j∈S 

• We have FµJ ∈ B(S) for all J ∈ B(S) provided 

bµ ∈ B(S) and  Vµ ∈ B(S), where


bµ = b(1, µ), b(2, µ), . . .  , Vµ = V (1, µ), V (2, µ), . . .  , 

V (i, µ) =  ∣a(i, j, µ)∣ v(j), ∀ i 
j∈S 

• Consider the mapping F 

(FJ)(i) =  min(FµJ)(i), ∀ i 
µ∈M 

We have FJ  ∈ B(S) for all J ∈ B(S), provided

b ∈ B(S) and  V ∈ B(S), where


b = b(1), b(2), . . . , V = V (1), V (2), . . .  ,
 

with b(i) = maxµ∈M b(i, µ) and  V (i) =  maxµ∈M V (i, µ).
 



{ } 

∣ ∣ ∣ 

∑ 

DISCOUNTED DP - UNBOUNDED COST I
 

• State space S = {1, 2, . . .}, transition probabil
ities pij (u), cost g(i, u). 

•	 Weighted sup-norm
 |J(i)|
 ‖J‖ = max  
i∈S vi 

on B(S): sequences J(i)	 such that ‖J‖ < ∞.
 

• Assumptions: {	 } 
(a) G = G(1), G(2), . . .  ∈ B(S), where 

G(i) =  max  ∣g(i, u) , ∀ i 
u∈U(i) 

{	 } 
(b) V = V (1), V (2), . . .  ∈ B(S), where 

∑
 
V (i) =  max  pij (u) vj , ∀ i 

u∈U(i) 
j∈S 

(c) There exists an integer m ≥ 1 and  a scalar  
  
ρ ∈ (0, 1) such that for every policy π,
 

P (xm = j | x0 = i, π) vj
αm j∈S ≤ ρ, ∀ i 

vi 



∑ 

DISCOUNTED DP - UNBOUNDED COST II
 

• Example: Let vi = i for all i = 1, 2, . . .  

• Assumption (a) is satisfied if the maximum ex
pected absolute cost per stage at state i grows no 
faster than linearly with i. 

• Assumption (b) states that the maximum ex
pected next state following state i, 

max E{j | i, u},
 
u∈U(i) 

also grows no faster than linearly with i. 

• Assumption (c) is satisfied if 

mα P (xm = j | x0 = i, π) j ≤ ρ i,  ∀ i 
j∈S 

It requires that for all π, the expected value of the 
state obtained m stages after reaching state i is no 
more than α−mρ i. 

• If there is bounded upward expected change of 
the state starting at i, there exists m sufficiently 
large so that Assumption (c) is satisfied. 



∑


DISCOUNTED DP - UNBOUNDED COST III
 

•	 Consider the DP mappings Tµ and T , 

( )	 ∑ ( )
 
(TµJ)(i) =  g i, µ(i) +α pij µ(i) J(j), ∀ i, 

j∈S 

	 


(TJ)(i) =  min  g(i, u) +  α pij (u)J(j) , ∀ i 
u∈U(i) 

j∈S 

• Proposition: Under the earlier assumptions, 
T and Tµ map B(S) into  B(S), and are m-stage 
contraction mappings with modulus ρ. 

• The m-stage contraction properties can be used
 
to essentially replicate the analysis for the case of
 
bounded cost, and to show the standard results:
 

−	 The value iteration method Jk+1 = TJk con
verges to the unique solution J∗ of Bellman’s 
equation J = TJ . 

−	 The unique solution J∗ of Bellman’s equa
tion is the optimal cost function. 

− A stationary policy µ is optimal if and only 
if TµJ∗ = TJ∗ . 
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• Undiscounted problems 

• Stochastic shortest path problems (SSP) 

• Proper and improper policies 

• Analysis and computational methods for SSP
 

• Pathologies of SSP 



{ } ∑ ( ) 

{ ( )} 

UNDISCOUNTED PROBLEMS
 

 System: x = f(x , u , w ) • k+1 k k k

• Cost of a policy π = {µ0, µ1, . . .} 

N−1 

Jπ(x0) = lim E g xk, µk(xk), wk
 
N→∞ wk
 

k=0,1,... k=0 

• Shorthand notation for DP mappings 

(TJ)(x) =  min  E g(x, u, w) + J f(x, u, w) , ∀ x
 
u∈U(x) w 

• For any stationary policy µ 

{ ( ) ( )} 
(TµJ)(x) = E g x, µ(x), w  + J f(x, µ(x), w) , ∀ x 

w 

• Neither T nor Tµ are contractions in general, 
but their monotonicity is helpful. 

• SSP problems provide a “soft boundary” be
tween the easy finite-state discounted problems 
and the hard undiscounted problems. 

− They share features of both. 
− Some of the nice theory is recovered because 

of the termination state. 



( ) ( ) ∑ 

SSP THEORY SUMMARY I 

• As earlier, we have a cost-free term. state t, a  
  
finite number of states 1, . . . , n, and finite number
 
of controls, but we will make weaker assumptions.
 

• Mappings T and Tµ (modified to account for 
termination state t): 

[ ]
 
n ∑
 

(TJ)(i) =  min  g(i, u) +  pij (u)J(j) , i  = 1, . . . , n,  
u∈U(i) 

j=1 

n 

(TµJ)(i) = g i, µ(i) + pij µ(i) J(j), i  = 1, . . . , n.  
j=1 

• Definition: A stationary policy µ is called 
proper, if under µ, from every state i, there  is  
a positive probability path that leads to t. 

• Important fact: If µ is proper, Tµ is contrac
tion with respect to some weighted max norm 

1 1 
max |(TµJ)(i)−(TµJ ′)(i)| ≤ ρµ max |J(i)−J ′(i)|

i vi i vi 

• T is similarly a contraction if all µ are proper 
(the case discussed in the text, Ch. 7, Vol. I). 



SSP THEORY SUMMARY II
 

• The theory can be pushed one step further. 
Assume that: 

(a) There exists at least one proper policy 

(b) For each improper µ, Jµ(i) =  ∞ for some i 

•	 Then T is not necessarily a contraction, but: 
−	 J∗ is the unique solution of Bellman’s Equ. 

∗− µ is optimal if and only if Tµ ∗ J∗ = TJ∗ 

− limk→∞(T kJ)(i) =  J∗(i) for all i 
− Policy iteration terminates with an optimal 

policy, if started with a proper policy
 

• Example: Deterministic shortest path problem 
with a single destination t. 

− States <=> nodes; Controls <=> arcs 
− Termination state <=> the destination 

− Assumption (a) <=> every node is con
nected to the destination 

− Assumption (b) <=> all cycle costs > 0 



∑ 

′ 

SSP ANALYSIS I
 

• For a proper policy µ, Jµ is the unique fixed 
point of Tµ, and  Tµ

kJ → Jµ for all J (holds by the 
theory of Vol. I, Section 7.2) 

• A stationary µ satisfying J ≥ TµJ for some J 
must be proper - true because 

k−1 
mJ ≥ Tµ

kJ = Pµ
kJ + Pµ gµ 

m=0 

and some component of the term on the right
 
blows up if µ is improper (by our assumptions).
 

• Consequence: T can have at most one fixed 
point. 

Proof: If J and J ′ are two solutions, select µ 
and µ′ such that J = TJ  = TµJ and J ′ = TJ ′ = 
Tµ′ J ′. By preceding assertion, µ and µ′ must be 
proper, and J = Jµ and J ′ = Jµ′ . Also  

J = T kJ ≤ T k 
′ J → Jµ = J ′ 

µ 

Similarly, J ′ ≤ J , so  J = J ′. 



SSP ANALYSIS II
 

• We now show that T has a fixed point, and also 
that policy iteration converges. 

• Generate a sequence {µk} by policy iteration 
starting from a proper policy µ0. 

• µ1 is proper and Jµ0 ≥ Jµ1 since 

Jµ0 = Tµ0 Jµ0 ≥ TJµ0 = Tµ1 Jµ0 ≥ Tµ
k 
1 Jµ0 ≥ Jµ1 

• Thus {Jµk } is nonincreasing, some policy µ will 
be repeated, with Jµ = TJµ. So  Jµ is a fixed point 
of T . 

• Next show T kJ → Jµ for all J , i.e., value it
eration converges to the same limit as policy iter
ation. (Sketch: True if J = Jµ, argue using the 
properness of µ to show that the terminal cost 
difference J − Jµ does not matter.) 

• To show Jµ = J∗, for any π = {µ0, µ1, . . .} 

Tµ0 · · ·Tµk−1 J0 ≥ T kJ0, 

where J0 ≡ 0. Take lim sup as k → ∞, to obtain  
Jπ ≥ Jµ, so µ is optimal and Jµ = J∗ . 



∑ ∑ ( ) 

∑ ( ) 

SSP ANALYSIS III
 

• If all policies are proper (the assumption of 
Section 7.1, Vol. I), Tµ and T are contractions 
with respect to a weighted sup norm. 

