MIT OpenCourseWare http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 12

LECTURE OUTLINE

- More on rollout algorithms Stochastic problems
- Simulation-based methods for rollout
- Approximations of rollout algorithms
- Rolling horizon approximations
- Discretization of continuous time
- Discretization of continuous space
- Other suboptimal approaches

ROLLOUT ALGORITHMS - STOCHASTIC PROBLEM

• **Rollout policy:** At each k and state x_k , use the control $\overline{\mu}_k(x_k)$ that

$$\min_{u_k \in U_k(x_k)} Q_k(x_k, u_k),$$

where

$$Q_k(x_k, u_k) = E\{g_k(x_k, u_k, w_k) + H_{k+1}(f_k(x_k, u_k, w_k))\}$$

and $H_{k+1}(x_{k+1})$ is the cost-to-go of the heuristic.

• $Q_k(x_k, u_k)$ is called the *Q*-factor of (x_k, u_k) , and for a stochastic problem, its computation may involve Monte Carlo simulation.

• Potential difficulty: To minimize over u_k the Q-factor, we must form Q-factor differences $Q_k(x_k, u) - Q_k(x_k, \overline{u})$. This differencing often amplifies the simulation error in the calculation of the Q-factors.

• Potential remedy: Compare any two controls u and \overline{u} by simulating the *Q*-factor differences $Q_k(x_k, u) - Q_k(x_k, \overline{u})$ directly. This may effect variance reduction of the simulation-induced error.

Q-FACTOR APPROXIMATION

• Here, instead of simulating the Q-factors, we approximate the costs-to-go $H_{k+1}(x_{k+1})$.

• Certainty equivalence approach: Given x_k , fix future disturbances at "typical" values $\overline{w}_{k+1}, \ldots, \overline{w}_{N-1}$ and approximate the *Q*-factors with

$$\tilde{Q}_{k}(x_{k}, u_{k}) = E\{g_{k}(x_{k}, u_{k}, w_{k}) + \tilde{H}_{k+1}(f_{k}(x_{k}, u_{k}, w_{k}))\}$$

where $\tilde{H}_{k+1}(f_k(x_k, u_k, w_k))$ is the cost of the heuristic with the disturbances fixed at the typical values.

• This is an approximation of $H_{k+1}(f_k(x_k, u_k, w_k))$ by using a "single sample simulation."

• Variant of the certainty equivalence approach: Approximate $H_{k+1}(f_k(x_k, u_k, w_k))$ by simulation using a small number of "representative samples" (scenarios).

• Alternative: Calculate (exact or approximate) values for the cost-to-go of the base policy at a limited set of state-time pairs, and then approximate H_{k+1} using an approximation architecture and a "training algorithm" or "least-squares fit."

ROLLING HORIZON APPROACH

• This is an *l*-step lookahead policy where the cost-to-go approximation is just 0.

• Alternatively, the cost-to-go approximation is the terminal cost function g_N .

• A short rolling horizon saves computation.

• "Paradox": It is not true that a longer rolling horizon always improves performance.

• Example: At the initial state, there are two controls available (1 and 2). At every other state, there is only one control.

ROLLING HORIZON COMBINED WITH ROLLOUT

• We can use a rolling horizon approximation in calculating the cost-to-go of the base heuristic.

• Because the heuristic is suboptimal, the rationale for a long rolling horizon becomes weaker.

• **Example:** N-stage stopping problem where the stopping cost is 0, the continuation cost is either $-\epsilon$ or 1, where $0 < \epsilon << 1$, and the first state with continuation cost equal to 1 is state m. Then the optimal policy is to stop at state m, and the optimal cost is $-m\epsilon$.

• Consider the heuristic that continues at every state, and the rollout policy that is based on this heuristic, with a rolling horizon of $l \leq m$ steps.

• It will continue up to the first m - l + 1 stages, thus compiling a cost of $-(m-l+1)\epsilon$. The rollout performance improves as l becomes shorter!

• Limited vision may work to our advantage!

DISCRETIZATION

• If the state space and/or control space is continuous/infinite, it must be replaced by a finite discretization.

