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6.231 DYNAMIC PROGRAMMING

LECTURE 16

LECTURE OUTLINE

• Control of continuous-time Markov chains –
Semi-Markov problems

• Problem formulation – Equivalence to discrete-
time problems

• Discounted problems

• Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

• Stationary system with finite number of states
and controls

• State transitions occur at discrete times

• Control applied at these discrete times and stays
constant between transitions

• Time between transitions is random

• Cost accumulates in continuous time (may also
be incurred at the time of transition)

• Example: Admission control in a system with
restricted capacity (e.g., a communication link)

− Customer arrivals: a Poisson process
− Customers entering the system, depart after

exponentially distributed time
− Upon arrival we must decide whether to ad-

mit or to block a customer
− There is a cost for blocking a customer
− For each customer that is in the system, there

is a customer-dependent reward per unit time
− Minimize time-discounted or average cost



PROBLEM FORMULATION

• x(t) and u(t): State and control at time t

• tk: Time of kth transition (t0 = 0)

• xk = x(tk); x(t) = xk for tk ≤ t < tk+1.

• uk = u(tk); u(t) = uk for tk ≤ t < tk+1.

• No transition probabilities; instead transition
distributions (quantify the uncertainty about both
transition time and next state)

Qij(τ, u) = P{tk+1−tk ≤ τ, xk+1 = j | xk = i, uk = u}

• Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{xk+1 = j | xk = i, uk = u} = lim
τ→∞

Qij(τ, u)

(2) The Cumulative Distribution Function (CDF)
of τ given i, j, u is (assuming pij(u) > 0)

P{tk+1−tk ≤ τ | xk = i, xk+1 = j, uk = u} =
Qij(τ, u)
pij(u)

Thus, Qij(τ, u) can be viewed as a “scaled CDF”



EXPONENTIAL TRANSITION DISTRIBUTIONS

• Important example of transition distributions:

Qij(τ, u) = pij(u)
(
1 − e−νi(u)τ

)
,

where pij(u) are transition probabilities, and νi(u)
is called the transition rate at state i.

• Interpretation: If the system is in state i and
control u is applied

− the next state will be j with probability pij(u)
− the time between the transition to state i

and the transition to the next state j is ex-
ponentially distributed with parameter νi(u)
(independently of j):

P{transition time interval > τ | i, u} = e−νi(u)τ

• The exponential distribution is memoryless.
This implies that for a given policy, the system
is a continuous-time Markov chain (the future de-
pends on the past through the present).

• Without the memoryless property, the Markov
property holds only at the times of transition.



COST STRUCTURES

• There is cost g(i, u) per unit time, i.e.

g(i, u)dt = the cost incurred in time dt

• There may be an extra “instantaneous” cost
ĝ(i, u) at the time of a transition (let’s ignore this
for the moment)
• Total discounted cost of π = {µ0, µ1, . . .} start-
ing from state i (with discount factor β > 0)

lim
N→∞

E

{
N−1∑

k=0

∫ tk+1

tk

e−βtg
(
xk, µk(xk)

)
dt

∣∣∣ x0 = i

}

• Average cost per unit time

lim
N→∞

1
E{tN}E

{
N−1∑

k=0

∫ tk+1

tk

g
(
xk, µk(xk)

)
dt

∣∣∣ x0 = i

}

• We will see that both problems have equivalent
discrete-time versions.



A NOTE ON NOTATION

• The scaled CDF Qij(τ, u) can be used to model
discrete, continuous, and mixed distributions for
the transition time τ .

• Generally, expected values of functions of τ can
be written as integrals involving dQij(τ, u). For
example, the conditional expected value of τ given
i, j, and u is written as

E{τ | i, j, u} =
∫ ∞

0
τ

dQij(τ, u)
pij(u)

• If Qij(τ, u) is continuous with respect to τ , its
derivative

qij(τ, u) =
dQij

dτ
(τ, u)

can be viewed as a “scaled” density function. Ex-
pected values of functions of τ can then be written
in terms of qij(τ, u). For example

E{τ | i, j, u} =
∫ ∞

0
τ

qij(τ, u)
pij(u)

dτ

• If Qij(τ, u) is discontinuous and “staircase-like,”
expected values can be written as summations.