Proof: Consider a new SSP problem where the 
transition probabilities are the same as in the orig
inal, but the transition costs are all equal to −1. 
Let Ĵ  be the corresponding optimal cost vector. 
For all µ, 

n n 

Ĵ(i) =  −1+ min pij (u)Ĵ(j) ≤ −1+ pij µ(i) Ĵ(j) 
u∈U(i) 

j=1 j=1 

For vi = −Ĵ(i), we have vi ≥ 1, and for all µ, 

n 

pij µ(i) vj ≤ vi − 1 ≤ ρ vi, i = 1, . . . , n, 
  
j=1
 

where 
vi − 1 

ρ = max  < 1. 
i=1,...,n vi 

This implies contraction of Tµ and T by the results 
of the preceding lecture. 



[ 
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PATHOLOGIES I: DETERM. SHORTEST PATHS
 

• If there is a cycle with cost = 0, Bellman’s equa
 
tion has an infinite number of solutions. Example:
 

0 

1 
1 2 t 

0 

• We have J∗(1) = J∗(2) = 1. 

• Bellman’s equation is 

J(1) = J(2), J(2) = min J(1), 1]. 

• It has J∗ as solution. 

• Set of solutions of Bellman’s equation: 

J | J(1) = J(2) ≤ 1 . 



[ 

PATHOLOGIES II: DETERM. SHORTEST PATHS
 

• If there is a cycle with cost < 0, Bellman’s 
equation has no solution [among functions J with 
−∞ < J(i) < ∞ for all i]. Example: 

0 

1 
1 2 t 

-1 

• We have J∗(1) = J∗(2) = −∞. 

• Bellman’s equation is 

J(1) = J(2), J(2) = min −1 +  J(1), 1].
 

• There is no solution [among functions J with 
−∞ < J(i) < ∞ for all i]. 

• Bellman’s equation has as solution J∗(1) = 
J∗(2) = −∞ [within the larger class of functions 
J(·) that can take the value −∞ for some (or 
all) states]. This situation can be generalized (see 
Chapter 3 of Vol. 2 of the text). 



PATHOLOGIES III: THE BLACKMAILER
 

• Two states, state 1 and the termination state t.
 

• At state 1, choose a control u ∈ (0, 1] (the 
blackmail amount demanded) at a cost −u, and  
move to t with probability u2, or stay in 1 with 
probability 1 − u2. 

• Every stationary policy is proper, but the con
trol set in not finite. 

• For any stationary µ with µ(1) = u, we have  

Jµ(1) = −u + (1  − u2)Jµ(1) 

from which Jµ(1) = − u 
1 

• Thus J∗(1) = −∞, and there is no optimal 
stationary policy. 

• It turns out that a nonstationary policy is op
timal: demand µk(1) = γ/(k +  1) at time  k, with  
γ ∈ (0, 1/2). (Blackmailer requests diminishing 
amounts over time, which add to ∞; the proba
bility of the victim’s refusal diminishes at a much 
faster rate.) 
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LECTURE OUTLINE
 

• We begin a 6-lecture series on approximate DP 
for large/intractable problems. 

• We will mainly follow Chapter 6, Vol. 2 of 
the text (with supplemental refs). Note: An up
dated/expanded version of Chapter 6, Vol. 2 is 
posted in the internet. 

• In this lecture we classify/overview the main 
approaches: 

− Rollout/Simulation-based single policy iter
ation (we will not discuss this further) 

−	 Approximation in value space (approximate 
policy iteration, Q-Learning, Bellman error 
approach, approximate LP) 

−	 Approximation in policy space (policy para
metrization, gradient methods) 

−	 Problem approximation (simplification - ag
gregation - limited lookahead) - we will briefly 
discuss this today 



APPROXIMATION IN VALUE SPACE
 

• We will mainly adopt an n-state discounted
 
model (the easiest case - but think of HUGE n).
 

• Extensions to SSP and average cost are possible 
(but more quirky). We will discuss them later. 

• Main idea: Approximate J∗ or Jµ with an ap
proximation architecture 

J∗(i) ≈ J̃(i, r)  or  Jµ(i) ≈ J̃(i, r) 

• Principal example: Subspace approximation 
s 

J̃(i, r) =  φ(i)′r = 
∑ 

φk(i)rk 

k=1 

where φ1, . . . , φs are basis functions spanning an 
s-dimensional subspace of �n 

• Key issue: How to optimize r with low/s-dimensi
onal operations only 

• Other than manual/trial-and-error approaches 
(e.g/, as in computer chess), the only other ap
proaches are simulation-based. They are collec
tively known as “neuro-dynamic programming” or 
“reinforcement learning” 



∑ 

APPROX. IN VALUE SPACE - APPROACHES
 

•	 Policy evaluation/Policy improvement 
−	 Uses simulation algorithms to approximate 

the cost Jµ of the current policy µ 

•	 Approximation of the optimal cost function J∗ 

− Q-Learning: Use a simulation algorithm to 
approximate the optimal costs J∗(i) or the  
Q-factors 

n 

Q∗(i, u) =  g(i, u) +  α pij (u)J∗(j) 
j=1 

−	 Bellman error approach: Find r to 

{	 } 
min Ei 

( 
J̃(i, r) − (T J̃)(i, r) 

)2 

r 

where Ei{·} is taken with respect to some 
distribution 

−	 Approximate LP (discussed earlier - supple
mented with clever schemes to overcome the 
large number of constraints issue) 



POLICY EVALUATE/POLICY IMPROVE
 

• An example 

System Simulator 

Decision Generator 

Cost-to-Go Approximator 
Supplies Values J(j,r) 

Least-Squares 
Optimization 

~ 

J(j,r) 
~ 

State iDecision µ(i) 
_ 

-

• The “least squares optimization” may be re
placed by a different algorithm 



POLICY EVALUATE/POLICY IMPROVE I
 

• Approximate the cost of the current policy by 
using a simulation method. 

−	 Direct policy evaluation - Cost samples gen
erated by simulation, and optimization by 
least squares 

−	 Indirect policy evaluation - solving  the pro
jected equation Φr = ΠTµ(Φr) where  Π is  
projection w/ respect to a suitable weighted 
Euclidean norm 

ΠJµ 

Jµ	 Tµ(Φr) 

Projection 
on SProjection 

on S 

Φr = ΠTµ(Φr) 

0	 0 
S: Subspace spanned by basis functions S: Subspace spanned by basis functions 

Direct Mehod: Projection of cost vector Jµ	 Indirect method: Solving a projected 
form of Bellman’s equation 

•	 Batch and incremental methods 

•	 Regular and optimistic policy iteration 



POLICY EVALUATE/POLICY IMPROVE II
 

• Projected equation methods are preferred and 
have rich theory 

• TD(λ): Stochastic iterative algorithm for solv
ing Φr = ΠTµ(Φr) 

• LSPE(λ): A simulation-based form of projected 
value iteration 

Φrk+1 = ΠTµ(Φrk) + simulation noise 

Value Iterate Value Iterate 
T(Φrk) = g + αPΦrk T(Φrk) = g + αPΦrk 

Projection Projection 
on S on S 

Φrk+1 
Φrk+1 

Φrk Φrk Simulation error 
0 0 

S: Subspace spanned by basis functions S: Subspace spanned by basis functions 

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE) 

• LSTD(λ): Solves a simulation-based approxi
mation Φr = Π̂ T̂  

µ(Φr) of the projected equation, 
using a linear system solver (e.g., Gaussian elimi
nation/Matlab) 



APPROXIMATION IN POLICY SPACE
 

• We parameterize the set of policies by a vector 
r = (r1, . . . , rs) and we optimize the cost over r. 

• In a special case of this approach, the param
eterization of the policies is indirect, through an 
approximate cost function. 

−	 A cost approximation architecture parame
terized by r, defines a policy dependent on r 
via the minimization in Bellman’s equation. 

•	 Discounted problem example: 
− Denote by gi(r), i = 1, . . . , n, the one-stage 

expected cost starting at state i, and  by  pij (r) 
the transition probabilities. 

− Each value of r defines a stationary policy, 
with cost starting at state i denoted by Ji(r). 

−	 Use a gradient (or other) method to mini
mize over r 

n 

J ̄(r) =  
∑ 

q(i)Ji(r), 
i=1 (	 ) 

where q(1), . . . , q(n) is some probability dis
 
tribution over the states.
 



PROBLEM APPROXIMATION - AGGREGATION
 

• Another major idea in ADP is to approximate 
the cost-to-go function of the problem with the 
cost-to-go function of a simpler problem. The sim
plification is often ad-hoc/problem dependent. 

