6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 17

LECTURE OUTLINE

• We start a four-lecture sequence on advanced infinite horizon DP

- We allow infinite state space, so the stochastic shortest path framework cannot be used any more
- The discounted problem is the proper starting point for this analysis
- The central mathematical structure is that the DP mapping is a contraction mapping (instead of existence of a termination state)

DISCOUNTED PROBLEMS W/ BOUNDED COST

• Stationary system with arbitrary state space

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

with $\alpha < 1$, and for some M, we have $|g(x, u, w)| \le M$ for all (x, u, w)

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J \left(f(x, u, w) \right) \right\}, \, \forall \, x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ .

• For any stationary policy μ

$$(T_{\mu}J)(x) = \mathop{E}_{w} \left\{ g\left(x, \mu(x), w\right) + \alpha J\left(f(x, \mu(x), w)\right) \right\}, \ \forall \ x$$

"SHORTHAND" THEORY – A SUMMARY

• Cost function expressions [with $J_0(x) \equiv 0$]

$$J_{\pi}(x) = \lim_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J_0)(x), \ J_{\mu}(x) = \lim_{k \to \infty} (T_{\mu}^k J_0)(x)$$

- Bellman's equation: $J^* = TJ^*$, $J_{\mu} = T_{\mu}J_{\mu}$
- Optimality condition:

$$\mu$$
: optimal $\langle == \rangle \quad T_{\mu}J^* = TJ^*$

• Value iteration: For any (bounded) J and all x,

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x)$$

• Policy iteration: Given μ^k , – Policy evaluation: Find J_{μ^k} by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Find μ^{k+1} such that

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

TWO KEY PROPERTIES

• Monotonicity property: For any functions Jand J' such that $J(x) \leq J'(x)$ for all x, and any μ

$$(TJ)(x) \le (TJ')(x), \qquad \forall x,$$

$$(T_{\mu}J)(x) \le (T_{\mu}J')(x), \qquad \forall x.$$

• Additivity property: For any J, any scalar r, and any μ

 $(T(J+re))(x) = (TJ)(x) + \alpha r, \quad \forall x,$ $(T_{\mu}(J+re))(x) = (T_{\mu}J)(x) + \alpha r, \quad \forall x,$ where e is the unit function $[e(x) \equiv 1].$ • If $J_0 \equiv 0$,

$$J^*(x) = \lim_{N \to \infty} (T^N J_0)(x), \quad \text{for all } x$$

Proof: For any initial state x_0 , and policy $\pi = \{\mu_0, \mu_1, \ldots\},\$

$$J_{\pi}(x_0) = E\left\{\sum_{k=0}^{\infty} \alpha^k g(x_k, \mu_k(x_k), w_k)\right\}$$
$$= E\left\{\sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k)\right\}$$
$$+ E\left\{\sum_{k=N}^{\infty} \alpha^k g(x_k, \mu_k(x_k), w_k)\right\}$$

The tail portion satisfies

$$\left| E\left\{ \sum_{k=N}^{\infty} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\} \right| \leq \frac{\alpha^N M}{1-\alpha},$$

where $M \ge |g(x, u, w)|$. Take the min over π of both sides. **Q.E.D.**

BELLMAN'S EQUATION

• The optimal cost function J^* satisfies Bellman's Eq., i.e. $J^* = T(J^*)$.

Proof: For all x and N,

$$J^*(x) - \frac{\alpha^N M}{1 - \alpha} \le (T^N J_0)(x) \le J^*(x) + \frac{\alpha^N M}{1 - \alpha},$$

where $J_0(x) \equiv 0$ and $M \geq |g(x, u, w)|$. Applying *T* to this relation, and using Monotonicity and Additivity,

$$(TJ^*)(x) - \frac{\alpha^{N+1}M}{1-\alpha} \le (T^{N+1}J_0)(x)$$

 $\le (TJ^*)(x) + \frac{\alpha^{N+1}M}{1-\alpha}$

Taking the limit as $N \to \infty$ and using the fact

$$\lim_{N \to \infty} (T^{N+1}J_0)(x) = J^*(x)$$

we obtain $J^* = TJ^*$. **Q.E.D.**

THE CONTRACTION PROPERTY

• Contraction property: For any bounded functions J and J', and any μ ,

$$\begin{split} \max_{x} |(TJ)(x) - (TJ')(x)| &\leq \alpha \max_{x} |J(x) - J'(x)|, \\ \max_{x} |(T_{\mu}J)(x) - (T_{\mu}J')(x)| &\leq \alpha \max_{x} |J(x) - J'(x)|. \\ \text{Proof: Denote } c &= \max_{x \in S} |J(x) - J'(x)|. \text{ Then} \\ &J(x) - c \leq J'(x) \leq J(x) + c, \quad \forall x \end{split}$$

Apply T to both sides, and use the Monotonicity and Additivity properties:

$$(TJ)(x) - \alpha c \le (TJ')(x) \le (TJ)(x) + \alpha c, \quad \forall x$$

Hence

$$|(TJ)(x) - (TJ')(x)| \le \alpha c, \quad \forall x.$$

Q.E.D.

IMPLICATIONS OF CONTRACTION PROPERTY

• Bellman's equation J = TJ has a unique solution, namely J^* , and for any bounded J, we have

$$\lim_{k \to \infty} (T^k J)(x) = J^*(x), \qquad \forall \ x$$

Proof: Use

$$\max_{x} |(T^{k}J)(x) - J^{*}(x)| \leq \max_{x} |(T^{k}J)(x) - (T^{k}J^{*})(x)|$$
$$\leq \alpha^{k} \max_{x} |J(x) - J^{*}(x)|$$

• **Convergence rate:** For all k,

$$\max_{x} |(T^{k}J)(x) - J^{*}(x)| \le \alpha^{k} \max_{x} |J(x) - J^{*}(x)|$$

• Also, for each stationary μ , J_{μ} is the unique solution of $J = T_{\mu}J$ and

$$\lim_{k \to \infty} (T^k_{\mu} J)(x) = J_{\mu}(x), \qquad \forall \ x,$$

for any bounded J.

NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy μ is optimal if and only if $\mu(x)$ attains the minimum in Bellman's equation for each x; i.e.,

$$TJ^* = T_\mu J^*.$$

Proof: If $TJ^* = T_{\mu}J^*$, then using Bellman's equation $(J^* = TJ^*)$, we have

$$J^* = T_\mu J^*,$$

so by uniqueness of the fixed point of T_{μ} , we obtain $J^* = J_{\mu}$; i.e., μ is optimal.

• Conversely, if the stationary policy μ is optimal, we have $J^* = J_{\mu}$, so

$$J^* = T_\mu J^*.$$

Combining this with Bellman's equation $(J^* = TJ^*)$, we obtain $TJ^* = T_{\mu}J^*$. Q.E.D.

COMPUTATIONAL METHODS

- Value iteration and variants
 - Gauss-Seidel version
 - Approximate value iteration
- Policy iteration and variants
 - Combination with value iteration
 - Modified policy iteration
 - Asynchronous policy iteration
- Linear programming

maximize
$$\sum_{i=1}^{n} J(i)$$

subject to $J(i) \le g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) J(j), \quad \forall \ (i, u)$

• Approximate linear programming: use in place of J(i) a low-dim. basis function representation

$$\tilde{J}(i,r) = \sum_{k=1}^{m} r_k w_k(i)$$

and low-dim. LP (with many constraints)