DISCOUNTED PROBLEMS – COST CALCULATION

• For a policy π = {µ0, µ1, . . .}, write

Jπ(i) = E{1st transition cost}+E{e−βτJπ1(j) | i, µ0(i)}

where Jπ1(j) is the cost-to-go of the policy π1 =
{µ1, µ2, . . .}
• We calculate the two costs in the RHS. The
E{1st transition cost}, if u is applied at state i, is

G(i, u) = Ej

{
Eτ{1st transition cost | j}

}

=

n∑

j=1

pij(u)

∫ ∞

0

(∫ τ

0

e−βtg(i, u)dt

)
dQij(τ, u)

pij(u)

=

n∑

j=1

∫ ∞

0

1 − e−βτ

β
g(i, u)dQij(τ, u)

• Thus the E{1st transition cost} is

G
(
i, µ0(i)

)
= g

(
i, µ0(i)

) n∑

j=1

∫ ∞

0

1 − e−βτ

β
dQij

(
τ, µ0(i)

)



COST CALCULATION (CONTINUED)

• Also the expected (discounted) cost from the
next state j is

E
{
e−βτJπ1(j) | i, µ0(i)

}

= Ej

{
E{e−βτ | i, µ0(i), j}Jπ1(j) | i, µ0(i)

}

=
n∑

j=1

pij(u)
(∫ ∞

0
e−βτ

dQij(τ, u)
pij(u)

)
Jπ1(j)

=
n∑

j=1

mij

(
µ(i)

)
Jπ1(j)

where mij(u) is given by

mij(u) =

∫ ∞

0

e−βτdQij(τ, u)

(
<

∫ ∞

0

dQij(τ, u) = pij(u)

)

and can be viewed as the “effective discount fac-
tor” [the analog of αpij(u) in the discrete-time
case].

• So Jπ(i) can be written as

Jπ(i) = G
(
i, µ0(i)

)
+

n∑

j=1

mij

(
µ0(i)

)
Jπ1(j)



EQUIVALENCE TO AN SSP

• Similar to the discrete-time case, introduce a
stochastic shortest path problem with an artificial
termination state t

• Under control u, from state i the system moves
to state j with probability mij(u) and to the ter-
mination state t with probability 1−

∑n
j=1 mij(u)

• Bellman’s equation: For i = 1, . . . , n,

J∗(i) = min
u∈U(i)



G(i, u) +
n∑

j=1

mij(u)J∗(j)





• Analogs of value iteration, policy iteration, and
linear programming.

• If in addition to the cost per unit time g, there
is an extra (instantaneous) one-stage cost ĝ(i, u),
Bellman’s equation becomes

J∗(i) = min
u∈U(i)



ĝ(i, u) + G(i, u) +
n∑

j=1

mij(u)J∗(j)







MANUFACTURER’S EXAMPLE REVISITED

• A manufacturer receives orders with interarrival
times uniformly distributed in [0, τmax].

• He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is c. Max number of unfilled orders
is n.

• The nonzero transition distributions are

Qi1(τ,Fill) = Qi(i+1)(τ,Not Fill) = min
[
1,

τ

τmax

]

• The one-stage expected cost G is

G(i,Fill) = 0, G(i,Not Fill) = γ c i,

where

γ =
n∑

j=1

∫ ∞

0

1 − e−βτ

β
dQij(τ, u) =

∫ τmax

0

1 − e−βτ

βτmax
dτ

• There is an “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0



MANUFACTURER’S EXAMPLE CONTINUED

• The “effective discount factors” mij(u) in Bell-
man’s Equation are

mi1(Fill) = mi(i+1)(Not Fill) = α,

where

α =

∫ ∞

0

e−βτdQij(τ, u) =

∫ τmax

0

e−βτ

τmax
dτ =

1 − e−βτmax

βτmax

• Bellman’s equation has the form

J∗(i) = min
[
K+αJ∗(1), γci+αJ∗(i+1)

]
, i = 1, 2, . . .

• As in the discrete-time case, we can conclude
that there exists an optimal threshold i∗:

fill the orders <==> their number i exceeds i∗



AVERAGE COST

• Minimize

lim
N→∞

1
E{tN}E

{∫ tN

0
g
(
x(t), u(t)

)
dt

}

assuming there is a special state that is “recurrent
under all policies”

• Total expected cost of a transition

G(i, u) = g(i, u)τ i(u),
where τ i(u): Expected transition time.

• We now apply the SSP argument used for the
discrete-time case. Divide trajectory into cycles
marked by successive visits to n. The cost at (i, u)
is G(i, u) − λ∗τ i(u), where λ∗ is the optimal ex-
pected cost per unit time. Each cycle is viewed as
a state trajectory of a corresponding SSP problem
with the termination state being essentially n.

• So Bellman’s Eq. for the average cost problem:

h∗(i) = min
u∈U(i)



G(i, u) − λ∗τ i(u) +
n∑

j=1

pij(u)h∗(j)







AVERAGE COST MANUFACTURER’S EXAMPLE

• The expected transition times are

τ i(Fill) = τ i(Not Fill) =
τmax

2

the expected transition cost is

G(i,Fill) = 0, G(i,Not Fill) =
c i τmax

2

and there is also the “instantaneous” cost

ĝ(i,Fill) = K, ĝ(i,Not Fill) = 0

• Bellman’s equation:

h∗(i) = min
[
K − λ∗ τmax

2
+ h∗(1),

ci
τmax

2
− λ∗ τmax

2
+ h∗(i + 1)

]

• Again it can be shown that a threshold policy
is optimal.