• Aggregation is a (semi-)systematic approach for 
problem approximation. Main elements: 

− Introduce a few “aggregate” states, viewed 
as the states of an “aggregate” system 

− Define transition probabilities and costs of 
the aggregate system, by associating multi
ple states of the original system with each 
aggregate state 

− Solve (exactly or approximately) the “ag
gregate” problem by any kind of value or pol
icy iteration method (including simulation-
based methods, such as Q-learning) 

−	 Use the optimal cost of the aggregate prob
lem to approximate the optimal cost of the 
original problem 

• Example (Hard Aggregation): We are given a 
partition of the state space into subsets of states, 
and each subset is viewed as an aggregate state 
(each state belongs to one and only one subset). 



AGGREGATION/DISAGGREGATION PROBS
 

• The aggregate system transition probabilities
 
are defined via two (somewhat arbitrary) choices:
 

• For each original system state i and aggregate 
state m, the  aggregation probability aim 

−	 This may be roughly interpreted as the “de
gree of membership of i in the aggregate 
state m.” 

−	 In the hard aggregation example, aim = 1  if  
state i belongs to aggregate state/subset m. 

• For each aggregate state m and original system 
state i, the  disaggregation probability dmi 

− This may be roughly interpreted as the “de
gree to which i is representative of m.” 

−	 In the hard aggregation example (assuming 
all states that belong to aggregate state/subset 
m are “equally representative”) dmi = 1/|m|
for each state i that belongs to aggregate 
state/subset m, where  |m| is the cardinality 
(number of states) of m. 



AGGREGATION EXAMPLES
 

• Hard aggregation (each original system state 
is associated with one aggregate state): 

pij(u) 

1 1/4 1 1/3 

m 

i j 

n 

Original SystemAggregation 
StatesProbabilities 

Disaggregation 
Probabilities Aggregate States 

• Soft aggregation (each original system state is 
associated with multiple aggregate states): 

pij(u) 

1/2 

1/4 
1/3 

m 

2/3 

i j 

1/2 

1/3 

n 

Original SystemAggregation 
StatesProbabilities 

Disaggregation 
Probabilities Aggregate States 

• Coarse grid (each aggregate state is an original 
system state): 

pij(u) 

1/2 11/2 
1 

m 

i j 
1/3 

n 

2/3 

Original SystemAggregation 
StatesProbabilities 

Disaggregation 

Probabilities 
 Aggregate States 



∑ ∑ 
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AGGREGATE TRANSITION PROBABILITIES
 

• Let the aggregation and disaggregation proba
bilities, aim and dmi, and the original transition 
probabilities pij (u) be given.  

• The transition probability from aggregate state 
m to aggregate state n under u is 

qmn(u) =  	  dmipij (u)ajn 

i j 

and the transition cost is similarly defined. 

• This corresponds to a probabilistic process that 
can be simulated as follows: 

− From aggregate state m, generate original 
state i according to dmi. 

− Generate a transition from i to j according 
to pij (u), with cost g(i, u, j). 

−	 From original state j, generate aggregate state 
n according to ajn. 

• After solving for the optimal costs Ĵ(m) of  the  
aggregate problem, the costs of the original prob
lem are approximated by 

J̃(i) =  aimĴ(m) 
m
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LECTURE OUTLINE
 

• Discounted problems - Approximate policy eval
uation/policy improvement 

• Direct approach - Least squares 

• Batch and incremental gradient methods 

• Implementation using TD 

• Optimistic policy iteration 

• Exploration issues 



THEORETICAL BASIS 

• If policies are approximately evaluated using an 
approximation architecture: 

max |J̃(i, rk) − Jµk (i)| ≤ δ, k = 0, 1, . . .  
i 

• If policy improvement is also approximate, 

max |(T k+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ε, k = 0, 1, . . .µ
i 

• Error Bound: The sequence {µk} generated 
by approximate policy iteration satisfies 

( ) ε + 2αδ
lim sup max Jµk (i) − J∗(i) ≤ 

k→∞ i (1 − α)2 

• Typical practical behavior: The method makes 
steady progress up to a point and then the iterates 
Jµk oscillate within a neighborhood of J∗ . 



SIMULATION-BASED POLICY EVALUATION
 

• Suppose we can implement in a simulator the 

∑ 

improved policy µ, and want to calculate Jµ by 
simulation. 

• Generate by simulation sample costs. Then: 

1 
Mi 

Jµ(i) ≈ c(i,m)
Mi 

m=1 

c(i,m) :  mth (noisy) sample cost starting from state i 

• Approximating well each Jµ(i) is  impractical  
for a large state space. Instead, a “compact rep
resentation” J̃  

µ(i, r) is  used,  where  r is a tunable 
parameter vector. 

• Direct approach: Calculate an optimal value r ∗ 

of r by a least squares fit 

n Mi 

r ∗ = arg  min  
∑ ∑∣∣ c(i,m) − J̃  

µ(i, r)∣∣2 

r 
i=1 m=1 

• Note that this is much easier when the archi
tecture is linear - but this is not a requirement. 



SIMULATION-BASED DIRECT APPROACH
 

System Simulator 

Decision Generator 

Cost-to-Go Approximator 
Supplies Values J(j,r) 

Least-Squares 
Optimization 

~ 

J(j,r) 
~ 

State iDecision µ(i) 
_ 

-

• Simulator: Given a state-control pair (i, u), gen
erates the next state j using system’s transition 
probabilities under policy µ currently evaluated 

• Decision generator: Generates the control µ(i) 
of the evaluated policy at the current state i 

• Cost-to-go approximator: J̃(j, r) used by the  
  
decision generator and corresponding to preceding
 
policy (already evaluated in preceding iteration)
 

• Least squares optimizer: Uses cost samples c(i,m) 
produced by the simulator and solves a least squares 
problem to approximate J̃  

µ(·, r) 



BATCH GRADIENT METHOD I
 

• Focus on a batch: an N -transition portion 
(i0, . . . , iN ) of a simulated trajectory 

• We view the numbers 

N−1  ∑   
αt−kg

(
it, µ(it), it+1 

t

)
, k = 0, . . . , N  − 1,


=k


( ) ( ) 

( ) 

as cost samples, one per initial state i0, . . . , iN−1 

• Least squares problem 

( )2 
1 

N−1 N−1 

min 
∑ 

J̃(ik, r) − 
∑ 

αt−kg it, µ(it), it+1 
r 2 

k=0 t=k 

• Gradient iteration 

N−1 

r := r − γ 
∑ 

∇J̃(ik, r) 
k=0 

N−1 

J̃(ik, r) − 
∑ 

αt−kg it, µ(it), it+1 

t=k 



BATCH GRADIENT METHOD II
 

•	 Important tradeoff: 
− In order to reduce simulation error and cost 

samples for a representatively large subset of 
states, we must use a large N 

−	 To keep the work per gradient iteration small, 
we must use a small N 

• To address the issue of size of N , small batches 
may be used and changed after one or more iter
ations. 

• Then the method becomes susceptible to sim
ulation noise - requires a diminishing stepsize for 
convergence. 

 This slows down the convergence (which can •
be very slow for a gradient method even without 
noise). 

• Theoretical convergence is guaranteed (with a 
diminishing stepsize) under reasonable conditions, 
but in practice this is not much of a guarantee. 



( 

INCREMENTAL GRADIENT METHOD I 

• Again focus on an N -transition portion (i0, . . . , iN ) 
of a simulated trajectory. 

• The batch gradient method processes the N 
transitions all at once, and updates r using the 
gradient iteration. 

• The incremental method updates r a total of N 
times, once after each transition. 

• After each transition (ik, ik+1) it uses  only the  
portion of the gradient affected by that transition: 

− Evaluate the (single-term) gradient ∇J̃(ik, r) 
at the current value of r (call it rk). 

−	 Sum all the terms that involve the transi

tion (ik, ik+1), and update rk by making a

correction along their sum:


rk+1 =rk − γ ∇J̃(ik, rk)J̃(ik, rk) 

(	 ) ) 
k ∑ (	 ) −	 αk−t∇J̃(it, rt) g ik, µ(ik), ik+1 

t=0 



INCREMENTAL GRADIENT METHOD II
 

• After N transitions, all the component gradient 
terms of the batch iteration are accumulated. 

•	 BIG difference: 
− In the incremental method, r is changed while 

processing the batch – the (single-term) gra
dient ∇J̃(it, r) is evaluated at the most re
cent value of r [after the transition (it, it+1)]. 

− In the batch version these gradients are eval
uated at the value of r prevailing at the be
ginning of the batch. 

• Because r is updated at intermediate transi
tions within a batch (rather than at the end of 
the batch), the location of the end of the batch 
becomes less relevant. 

• Can have very long batches - can have a single
 
very long simulated trajectory and a single batch.
 

• The incremental version can be implemented
 
more flexibly, converges much faster in practice.
 

• Interesting convergence analysis (beyond our 
scope - see Bertsekas and Tsitsiklis, NDP book, 
also paper in SIAM J. on Optimization, 2000) 



( ) 
( ) 
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TEMPORAL DIFFERENCES - TD(1) 

• A mathematically equivalent implementation of 
the incremental method. 

