
MIT OpenCourseWare 
http://ocw.mit.edu 

6.231 Dynamic Programming and Stochastic Control 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


6.231 DYNAMIC PROGRAMMING

LECTURE 15

LECTURE OUTLINE

• Average cost per stage problems

• Connection with stochastic shortest path prob-
lems

• Bellman’s equation

• Value iteration

• Policy iteration



AVERAGE COST PER STAGE PROBLEM

• Stationary system with finite number of states
and controls

• Minimize over policies π = {µ0, µ1, ...}

Jπ(x0) = lim
N→∞

1
N

E
wk

k=0,1,...

{
N−1∑

k=0

g
(
xk, µk(xk), wk

)
}

• Important characteristics (not shared by other
types of infinite horizon problems)

− For any fixed K, the cost incurred up to time
K does not matter (only the state that we
are at time K matters)

− If all states “communicate” the optimal cost
is independent of the initial state [if we can
go from i to j in finite expected time, we
must have J∗(i) ≤ J∗(j)]. So J∗(i) ≡ λ∗ for
all i.

− Because “communication” issues are so im-
portant, the methodology relies heavily on
Markov chain theory.



CONNECTION WITH SSP

• Assumption: State n is such that for some
integer m > 0, and for all initial states and all
policies, n is visited with positive probability at
least once within the first m stages.

• Divide the sequence of generated states into
cycles marked by successive visits to n.

• Each of the cycles can be viewed as a state
trajectory of a corresponding stochastic shortest
path problem with n as the termination state.

i j

pij(u)

pii(u) pjj(u)pji(u)

n
pin(u) pjn(u)

pn n(u)

pnj(u)pni(u)

i j

pij(u)

pii(u) pjj(u)pji(u)

n

t

Artificial Termination State

Special
State n

pni(u)

pin(u)

pn n(u)

pnj(u)

pjn(u)

• Let the cost at i of the SSP be g(i, u) − λ∗

• We will show that

Av. Cost Probl. ≡ A Min Cost Cycle Probl. ≡ SSP Probl.



CONNECTION WITH SSP (CONTINUED)

• Consider a minimum cycle cost problem: Find
a stationary policy µ that minimizes the expected
cost per transition within a cycle

Cnn(µ)
Nnn(µ)

,

where for a fixed µ,

Cnn(µ) : E{cost from n up to the first return to n}

Nnn(µ) : E{time from n up to the first return to n}

• Intuitively, optimal cycle cost = λ∗, so

Cnn(µ) − Nnn(µ)λ∗ ≥ 0,

with equality if µ is optimal.

• Thus, the optimal µ must minimize over µ the
expression Cnn(µ) − Nnn(µ)λ∗, which is the ex-
pected cost of µ starting from n in the SSP with
stage costs g(i, u) − λ∗.



BELLMAN’S EQUATION

• Let h∗(i) the optimal cost of this SSP problem
when starting at the nontermination states i =
1, . . . , n. Then, h∗(1), . . . , h∗(n) solve uniquely
the corresponding Bellman’s equation

h∗(i) = min
u∈U(i)



g(i, u) − λ∗ +
n−1∑

j=1

pij(u)h∗(j)



 , ∀ i

• If µ∗ is an optimal stationary policy for the SSP
problem, we have

h∗(n) = Cnn(µ∗) − Nnn(µ∗)λ∗ = 0

• Combining these equations, we have

λ∗+h∗(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)h∗(j)



 , ∀ i

• If µ∗(i) attains the min for each i, µ∗ is optimal.



MORE ON THE CONNECTION WITH SSP

• Interpretation of h∗(i) as a relative or differen-
tial cost : It is the minimum of

E{cost to reach n from i for the first time}
− E{cost if the stage cost were λ∗ and not g(i, u)}

• We don’t know λ∗, so we can’t solve the aver-
age cost problem as an SSP problem. But similar
value and policy iteration algorithms are possible.

• Example: A manufacturer at each time:
− Receives an order with prob. p and no order

with prob. 1 − p.
− May process all unfilled orders at cost K >

0, or process no order at all. The cost per
unfilled order at each time is c > 0.

− Maximum number of orders that can remain
unfilled is n.

− Find a processing policy that minimizes the
total expected cost per stage.



EXAMPLE (CONTINUED)

• State = number of unfilled orders. State 0 is
the special state for the SSP formulation.

• Bellman’s equation: For states i = 0, 1, . . . , n−1

λ∗ + h∗(i) = min
[
K + (1 − p)h∗(0) + ph∗(1),

ci + (1 − p)h∗(i) + ph∗(i + 1)
]
,

and for state n

λ∗ + h∗(n) = K + (1 − p)h∗(0) + ph∗(1)

• Optimal policy: Process i unfilled orders if

K+(1−p)h∗(0)+ph∗(1) ≤ ci+(1−p)h∗(i)+ph∗(i+1).

• Intuitively, h∗(i) is monotonically nondecreas-
ing with i (interpret h∗(i) as optimal costs-to-go
for the associate SSP problem). So a threshold pol-
icy is optimal: process the orders if their number
exceeds some threshold integer m∗.



VALUE ITERATION

• Natural value iteration method: Generate op-
timal k-stage costs by DP algorithm starting with
any J0:

Jk+1(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)Jk(j)



 , ∀ i

• Result: limk→∞ Jk(i)/k = λ∗ for all i.

• Proof outline: Let J∗
k be so generated from the

initial condition J∗
0 = h∗. Then, by induction,

J∗
k (i) = kλ∗ + h∗(i), ∀i, ∀ k.

On the other hand,
∣∣Jk(i) − J∗

k (i)
∣∣ ≤ max

j=1,...,n

∣∣J0(j) − h∗(j)
∣∣, ∀ i

since Jk(i) and J∗
k (i) are optimal costs for two

k-stage problems that differ only in the terminal
cost functions, which are J0 and h∗.



RELATIVE VALUE ITERATION

• The value iteration method just described has
two drawbacks:

− Since typically some components of Jk di-
verge to ∞ or −∞, calculating limk→∞ Jk(i)/k
is numerically cumbersome.

− The method will not compute a correspond-
ing differential cost vector h∗.

• We can bypass both difficulties by subtracting
a constant from all components of the vector Jk,
so that the difference, call it hk, remains bounded.

• Relative value iteration algorithm: Pick any
state s, and iterate according to

hk+1(i) = min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)hk(j)





− min
u∈U(s)



g(s, u) +
n∑

j=1

psj(u)hk(j)



 , ∀ i

• Then we can show hk → h∗ (under an extra
assumption).



POLICY ITERATION

• At the typical iteration, we have a stationary
µk.

• Policy evaluation: Compute λk and hk(i) of µk,
using the n + 1 equations hk(n) = 0 and

λk + hk(i) = g
(
i, µk(i)

)
+

n∑

j=1

pij

(
µk(i)

)
hk(j), ∀ i

• Policy improvement: Find for all i

µk+1(i) = arg min
u∈U(i)



g(i, u) +
n∑

j=1

pij(u)hk(j)





• If λk+1 = λk and hk+1(i) = hk(i) for all i, stop;
otherwise, repeat with µk+1 replacing µk.

• Result: For each k, we either have λk+1 < λk

or

λk+1 = λk, hk+1(i) ≤ hk(i), i = 1, . . . , n.

The algorithm terminates with an optimal policy.