• Need for consistency, i.e., as the discretization becomes finer, the cost-to-go functions of the discretized problem converge to those of the continuous problem.

- Pitfalls with discretizing continuous time.
- The control constraint set changes a lot as we pass to the discrete-time approximation.
- Continuous-Time Shortest Path Pitfall:

$$\dot{x}_1(t) = u_1(t), \qquad \dot{x}_2(t) = u_2(t),$$

with control constraint $u_i(t) \in \{-1, 1\}$ and cost $\int_0^T g(x(t)) dt$. Compare with naive discretization $x_1(t+\Delta t) = x_1(t) + \Delta t u_1(t), \ x_2(t+\Delta t) = x_2(t) + \Delta t u_2(t)$ with $u_i(t) \in \{-1, 1\}$.

• "Convexification effect" of continuous time.

SPACE DISCRETIZATION I

• Given a discrete-time system with state space S, consider a finite subset \overline{S} ; for example \overline{S} could be a finite grid within a continuous state space S.

• Difficulty: $f(x, u, w) \notin \overline{S}$ for $x \in \overline{S}$.

• We define an approximation to the original problem, with state space \overline{S} , as follows:

• Express each $x \in S$ as a convex combination of states in \overline{S} , i.e.,

$$x = \sum_{x_i \in \overline{S}} \gamma_i(x) x_i$$
 where $\gamma_i(x) \ge 0$, $\sum_i \gamma_i(x) = 1$

• Define a "reduced" dynamic system with state space \overline{S} , whereby from each $x_i \in \overline{S}$ we move to $\overline{x} = f(x_i, u, w)$ according to the system equation of the original problem, and then move to $x_j \in \overline{S}$ with probabilities $\gamma_j(\overline{x})$.

• Define similarly the corresponding cost per stage of the transitions of the reduced system.

SPACE DISCRETIZATION II

• Let $\overline{J}_k(x_i)$ be the optimal cost-to-go of the "reduced" problem from each state $x_i \in \overline{S}$ and time k onward.

• Approximate the optimal cost-to-go of any $x \in S$ for the original problem by

$$\widetilde{J}_k(x) = \sum_{x_i \in \overline{S}} \gamma_i(x) \overline{J}_k(x_i),$$

and use one-step-lookahead based on \tilde{J}_k .

• The choice of coefficients $\gamma_i(x)$ is in principle arbitrary, but should aim at consistency, i.e., as the number of states in \overline{S} increases, $\tilde{J}_k(x)$ should converge to the optimal cost-to-go of the original problem.

• Interesting observation: While the original problem may be deterministic, the reduced problem is always stochastic.

• Generalization: The set \overline{S} may be any finite set (not a subset of S) as long as the coefficients $\gamma_i(x)$ admit a meaningful interpretation that quantifies the degree of association of x with x_i .

OTHER SUBOPTIMAL CONTROL APPROACHES

• Minimize the DP equation error: Approximate the optimal cost-to-go functions $J_k(x_k)$ with functions $\tilde{J}_k(x_k, r_k)$, where r_k is a vector of unknown parameters, chosen to minimize some form of error in the DP equations.

• Direct approximation of control policies: For a subset of states x^i , i = 1, ..., m, find

$$\hat{\mu}_{k}(x^{i}) = \arg \min_{u_{k} \in U_{k}(x^{i})} E\{g(x^{i}, u_{k}, w_{k}) + \tilde{J}_{k+1}(f_{k}(x^{i}, u_{k}, w_{k}), r_{k+1})\}.$$

Then find $\tilde{\mu}_k(x_k, s_k)$, where s_k is a vector of parameters obtained by solving the problem

$$\min_{s} \sum_{i=1}^{m} \|\hat{\mu}_k(x^i) - \tilde{\mu}_k(x^i, s)\|^2.$$

• Approximation in policy space: Do not bother with cost-to-go approximations. Parametrize the policies as $\tilde{\mu}_k(x_k, s_k)$, and minimize the cost function of the problem over the parameters s_k .