• It uses temporal difference (TD for short) 

dk = g ik, µ(ik), ik+1 +αJ̃(ik+1, r)−J̃(ik, r), k  ≤ N−2, 

dN−1 = g iN−1, µ(iN−1), iN − J̃(iN−1, r) 

• Following the transition (ik, ik+1), set 

k 

rk+1 = rk + γkdk 

∑ 
αk−t∇J̃(it, rt) 

t=0 

• This algorithm is known as TD(1). In the im
portant linear case J̃(i, r) =  φ(i)′r, it becomes 

k 

rk+1 = rk + γkdk αk−tφ(it) 
t=0 

• A variant of TD(1) is TD(λ), λ ∈ [0, 1]. It sets
 
k 

rk+1 = rk + γkdk (αλ)k−tφ(it) 
t=0 



∑ 

OPTIMISTIC POLICY ITERATION 

• We have assumed so far is that the least squares 
optimization must be solved completely for r. 

• An alternative, known as optimistic policy iter
ation, is to solve this problem approximately and 
replace policy µ with policy µ after only a few 
simulation samples. 

• Extreme possibility is to replace µ with µ at the 
end of each state transition: After state transition 
(ik, ik+1), set 

k 

rk+1 = rk + γkdk (αλ)k−t∇J̃(it, rt), 
t=0 

and simulate next transition (ik+1, ik+2) using  µ(ik+1), 
the control of the new policy. 

• For λ = 0, we obtain (the popular) optimistic 
TD(0), which has the simple form 

rk+1 = rk + γkdk∇J̃(ik, rk) 

• Optimistic policy iteration can exhibit fascinat
 
ing and counterintuitive behavior (see the NDP
 
book by Bertsekas and Tsitsiklis, Section 6.4.2).
 



THE ISSUE OF EXPLORATION
 

• To evaluate a policy µ, we need to generate cost 
samples using that policy - this biases the simula
tion by underrepresenting states that are unlikely 
to occur under µ. 

• As a result, the cost-to-go estimates of these
 
underrepresented states may be highly inaccurate.
 

• This seriously impacts the improved policy µ.
 

• This is known as inadequate exploration - a par
ticularly acute difficulty when the randomness em
bodied in the transition probabilities is “relatively 
small” (e.g., a deterministic system). 

• One possibility to guarantee adequate explo
ration: Frequently restart the simulation and en
sure that the initial states employed form a rich 
and representative subset. 

• Another possibility: Occasionally generating 
transitions that use a randomly selected control 
rather than the one dictated by the policy µ. 

• Other methods, to be discussed later, use two 
Markov chains (one is the chain of the policy and 
is used to generate the transition sequence, the 
other is used to generate the state sequence). 



∑ ( ) 

APPROXIMATING Q-FACTORS
 

 The approach described so far for policy eval•
uation requires calculating expected values for all 
controls u ∈ U(i) (and knowledge of pij (u)). 

• Model-free alternative: Approximate Q-factors
 

n 

Q̃(i, u, r) ≈ pij (u) g(i, u, j) +  αJµ(j) 
j=1 

and use for policy improvement the minimization
 

µ(i) =  arg  min  Q̃(i, u, r)
 
u∈U(i) 

• r is an adjustable parameter vector and Q̃(i, u, r) 
is a parametric architecture, such as 

m 

Q̃(i, u, r) =  
∑ 

rkφk(i, u) 
k=1 

• Can use any method for constructing cost ap
proximations, e.g., TD(λ). 

• Use the Markov chain with states (i, u) - pij (µ(i)) 
is the transition prob. to (j, µ(i)), 0 to other (j, u′). 

• Major concern: Acutely diminished exploration.
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LECTURE OUTLINE
 

• Discounted problems - Approximate policy eval
uation/policy improvement 

• Indirect approach - The projected equation 

• Contraction properties - Error bounds 

• PVI (Projected Value Iteration) 

• LSPE (Least Squares Policy Evaluation) 

• Tetris - A case study 



Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

POLICY EVALUATION/POLICY IMPROVEMENT
 

Generate “Improved” Policy µ 

•	 Linear cost function approximation 

J̃(r) = Φr 

where Φ is full rank n × s matrix with columns 
the basis functions, and ith row denoted φ(i)′. 

• Policy “improvement” 

n ∑ (	 ) 
µ(i) =  arg  min  pij (u) g(i, u, j) +  αφ(j)′r 

u∈U(i) 
j=1 

• Indirect methods find Φr by solving a projected 
equation. 



√ √ √ 

WEIGHTED EUCLIDEAN PROJECTIONS
 

• Consider a weighted Euclidean norm 

n ∑
 
‖J‖v = 

√ 
vi 
( 
J(i) 

)2 
, 

i=1 

where v is a vector of positive weights v1, . . . , vn. 

•	 Let Π denote the projection operation onto
 

S = {Φr | r ∈ �s}
 

nwith respect to this norm, i.e., for any J ∈ �  ,
 

ΠJ = ΦrJ
 

where
 
rJ = arg  min  ‖J − Φr‖v
 

r∈�s 

•	 Π and  rJ can be written explicitly: 

Π = Φ(Φ′V Φ)−1Φ′V, rJ = (Φ′V Φ)−1Φ′V J,  

where V is the diagonal matrix with vi, i = 1, . . . , n, 
along the diagonal. 



THE PROJECTED BELLMAN EQUATION
 

• For a fixed policy µ to be evaluated, consider 
the corresponding mapping T : 

n ∑ ( )
 
(TJ)(i) =  pij g(i, j)+αJ(j) , i = 1, . . . , n,  

i=1 

or more compactly, 

TJ  = g + αPJ
 

• The solution Jµ of Bellman’s equation J = TJ  
is approximated by the solution of 

Φr = ΠT (Φr)
 

T(Φr) 

Projection 
on S 

Φr = ΠT(Φr) 

0 
S: Subspace spanned by basis functions 

Indirect method: Solving a projected 
form of Bellmanʼs equation 



∑ 

KEY QUESTIONS AND RESULTS
 

• Does the projected equation have a solution?
 

• Under what conditions is the mapping ΠT a 
contraction, so ΠT has unique fixed point? 

• Assuming ΠT has unique fixed point Φr ∗, how  
close is Φr ∗ to Jµ? 

• Assumption: P has a single recurrent class 
and no transient states, i.e., it has steady-state 
probabilities that are positive 

1 
N 

ξj = lim P (ik = j | i0 = i) > 0, j  = 1, . . . , n  
N→∞ N 

k=1 

• Proposition: ΠT is contraction of modulus 
α with respect to the weighted Euclidean norm 
‖ · ‖ξ, where  ξ = (ξ1, . . . , ξn) is the steady-state 
probability vector. The unique fixed point Φr ∗ of 
ΠT satisfies 

1 ‖Jµ − Φr ∗‖ξ ≤ √ 
1 − α2 

‖Jµ − ΠJµ‖ξ 



ANALYSIS

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖v. For all J ∈
$n, J ∈ S, the Pythagorean Theorem holds:

‖J − J‖2
v = ‖J −ΠJ‖2

v + ‖ΠJ − J‖2
v

• Proof: Geometrically, (J − ΠJ) and (ΠJ − J)
are orthogonal in the scaled geometry of the norm
‖ · ‖v, where two vectors x, y ∈ $n are orthogonal
if

∑n
i=1 vixiyi = 0. Expand the quadratic in the

RHS below:

‖J − J‖2
v = ‖(J −ΠJ) + (ΠJ − J)‖2

v

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖v ≤ ‖J − J̄‖v, for all J, J̄ ∈ $n.

To see this, note that

∥∥Π(J − J)
∥∥2

v
≤

∥∥Π(J − J)
∥∥2

v
+

∥∥(I −Π)(J − J)
∥∥2

v

= ‖J − J‖2
v



∑ 

PROOF OF CONTRACTION PROPERTY
 

•	 Lemma: We have 

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ �n 

• Proof of lemma:  Let  pij be the components of 
P . For all	z ∈ �n, we have  

	 2 
n n	 n n ∑ ∑	 ∑ ∑


‖Pz‖2 
ξ = ξi  pij zj  ≤ ξi pij zj 

2


i=1 j=1 i=1 j=1


n n	 n ∑∑	 ∑ 
=	 ξipij zj 

2 = ξj zj 
2 = ‖z‖ξ 

2 , 
j=1 i=1	 j=1 

where the inequality follows from the convexity of
 
the quadratic function, and the next to last equal
 
ity follows from the defining property i

n 
=1 ξipij =


ξj of the steady-state probabilities.


• Using the lemma, the nonexpansiveness of Π,

and the definition TJ  = g + αPJ , we  have 


‖ΠTJ−ΠT J̄‖ξ ≤ ‖TJ−T J̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ 

nfor all J, J ̄ ∈ �  . Hence T is a contraction of

modulus α.




