
MIT OpenCourseWare 
http://ocw.mit.edu 

6.231 Dynamic Programming and Stochastic Control 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.231 DYNAMIC PROGRAMMING

LECTURE 14

LECTURE OUTLINE

• Review of stochastic shortest path problems

• Computational methods
− Value iteration
− Policy iteration
− Linear programming

• Discounted problems as special case of SSP



STOCHASTIC SHORTEST PATH PROBLEMS

• Assume finite-state system: States 1, . . . , n and
special cost-free termination state t

− Transition probabilities pij(u)
− Control constraints u ∈ U(i)
− Cost of policy π = {µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

E

{
N−1∑

k=0

g
(
xk, µk(xk)

)∣∣∣ x0 = i

}

− Optimal policy if Jπ(i) = J∗(i) for all i.
− Special notation: For stationary policies π =

{µ, µ, . . .}, we use Jµ(i) in place of Jπ(i).

• Assumption (Termination inevitable): There ex-
ists integer m such that for every policy and initial
state, there is positive probability that the termi-
nation state will be reached after no more that m
stages; for all π, we have

ρπ = max
i=1,...,n

P{xm #= t | x0 = i,π} < 1



MAIN RESULT

• Given any initial conditions J0(1), . . . , J0(n),
the sequence Jk(i) generated by value iteration

Jk+1(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)Jk(j)



 , ∀ i

converges to the optimal cost J∗(i) for each i.

• Bellman’s equation has J∗(i) as unique solution:

J∗(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)J∗(j)



 , ∀ i

• A stationary policy µ is optimal if and only
if for every state i, µ(i) attains the minimum in
Bellman’s equation.

• Key proof idea: The “tail” of the cost series,

∞∑

k=mK

E
{
g
(
xk, µk(xk)

)}

vanishes as K increases to ∞.



BELLMAN’S EQUATION FOR A SINGLE POLICY

• Consider a stationary policy µ

• Jµ(i), i = 1, . . . , n, are the unique solution of
the linear system of n equations

Jµ(i) = g
(
i, µ(i)

)
+

n∑

j=1

pij

(
µ(i)

)
Jµ(j), ∀ i = 1, . . . , n

• Proof: This is just Bellman’s equation for a
modified/restricted problem where there is only
one policy, the stationary policy µ, i.e., the control
constraint set at state i is Ũ(i) = {µ(i)}
• The equation provides a way to compute Jµ(i),
i = 1, . . . , n, but the computation is substantial
for large n [O(n3)]

• For large n, value iteration may be preferable.
(Typical case of a large linear system of equations,
where an iterative method may be better than a
direct solution method.)



POLICY ITERATION

• It generates a sequence µ1, µ2, . . . of stationary
policies, starting with any stationary policy µ0.

• At the typical iteration, given µk, we perform
a policy evaluation step, that computes the Jµk(i)
as the solution of the (linear) system of equations

J(i) = g
(
i, µk(i)

)
+

n∑

j=1

pij

(
µk(i)

)
J(j), i = 1, . . . , n,

in the n unknowns J(1), . . . , J(n). We then per-
form a policy improvement step, which computes
a new policy µk+1 as

µk+1(i) = arg min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)Jµk(j)



 , ∀ i

• The algorithm stops when Jµk(i) = Jµk+1(i) for
all i

• Note the connection with the rollout algorithm,
which is just a single policy iteration



JUSTIFICATION OF POLICY ITERATION

• We can show thatJµk+1(i) ≤ Jµk(i) for all i, k

• Fix k and consider the sequence generated by

JN+1(i) = g
(
i, µk+1(i)

)
+

n∑

j=1

pij

(
µk+1(i)

)
JN (j)

where J0(i) = Jµk(i). We have

J0(i) = g
(
i, µk(i)

)
+

n∑

j=1

pij

(
µk(i)

)
J0(j)

≥ g
(
i, µk+1(i)

)
+

n∑

j=1

pij

(
µk+1(i)

)
J0(j) = J1(i)

Using the monotonicity property of DP,

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , ∀ i

Since JN (i) → Jµk+1(i) as N → ∞, we obtain
Jµk(i) = J0(i) ≥ Jµk+1(i) for all i. Also if Jµk(i) =
Jµk+1(i) for all i, Jµk solves Bellman’s equation
and is therefore equal to J∗

• A policy cannot be repeated, there are finitely
many stationary policies, so the algorithm termi-
nates with an optimal policy



LINEAR PROGRAMMING

• We claim that J∗ is the “largest” J that satisfies
the constraint

J(i) ≤ g(i, u) +
n∑

j=1

pij(u)J(j), (1)

for all i = 1, . . . , n and u ∈ U(i).

• Proof: If we use value iteration to generate a se-
quence of vectors Jk =

(
Jk(1), . . . , Jk(n)

)
starting

with a J0 such that

J0(i) ≤ min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)J0(j)



 , ∀ i

Then, Jk(i) ≤ Jk+1(i) for all k and i (mono-
tonicity property of DP) and Jk → J∗, so that
J0(i) ≤ J∗(i) for all i.

• So J∗ = (J∗(1), . . . , J∗(n)) is the solution of the
linear program of maximizing

∑n
i=1 J(i) subject

to the constraint (1).



LINEAR PROGRAMMING (CONTINUED)

J (1)

J (2)

0

J* = (J*(1),J*(2))

J (1) = g(1,u2) + p 11(u 2)J (1) + p 12(u 2)J (2)

J (1) = g(1,u1 ) + p 11(u1)J (1) + p 12(u
1)J (2)

J (2) = g(2,u1) + p 21(u
1)J (1)+ p 22(u

1)J (2)

J (2) = g(2,u2) + p 21(u
2)J (1)+ p 22(u

2)J (2)

• Drawback: For large n the dimension of this
program is very large. Furthermore, the num-
ber of constraints is equal to the number of state-
control pairs.



DISCOUNTED PROBLEMS

• Assume a discount factor α < 1.

• Conversion to an SSP problem.

i j

pij(u)

pii(u) p jj(u )

pji(u)

a

1 - a

i j

pij(u)

pii(u) pjj(u)

pji(u)

a

a

a
1 - a

t

• Value iteration converges to J∗ for all initial J0:

Jk+1(i) = min
u∈U(i)



g(i, u) + α
n∑

j=1

pij(u)Jk(j)



 , ∀ i

• J∗ is the unique solution of Bellman’s equation:

J∗(i) = min
u∈U(i)



g(i, u) + α
n∑

j=1

pij(u)J∗(j)



 , ∀ i



DISCOUNTED PROBLEMS (CONTINUED)

• Policy iteration converges finitely to an optimal
policy, and linear programming works.

• Example: Asset selling over an infinite horizon.
If accepted, the offer xk of period k, is invested at
a rate of interest r.

• By depreciating the sale amount to period 0
dollars, we view (1 + r)−kxk as the reward for
selling the asset in period k at a price xk, where
r > 0 is the rate of interest. So the discount factor
is α = 1/(1 + r).

• J∗ is the unique solution of Bellman’s equation

J∗(x) = max

[
x,

E
{
J∗(w)

}

1 + r

]
.

• An optimal policy is to sell if and only if the cur-
rent offer xk is greater than or equal to ᾱ, where

ᾱ =
E

{
J∗(w)

}

1 + r
.