PROOF OF ERROR BOUND 

 • Let Φr ∗ be the fixed point of ΠT . We  have  

1
‖Jµ − Φr ∗‖ξ ≤ √ ‖Jµ − ΠJµ‖ξ. 
1 − α2 

Proof: We have 
∥ ∥
2
 ‖Jµ − Φr ∗‖2
ξ



 = ‖Jµ − ΠJµ‖2
ξ


 + ∥ΠJµ − Φr ∗∥ 

ξ
 ∥ ∥
2
 = ‖Jµ − ΠJµ‖2
ξ
 



 + ∥ΠTJµ − ΠT (Φr ∗)∥ 
ξ
 

≤ ‖Jµ − ΠJµ‖2
ξ
 



 + α2‖Jµ − Φr ∗‖2
ξ



 ,
 

where the first equality uses the Pythagorean The
orem, the second equality holds because Jµ is the 
fixed point of T and Φr ∗ is the fixed point of ΠT , 
and the inequality uses the contraction property 
of ΠT . From this relation, the result follows. 

√
 • Note: The factor 1/ 1 − α2 in the RHS can 
be replaced by a factor that is smaller and com
putable. See 
H. Yu and D. P. Bertsekas, “New Error Bounds 
for Approximations from Projected Linear Equa
tions,” Report LIDS-P-2797, MIT, July 2008. 



PROJECTED VALUE ITERATION (PVI)
 

• Given the projection property of ΠT , we  may  
consider the PVI method 

Φrk+1 = ΠT (Φrk) 

Value Iterate 
T(Φrk) = g + αPΦrk 

Projection 
on S 

Φrk+1 

Φrk 

0 
S: Subspace spanned by basis functions 

• Question: Can we implement PVI using simu
lation, without the need for n-dimensional linear 
algebra calculations? 

• LSPE (Least Squares Policy Evaluation) is a 
simulation-based implementation of PVI. 



∥ ∥ 

( ) ∑ ∑ ∑ ( ) 

( ) ∑ ∑ ( ) 

( ) ∑ ∑ ∑ 

( ) 

LSPE - SIMULATION-BASED PVI
 

• PVI, i.e., Φrk+1 = ΠT (Φrk) can be written as 

rk+1 = arg  min  
∥ 
Φr − T (Φrk) 

∥2 
, 

r∈�s ξ 

from which by setting the gradient to 0, 

n n n 

ξi φ(i)φ(i)′ rk+1 = ξi φ(i) pij g(i, j)+αφ(j)′ rk 

i=1 i=1 j=1 

• For LSPE we generate an infinite trajectory 
(i0, i1, . . .) and update rk after transition (ik, ik+1) 

k k 

φ(it)φ(it)
′ rk+1 = φ(it) g(it, it+1)+αφ(it+1)′ rk 

t=0 t=0 

• LSPE can equivalently be written as 

n n n 

ξ̂i,k φ(i)φ(i)′ rk+1 = ξ̂i,k φ(i) p̂ij,k 

i=1 i=1 j=1 

g(i, j) +  αφ(j)′ rk 

where ξ̂i,k, p̂ij,k: empirical frequencies of state i 
and transition (i, j), based on (i0, . . . , ik+1). 



LSPE INTERPRETATION
 

• LSPE can be written as PVI with sim. error: 

Φrk+1 = ΠT (Φrk) +  ek 

where ek diminishes to 0 as the empirical frequen
cies ξ̂  

i,k and p̂ij,k approach ξ and pij . 

Value Iterate Value Iterate 
T(Φrk) = g + αPΦrk T(Φrk) = g + αPΦrk 

Projection Projection 
on S on S 

Φrk+1 
Φrk+1 

Φrk Φrk Simulation error 
0 0 

S: Subspace spanned by basis functions S: Subspace spanned by basis functions 

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE) 

• Convergence proof is simple: Use the law of 
large numbers. 

• Optimistic LSPE: Changes policy prior to con
vergence - behavior can be very complicated. 



EXAMPLE: TETRIS I
 

• The state consists of the board position i, and  
the shape of the current falling block (astronomi
cally large number of states). 

• It can be shown that all policies are proper!! 

• Use a linear approximation architecture with 
feature extraction 

s ∑
 
J̃(i, r) =  φm(i)rm, 

m=1 

where r = (r1, . . . , rs) is the parameter vector and
 
φm(i) is the  value  of  mth feature associated w/ i.
 



EXAMPLE: TETRIS II
 

ximate policy iteration was implemented 
following features: 

• Appro
with the 

− The height of each column of the wall 
− The difference of heights of adjacent columns 
− The maximum height over all wall columns 
− The number of “holes” on the wall 
− The number 1 (provides a constant offset) 

• Playing data was collected for a fixed value 
of the parameter vector r (and the corresponding 
policy); the policy was approximately evaluated 
by choosing r to match the playing data in some 
least-squares sense. 

• LSPE (its SSP version) was used for approxi
mate policy evaluation. 

• Both regular and optimistic versions were used.
 

• See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” LIDS Report, 1996. Also 
the NDP book. 
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LECTURE OUTLINE
 

• Review of indirect policy evaluation methods
 

• Multistep methods, LSPE(λ) 

• LSTD(λ) 

• Q-learning 

• Q-learning with linear function approximation
 

• Q-learning for optimal stopping problems 



REVIEW: PROJECTED BELLMAN EQUATION
 

• For a fixed policy µ to be evaluated, consider 
the corresponding mapping T : 

n ∑ ( )
 
(TJ)(i) =  pij g(i, j)+αJ(j) , i = 1, . . . , n,  

i=1 

or more compactly, 

TJ  = g + αPJ
 

• The solution Jµ of Bellman’s equation J = TJ  
is approximated by the solution of 

Φr = ΠT (Φr)
 

T(Φr) 

Projection 
on S 

Φr = ΠT(Φr) 

0 
S: Subspace spanned by basis functions 

Indirect method: Solving a projected 
form of Bellmanʼs equation 



∥ ∥ 

∑ ∑ ( ) 

∥ ∥ 

∑ 

PVI/LSPE
 

• Key Result: ΠT is contraction of modulus 
α with respect to the weighted Euclidean norm 
‖ · ‖ξ, where  ξ = (ξ1, . . . , ξn) is the steady-state 

∗probability vector. The unique fixed point Φr of 
ΠT satisfies 

1 ‖Jµ − Φr ∗‖ξ ≤ √ 
1 − α2 

‖Jµ − ΠJµ‖ξ 

• Projected Value Iteration (PVI): Φrk+1 = 
ΠT (Φrk), which can be written as 

rk+1 = arg  min  Φr − T (Φrk) 2 

r∈�s ξ 

or equivalently ( )2 n n 

rk+1 = arg  min  ξi φ(i)′ r − pij g(i, j) + αφ(j)′ rk 
r∈�s 

i=1 j=1 

• LSPE (simulation-based approximation): 
We generate an infinite trajectory (i0, i1, . . .) and  
update rk after transition (ik, ik+1) 

k 

rk+1 = arg  min  
( 
φ(it)′r−g(it, it+1)−αφ(it+1)′rk 

)2 

r∈�s 

t=0




( ) ∑ ∑ ∑ ( ) 

( ) ∑ ∑ ( ) 

JUSTIFICATION OF PVI/LSPE CONNECTION
 

 By writing the necessary optimality conditions •
for the least squares minimization, PVI can be 
written as 

n n n 

ξi φ(i)φ(i)′ rk+1 = ξi φ(i) pij g(i, j)+αφ(j)′ rk 

i=1 i=1 j=1 

• Similarly, by writing the necessary optimal
ity conditions for the least squares minimization, 
LSPE can be written as 

k k 

φ(it)φ(it)
′ rk+1 = φ(it) g(it, it+1)+αφ(it+1)′ rk 

t=0 t=0 

• So LSPE is just PVI with the two expected val
ues approximated by simulation-based averages. 
• Convergence follows by the law of large num
bers. 
• The bottleneck in rate of convergence is the 
law of large of numbers/simulation error (PVI is 
a contraction with modulus α, and converges fast 
relative to simulation). 



∑ ∑ 

∑ 

LEAST SQUARES TEMP. DIFFERENCES (LSTD)
 

• Taking the limit in PVI, we see that the pro
∗jected equation, Φr = ΠT (Φr ∗), can be written as 

Ar∗ + b = 0, where  (	 )′ n	 n ∑	 ∑ 
A = ξi φ(i) α pij φ(j) − φ(i) 

i=1 j=1 

n n 

b = ξi φ(i) pij g(i, j) 

i=1 j=1 

• A, b are expected values that can be approxi
mated by simulation:	 Ak ≈ A, bk ≈ b, where  

k 
1 ∑ ( )′ 

Ak = φ(it) αφ(it+1) − φ(it)
k + 1  

t=0 

k 
1 

bk =	 φ(it)g(it, it+1)
k + 1  

t=0 

∗ • LSTD method: Approximates r as 

r ∗ ≈ r̂k = −A− 
k 

1bk 

• Conceptually very simple ... but less suitable for 
optimistic policy iteration (hard to transfer info 
from one policy evaluation to the next). 
• Can be shown that convergence rate is the same 
for LSPE/LSTD (for large k, ‖rk −r̂k‖ << ‖rk −r ∗‖). 



∑ 

∑ 

MULTISTEP METHODS
 

• Introduce a multistep version of Bellman’s equa
tion J = T (λ)J, where  for  λ ∈ [0, 1), 

∞ 

T (λ) = (1  − λ) λtT t+1 

t=0 

• Note that T t is a contraction with modulus αt, 
with respect to the weighted Euclidean norm ‖·‖ξ , 
where ξ is the steady-state probability vector of 
the Markov chain. 
• From this it follows that T (λ) is a contraction 
with modulus 

∞ 

αλ = (1  − λ) αt+1λt = 
α(1 − λ) 

1 − αλ 
t=0 

• T t and T (λ) have the same fixed point Jµ and 

∗ 1 ‖Jµ − Φrλ‖ξ ≤ √ ‖Jµ − ΠJµ‖ξ 
1 − α2 

λ 

∗where Φrλ is the fixed point of ΠT (λ). 
∗ • The fixed point Φrλ depends on λ. 

• Note that αλ ↓ 0 as λ ↑ 1, so error bound improves 
as λ ↑ 1. 



( ) ∑ 

∥ 

{ } ∑ ∣ 

∑ 
( 

∑ { } 

PVI(λ) 

 ∞ 

Φrk+1 = ΠT (λ)(Φrk ) = Π  (1 − λ) λtT t+1(Φrk)


t=0


or ∥ ∥2 
rk+1 = arg  min ∥Φr − T (λ)(Φrk) 

r∈�s ξ 

• Using algebra and the relation 

t ∣ 
(T t+1J)(i) = E αt+1J(it+1) +  αk g(ik , ik+1) ∣ i0 = i 

k=0 

we can write PVI(λ) as  

n 

rk+1 = arg  min  ξi φ(i)′ r − φ(i)′ rk 
r∈�s 

i=1 )2∞ 

− (αλ)tE dk(it, it+1) | i0 = i 

t=0 

where 

dk(it, it+1) = g(it, it+1) + αφ(it+1)′ rk − φ(it)
′ rk, 

are the, so called, temporal differences (TD) - they 
are the errors in satisfying Bellman’s equation. 



∑ 
( 

∑ 

LSPE(λ)
 

• Replacing the expected values defining PVI(λ) 
by simulation-based estimates we obtain LSPE(λ). 
•	 It has the form 

k 

rk+1 = arg  min  φ(it)
′ r − φ(it)

′ rk 
r∈�s 

t=0 )2
k 

− (αλ)m−tdk(im, im+1) 

m=t 

where (i0, i1, . . .) is an infinitely long trajectory gen
erated by simulation. 
• Can be implemented with convenient incremen
tal update formulas (see the text). 
•	 Note the λ-tradeoff: 

∗− As λ ↑ 1, the accuracy of the solution Φrλ ∗improves - the error bound to ‖Jµ − Φrλ‖ξ 

improves. 
−	 As λ ↑ 1, the “simulation noise” in the LSPE(λ) 

iteration (2nd summation term) increases, so 
longer simulation trajectories are needed for 
LSPE(λ) to approximate well PVI(λ). 



∑ 

∑ 

Q-LEARNING I
 

has two motivations: 
with multiple policies simultaneously 
model-free approach [no need to know 

•	 Q-learning 
− Dealing 
− Using a 

pij (u) explicitly, only to simulate them] 
•	 The Q-factors are defined by 

n ∑ (	 ) 
Q ∗ (i, u) =  pij (u) g(i, u, j) + αJ ∗ (j) , ∀ (i, u) 

j=1 

• In view of J∗ = TJ∗, we  have  J∗(i) = minu∈U(i) Q∗(i, u) 

so the Q factors solve the equation 

n (	 ) 
Q ∗ (i, u) =  pij (u) g(i, u, j) + α min Q ∗ (j, u′) , ∀ (i, u) 

u′∈U(j) 
j=1 

• Q(i, u) can be shown to be the unique solution of 
this equation. Reason: This is Bellman’s equation 
for a system whose states are the original states 
1, . . . , n,  together with all the pairs (i, u). 
•	 Value iteration: 

n (	 ) 
Q(i, u) :=  pij (u) g(i, u, j) + α min Q(j, u′) , ∀ (i, u) 

u′∈U(j) 
j=1 



( ) 
( ) 

∑ ( ) 

Q-LEARNING II
 

• Use any probabilistic mechanism to select se
quence of pairs (ik, uk) [all pairs (i, u) are chosen 
infinitely often], and for each k, select jk accord
ing to pik j (uk). 
• At each k, Q-learning algorithm updates Q(ik, uk) 
according to 

Q(ik, uk) :=  1 − γk(ik, uk) Q(ik, uk) 

+ γk(ik, uk) g(ik, uk, jk) + α min Q(jk, u  ′) 
u′∈U(jk ) 

• Stepsize γk(ik, uk) must converge to 0 at proper 
rate (e.g., like 1/k). 
• Important mathematical point: In the Q-factor 
version of Bellman’s equation the order of expec
tation and minimization is reversed relatively to 
the ordinary cost version of Bellman’s equation: 

n 

J ∗ (i) =  min  pij (u) g(i, u, j) + αJ ∗ (j)
 
u∈U(i)
 

j=1
 

• Q-learning can  be  shown to converge  to true/exact  
Q-factors (a sophisticated proof). 
• Major drawback: The large number of pairs (i, u) 
- no function approximation is used. 



∑ ( 

Q-FACTOR APROXIMATIONS 

• Introduce basis function approximation for Q-
factors: 

Q̃(i, u, r) = φ(i, u)′ r 

• We cannot use LSPE/LSTD because the Q-
factor Bellman equation involves minimization/multiple 
controls. 
• An optimistic version of LSPE(0) is possible: 
• Generate an infinitely long sequence {(ik, uk) |
k = 0, 1, . . .}. 
• At iteration k, given  rk and state/control (ik, uk): 
(1) Simulate next transition (ik, ik+1) using the
 

transition probabilities pik j (uk).
 

(2) Generate control uk+1 from the minimization 

uk+1 = arg  min  Q̃(ik+1, u, rk) 
u∈U(ik+1) 

(3) Update the parameter vector via 

k 

rk+1 = arg  min  φ(it, ut)
′ r
 

r∈�s
 

t=0
 )2
 − g(it, ut, it+1) − αφ(it+1, ut+1)′ rk 



Q-LEARNING FOR OPTIMAL STOPPING
 

• Not much is known about convergence of opti
 
mistic LSPE(0).
 

• Major difficulty is that the projected Bellman
 
equation for Q-factors may not be a contraction,
 
and may have multiple solutions or no solution.
 

• There is one important case, optimal stop
 
ping, where this difficulty does not occur.
 

• Given a Markov  chain with states  {1, . . . , n}, 
and transition probabilities pij . We assume that 
the states form a single recurrent class, with steady-
state distribution vector ξ = (ξ1, . . . , ξn). 

•	 At the current state i, we have two options:
 
− Stop and incur a cost c(i), or
 
− Continue and incur a cost g(i, j), where j is
 

the next state. 

•	 Q-factor for the continue action: 

n (	 ) ∑ {	 } 
Q(i) =  pij g(i, j)+α min c(j), Q(j) ∆(FQ)(i) 

j=1 

• Major fact: F is a contraction of modulus α

with respect to norm ‖ · ‖ξ.




∑ 

∑ { } 

LSPE FOR OPTIMAL STOPPING 

 Introduce Q-factor approximation •

Q̃(i, r) =  φ(i)′r 

• PVI for Q-factors: 

Φrk+1 = ΠF (Φrk) 

• LSPE 

( )−1k 

rk+1 = φ(it)φ(it)′ 
t=0 

k ( ) 
φ(it) g(it, it+1) +  α min c(it+1), φ(it+1)′rk 

t=0 

• Simpler version: Replace the term φ(it+1)′rk 

by φ(it+1)′rt. The algorithm still converges to 
the unique fixed point of ΠF (see H. Yu and D. 
P. Bertsekas, “A Least Squares Q-Learning Algo
rithm for Optimal Stopping Problems”). 
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LECTURE OUTLINE
 

• More on projected equation methods/policy 
evaluation 

• Stochastic shortest path problems 

• Average cost problems 

• Generalization - Two Markov Chain methods
 

• LSTD-like methods - Use to enhance explo
ration 



REVIEW: PROJECTED BELLMAN EQUATION
 

• For fixed policy µ to be evaluated, the solution 
of Bellman’s equation J = TJ  is approximated by 
the solution of 

Φr = ΠT (Φr) 

whose solution is in turn obtained using a simulation-
 
based method such as LSPE(λ), LSTD(λ), or TD(λ).
 

T(Φr) 

Projection 
on S 

Φr = ΠT(Φr) 

0 
S: Subspace spanned by basis functions 

Indirect method: Solving a projected 
form of Bellmanʼs equation 

• These ideas apply to other (linear) Bellman 
equations, e.g., for SSP and average cost. 

• Key Issue: Construct framework where ΠT [or 
at least ΠT (λ)] is a contraction. 



∑ 

STOCHASTIC SHORTEST PATHS
 

 Introduce approximation subspace •
S = {Φr | r ∈ �s} 

and for a given proper policy, Bellman’s equation 
and its projected version 

J = TJ  = g + PJ,  Φr = ΠT (Φr)
 

Also its λ-version 
∞ 

Φr = ΠT (λ)(Φr), T (λ) = (1  − λ) λtT t+1 

t=0 

• Question: What should be the norm of pro
jection? 

• Speculation based on discounted case: It 
should be a weighted Euclidean norm with weight 
vector ξ = (ξ1, . . . , ξn), where ξi should be some 
type of long-term occupancy probability of state i 
(which can be generated by simulation). 

• But what does “long-term occupancy probabil
ity of a state” mean in the SSP context? 

• How do we generate infinite length trajectories 
given that termination occurs with prob. 1? 



∑ 

√ √ √ 

SIMULATION TRAJECTORIES FOR SSP
 

• We envision simulation of trajectories up to 
termination, followed by restart at state i with 
some fixed probabilities q0(i) > 0. 

• Then the “long-term occupancy probability of 
a state” of i is proportional to 

∞ 

q(i) =  qt(i), i = 1, . . . , n,  
t=0 

where 

qt(i) =  P (it = i), i = 1, . . . , n,  t = 0, 1, . . .  

• We use the projection norm 

n √∑
 ( )2 ‖J‖q = q(i) J(i) 
i=1 

[Note that 0 < q(i) < ∞, but q is not a prob. 
distribution. ] 

• We can show that ΠT (λ) is a contraction with 
respect to ‖ · ‖ξ (see the next slide). 



∑ ∑ 

∑ 

∑ ∑ ∑ ∑ 

∑ ∑ ∑ ( ) 

CONTRACTION PROPERTY FOR SSP
 

∑∞ • We have q = t=0 qt so 
∞ ∞ 

q′P = qt 
′ P = qt 

′ = q′ − q0 
′ 

t=0 t=1 
or 

n 

q(i)pij = q(j) − q0(j), ∀ j 
i=1 

• To verify that ΠT is a contraction, we show 
that there exists β <  1 such that ‖Pz‖2 

q ≤ β‖z‖2 
q 

nfor all z ∈ �  . 

• For all z ∈ �n, we have  

 2 
n n n n 

‖Pz‖q 
2 = q(i)  pij zj  ≤ q(i) pij zj 

2 

i=1 j=1 i=1 j=1 

n n n 

= zj 
2 q(i)pij = q(j) − q0(j) zj 

2 

j=1 i=1 j=1 

= ‖z‖2 
q − ‖z‖2 

q0 ≤ β‖z‖2 
q 

where 
q0(j)

β = 1  − min 
j q(j) 



∑ 
( 

∑ 

PVI(λ) AND  LSPE(λ) FOR SSP 

• We consider PVI(λ): Φrk+1 = ΠT (λ)(Φrk),
 
which can be written as
 

n 

rk+1 = arg  min  q(i) φ(i)′r − φ(i)′rk 
r∈�s 

i=1 

∞ 
)2 ∑
 { } − λtE dk(it, it+1) | i0 = i 

t=0 

where dk(it, it+1) are  the TDs.  

• The LSPE(λ) algorithm is a simulation-based

approximation. Let (i0,l, i1,l, . . . , iNl,l) be the  lth

trajectory (with iNl,l = 0),  and  let  rk be the pa

rameter vector after k trajectories. We set
(
 

k+1 Nl−1 ∑ ∑
 
rk+1 = arg  min  φ(it,l)′r − φ(it,l)′rk 

r

l=1 t=0


Nl−1 
)2 

− λm−tdk(im,l, im+1,l) 
m=t 

where 

dk(im,l, im+1,l) =  g(im,l, im+1,l)+φ(im+1,l)′rk−φ(im,l)′rk 

• Can also update rk at every transition. 



{ } ∑ 

AVERAGE COST PROBLEMS
 

• Consider a single policy to be evaluated, with 
single recurrent class, no transient states, and steady-
state probability vector ξ = (ξ1, . . . , ξn). 

• The average cost, denoted by η, is independent 
of the initial state 

1 
N−1 ( ) ∣∣ 

η = lim E g xk, xk+1 ∣ x0 = i , ∀ i 
N→∞ N 

k=0 

• Bellman’s equation is J = FJ  with 

FJ  = g − ηe + PJ  

where e is the unit vector e = (1, . . . , 1). 

• The projected equation and its λ-version are 

Φr = ΠF (Φr), Φr = ΠF (λ)(Φr) 

• A problem here is that F is not a contraction 
with respect to any norm (since e = Pe). 

• However, ΠF (λ) turns out to be a contraction 
with respect to ‖ · ‖ξ assuming that e does not be
long to S and λ > 0 [the case  λ = 0 is exceptional, 
but can be handled - see the text]. 



∑ 

LSPE(λ) FOR AVERAGE COST 

• We generate an infinitely long trajectory (i0, i1, . . .). 

• We estimate the average cost η separately: Fol

lowing each transition (ik, ik+1), we set


1 
k 

ηk = g(it, it+1)
k + 1  

t=0 

• Also following (ik, ik+1), we update rk by 

( )2k k ∑ ∑
 
rk+1 = arg  min  φ(it)′r − φ(it)′rk − λm−tdk(m) 

r∈�s 

t=0 m=t 

where dk(m) are  the TDs  

dk(m) =  g(im, im+1)−ηm +φ(im+1)′rk −φ(im)′rk 

• Note that the TDs include the estimate ηm.
 
Since ηm converges to η, for  large  m it can be
 
viewed as a constant and lumped into the one-
 
stage cost.
 



GENERALIZATION/UNIFICATION
 

• Consider approximate solution of x = T (x), 
where 

nT (x) =  Ax + b, A is n × n, b ∈ � 
  

by solving the projected equation y = ΠT (y), 
where Π is projection on a subspace of basis func
tions (with respect to some Euclidean norm). 

• We will generalize from DP to the case where 
A is arbitrary, subject only to 

I − ΠA : invertible  
  

•	 Benefits of generalization: 
− Unification/higher perspective for TD meth

ods in approximate DP 

− An extension to a broad new area of applica
tions, where a DP perspective may be help
ful 

•	 Challenge: Dealing with less structure 

− Lack of contraction 

− Absence of a Markov chain 



∑


∑ ∑


LSTD-LIKE METHOD
 

• Let Π be projection with respect to


√
 √
 √
 n 

‖x‖ξ = √ ξix2 
i 

i=1 

nwhere ξ ∈ �  is a probability distribution with 
positive components. 

• If r ∗ is the solution of the projected equation, 
we have Φr ∗ = Π(AΦr ∗ + b) or   2 

n n 

r ∗ = arg  min  ξi φ(i)′r − aij φ(j)′r ∗ − bi 
r∈�s 

i=1 j=1 

where φ(i)′ denotes the ith row of the matrix Φ. 

• Optimality condition/equivalent form:


 ′ 
n n n ∑ ∑ ∑ 

ξiφ(i) φ(i) − aij φ(j) r ∗ = ξiφ(i)bi 

i=1 j=1 i=1 

• The two expected values are approximated by 
simulation. 



Row Sampling According to ξ

i0 i1

j0 j1

ik ik+1

jk jk+1

. . . . . .

Column Sampling

{ } 

SIMULATION MECHANISM
 

According to P 

• Row sampling: Generate sequence {i0, i1, . . .}
according to ξ, i.e., relative frequency of each row 
i is ξi 

• Column sampling: Generate (i0, j0), (i1, j1), . . .  
according to some transition probability matrix P 
with 

pij > 0  if  aij �= 0, 

i.e., for each i, the relative frequency of (i, j) is  pij 

• Row sampling may be done using a Markov
 
chain with transition matrix Q (unrelated to P )
 

• Row sampling may  also  be done without  a 
Markov chain - just sample rows according to some 
known distribution ξ (e.g., a uniform) 



| |

Row Sampling According to ξ

(May Use Markov Chain Q)

Column Sampling

According to

Markov Chain

P A

i0 i1

j0 j1

ik ik+1

jk jk+1

. . .

∼ |  | 

ROW AND COLUMN SAMPLING
 

. . .  

• Row sampling ∼ State Sequence Generation in 
DP. Affects: 

− The projection norm.
 
− Whether ΠA is a contraction.
 

• Column sampling ∼ Transition Sequence Gen
eration in DP. 

−	 Can be totally unrelated to row sampling. 
Affects the sampling/simulation error. 

−	 “Matching” P with |A| is beneficial (has an 
effect like in importance sampling). 

• Independent row and column sampling allows
 
exploration at will! Resolves the exploration prob
 
lem that is critical in approximate policy iteration.
 



∑ ∑ ∑ 

∑ ∑ 

∑ 

LSTD-LIKE METHOD
 

• Optimality condition/equivalent form of pro
jected equation  ′ 

n n n 

ξiφ(i) φ(i) − aij φ(j) r ∗ = ξiφ(i)bi 

i=1 j=1 i=1 

• The two expected values are approximated by 
row and column sampling (batch 0 → t). 

• We solve the linear equation 

t ( )′ t 

φ(ik) φ(ik) − 
aikjk φ(jk) rt = φ(ik)bik pik jkk=0 k=0 

• We have rt → r ∗ , regardless of ΠA being a con
traction (by law of large numbers; see next slide). 

• An LSPE-like method is also possible, but re
quires that ΠA is a contraction. 
• Under the assumption n |aij | ≤ 1 for all i,j=1 
there are conditions that guarantee contraction of 
ΠA; see the paper by Bertsekas and Yu,“Projected 
Equation Methods for Approximate Solution of 
Large Linear Systems,” 2008, or the expanded ver
sion of Chapter 6 Vol 2 



∑	 ∑ ∑ 

∑	 ∑ ∑ 
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JUSTIFICATION W/ LAW OF LARGE NUMBERS
 

• We will match terms in the exact optimality 
condition and the simulation-based version. 

• Let ξ̂  
i
t be the relative frequency of i in row 

sampling up to time t. 

•	 We have 

1 
t n 

ˆ 
n 

φ(ik)φ(ik)′ = ξi
tφ(i)φ(i)′ ≈ ξiφ(i)φ(i)′ 

t + 1  
k=0	 i=1 i=1 

1 
t	 n n 

φ(ik)bik = ξ̂  
i
tφ(i)bi ≈ ξiφ(i)bi 

t + 1  
k=0	 i=1 i=1 

• Let t̂ be the relative frequency of (i, j) in  pij 
column sampling up to time t. 

1 
t 

aikjk φ(ik)φ(jk)′
 
t + 1  pikjk
k=0
 

n n
 

= ξ̂  
i
t p̂ij

t	 aij 
φ(i)φ(j)′ 

pij
i=1 j=1 

n n 

≈ ξi aij φ(i)φ(j)′ 
i=1 j=1 



6.231 DYNAMIC PROGRAMMING
 

LECTURE 25
 

LECTURE OUTLINE
 

• Additional topics in ADP 

• Nonlinear versions of the projected equation
 

• Extension of Q-learning for optimal stopping
 

• Basis function adaptation 

• Gradient-based approximation in policy space
 



( ) 
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NONLINEAR EXTENSIONS OF PROJECTED EQ.
 

• If the mapping T is nonlinear (as for exam
ple in the case of multiple policies) the projected 
equation Φr = ΠT (Φr) is also nonlinear. 

• Any solution r ∗ satisfies 

r ∗ ∈ arg min
∥ 
Φr − T (Φr ∗)∥∥2 

r∈�s 

or equivalently 

Φ′ Φr ∗ − T (Φr ∗) = 0  

This is a nonlinear equation, which may have one 
or many solutions, or no solution at all. 

• If ΠT is a contraction, then there is a unique 
solution that can be obtained (in principle) by the 
fixed point iteration 

Φrk+1 = ΠT (Φrk) 

• We have seen a nonlinear special case of pro
jected value iteration/LSPE where ΠT is a con
traction, namely optimal stopping. 

• This case can be generalized. 



( ) 

∣ ∣ ∣ 

∑ 

 

LSPE FOR OPTIMAL STOPPING EXTENDED
 

• Consider a system of the form 

x = T (x) =  Af(x) +  b,
 

n nwhere f : � → � is a mapping with scalar com
 
ponents of the form f(x) =  f1(x1), . . . , fn(xn) . 

• Assume that each fi : � → � is nonexpansive: 

∣fi(xi) − fi(x̄i) ≤ |xi − x̄ i|, ∀ i, xi, x̄ i ∈ �  

This guarantees that T is a contraction with re
spect to any weighted Euclidean norm ‖·‖ξ when
ever A is a contraction with respect to that norm. 

• Algorithms similar to LSPE [approximating 
Φrk+1 = ΠT (Φrk)] are then possible. 

• Special case: In the optimal stopping problem 
of Section 6.4, x is the Q-factor corresponding to 
the continuation action, α ∈ (0, 1) is a discount 
factor, fi(xi) = min{ci, xi}, and  A = αP , where  
P is the transition matrix for continuing. 

• If j
n 
=1 pij < 1 for some state i, and  0  ≤ P ≤ 

Q, where  Q is an irreducible transition matrix, 
then Π((1−γ)I+γT ) is a contraction with respect 
to ‖ · ‖ξ for all γ ∈ (0, 1), even with α = 1.  



( ) 

( ) ( )
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BASIS FUNCTION ADAPTATION I
 

• An important issue in ADP is how to select 
basis functions. 

• A possible approach is to introduce basis func
tions that are parametrized by a vector θ, and  
optimize over θ, i.e., solve the problem 

min F J̃(θ)
 
θ∈Θ 

where J̃(θ) is the solution of the projected equa
tion. 

• One example is 

F J̃(θ) = ∥J̃(θ) − T J̃(θ) ∥ 2 

• Another example is 

F J̃(θ) = 
∑ 

|J(i) − J̃(θ)(i)|2 , 
i∈I 

where I is a subset of states, and J(i), i ∈ I,  are 
the costs of the policy at these states calculated 
directly by simulation. 



( ) 
BASIS FUNCTION ADAPTATION II
 

• Some algorithm may be used to minimize F J̃(θ) 
over θ. 

• A challenge here is that the algorithm should 
use low-dimensional calculations. 

• One possibility is to use a form of random search 
method; see the paper by Menache, Mannor, and 
Shimkin (Annals of Oper. Res., Vol. 134, 2005) 

• Another possibility is to use a gradient method. 
For this it is necessary to estimate the partial 
derivatives of J̃(θ) with respect to the components 
of θ. 

• It turns out that by differentiating the pro
jected equation, these partial derivatives can be 
calculated using low-dimensional operations. See 
the paper by Menache, Mannor, and Shimkin, and 
a recent paper by Yu and Bertsekas (2008). 



APPROXIMATION IN POLICY SPACE I 

• Consider an average cost problem, where the 
problem data are parametrized by a vector r, i.e., 
a cost vector g(r), transition probability matrix 
P (r). Let η(r) be the (scalar) average cost per 
stage, satisfying Bellman’s equation 

η(r)e + h(r) =  g(r) +  P (r)h(r) 

where h(r) is the corresponding differential cost 
vector. 
• Consider minimizing η(r) over  r (here the data 
dependence on control is encoded in the parametriza
tion). We can try to solve the problem by nonlin
ear programming/gradient descent methods. 

• Important fact: If ∆η is the change in η due 
to a small change ∆r from a given r, we have  

∆η = ξ′(∆g + ∆Ph), 
where ξ is the steady-state probability distribu
tion/vector corresponding to P (r), and all the quan
tities above are evaluated at r: 

∆η = η(r + ∆r) − η(r), 

∆g = g(r+∆r)−g(r), ∆P = P (r+∆r)−P (r)
 



( ) 

APPROXIMATION IN POLICY SPACE II
 

• Proof of the gradient formula: We have, 
by “differentiating” Bellman’s equation, 

∆η(r)·e+∆h(r) = ∆g(r)+∆P (r)h(r)+P (r)∆h(r)
 

By left-multiplying with ξ′, 

ξ′∆η(r)·e+ξ′∆h(r) =  ξ′ ∆g(r)+∆P (r)h(r) +ξ′P (r)∆h(r) 

Since ξ′∆η(r) · e = ∆η(r) and  ξ′ = ξ′P (r), this 
equation simplifies to 

∆η = ξ′(∆g + ∆Ph) 

• Since we don’t know ξ, we cannot implement a 
gradient-like method for minimizing η(r). An al
ternative is to use “sampled gradients”, i.e., gener
ate a simulation trajectory (i0, i1, . . .), and change 
r once in a while, in the direction of a simulation-
based estimate of ξ′(∆g + ∆Ph). 

• There is much recent research on this subject, 
see e.g., the work of Marbach and Tsitsiklis, and 
Konda and Tsitsiklis, and the refs given there. 




