6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

- One-step lookahead and rollout for discounted problems
- Approximate policy iteration: Infinite state space
- Contraction mappings in DP
- Discounted problems: Countable state space with unbounded costs

ONE-STEP LOOKAHEAD POLICIES

At state *i* use the control $\overline{\mu}(i)$ that attains the minimum in

$$
\min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right],
$$

where \tilde{J} is some approximation to J^* .

• Assume that $\hat{J} \leq \tilde{J} + \delta e$, for some δ , where

$$
\hat{J}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right], \qquad \forall i.
$$

Then

$$
J_{\overline{\mu}} \leq \hat{J} + \frac{\alpha \delta}{1 - \alpha} e \leq \tilde{J} + \frac{\delta}{1 - \alpha} e.
$$

Assume that $J^* - \epsilon e \le \tilde{J} \le J^* + \epsilon e$, for some ϵ . Then

$$
J_{\overline{\mu}} \leq J^* + \frac{2\alpha\epsilon}{1-\alpha}e.
$$

APPLICATION TO ROLLOUT POLICIES

• Let μ_1, \ldots, μ_M be stationary policies, and let

$$
\tilde{J}(i) = \min\{J_{\mu_1(i)}, \dots, J_{\mu_M(i)}\}, \qquad \forall i.
$$

Then, for all i, and $m = 1, \ldots, M$, we have

$$
\hat{J}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right]
$$
\n
$$
\leq \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}_{\mu_m}(j) \right]
$$
\n
$$
\leq J_{\mu_m}(i)
$$

Taking minimum over m ,

$$
\hat{J}(i) \leq \tilde{J}(i), \qquad \forall \ i.
$$

• Using the preceding slide result with $\delta = 0$,

$$
J_{\overline{\mu}}(i) \leq \tilde{J}(i) = \min\{J_{\mu_1(i)}, \dots, J_{\mu_M(i)}\}, \qquad \forall i,
$$

i.e., the rollout policy $\overline{\mu}$ improves over each μ_m .

APPROXIMATE POLICY ITERATION

• Suppose that the policy evaluation is approximate, according to,

$$
\max_{x} |J_k(x) - J_{\mu^k}(x)| \le \delta, \qquad k = 0, 1, \dots
$$

and policy improvement is approximate, according to,

$$
\max_x |(T_{\mu^{k+1}} J_k)(x) - (T J_k)(x)| \le \epsilon, \qquad k = 0, 1, \dots
$$

where δ and ϵ are some positive scalars.

• Error Bound: The sequence $\{\mu^k\}$ generated by approximate policy iteration satisfies

$$
\limsup_{k \to \infty} \max_{x \in S} \left(J_{\mu^k}(x) - J^*(x) \right) \le \frac{\epsilon + 2\alpha \delta}{(1 - \alpha)^2}
$$

• Typical practical behavior: The method makes steady progress up to a point and then the iterates J_{μ^k} oscillate within a neighborhood of J^* .

CONTRACTION MAPPINGS

Given a real vector space Y with a norm $\|\cdot\|$ (i.e., $||y|| \geq 0$ for all $y \in Y$, $||y|| = 0$ if and only if $y = 0$, and $||y + z|| \le ||y|| + ||z||$ for all $y, z \in Y$

• A function $F: Y \mapsto Y$ is said to be a *contraction mapping* if for some $\rho \in (0,1)$, we have

$$
||F(y) - F(z)|| \le \rho ||y - z||
$$
, for all $y, z \in Y$.

 ρ is called the modulus of contraction of F.

For $m > 1$, we say that F is an *m-stage con*traction if F^m is a contraction.

Important example: Let S be a set (e.g., state space in DP), $v : S \mapsto \Re$ be a positive-valued function. Let $B(S)$ be the set of all functions J : $S \mapsto \Re$ such that $J(s)/v(s)$ is bounded over s.

• We define a norm on $B(S)$, called the *weighted* sup-norm, by

$$
||J|| = \max_{s \in S} \frac{|J(s)|}{v(s)}.
$$

• Important special case: The discounted problem mappings T and T_{μ} [for $v(s) \equiv 1, \rho = \alpha$].

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If $F : B(S) \mapsto B(S)$ is a contraction with modulus $\rho \in (0,1)$, then there exists a unique $J^* \in B(S)$ such that

$$
J^*=FJ^*.
$$

Furthermore, if J is any function in $B(S)$, then $\{F^kJ\}$ converges to J^* and we have

 $||F^k J - J^*|| \le \rho^k ||J - J^*||, \qquad k = 1, 2, \dots.$

Similar result if F is an *m*-stage contraction mapping.

This is a special case of a general result for contraction mappings $F : Y \mapsto Y$ over normed vector spaces Y that are *complete*: every sequence $\{y_k\}$ that is Cauchy (satisfies $||y_m - y_n|| \to 0$ as $m, n \to \infty$ converges.

• The space $B(S)$ is complete (see the text for a proof).

A DP-LIKE CONTRACTION MAPPING I

Let $S = \{1, 2, \ldots\}$, and let $F : B(S) \mapsto B(S)$ be a linear mapping of the form

$$
(FJ)(i) = b(i) + \sum_{j \in S} a(i,j) J(j), \qquad \forall i
$$

where $b(i)$ and $a(i, j)$ are some scalars. Then F is a contraction with modulus ρ if

$$
\frac{\sum_{j \in S} |a(i,j)| v(j)}{v(i)} \le \rho, \qquad \forall i
$$

• Let $F : B(S) \mapsto B(S)$ be a mapping of the form

$$
(FJ)(i) = \min_{\mu \in M} (F_{\mu}J)(i), \qquad \forall i
$$

where M is parameter set, and for each $\mu \in M$, F_{μ} is a contraction mapping from $B(S)$ to $B(S)$ with modulus ρ . Then F is a contraction mapping with modulus ρ .

A DP-LIKE CONTRACTION MAPPING II

Let $S = \{1, 2, ...\}$, let M be a parameter set, and for each $\mu \in M$, let

$$
(F_{\mu}J)(i) = b(i,\mu) + \sum_{j \in S} a(i,j,\mu) J(j), \qquad \forall i
$$

• We have $F_{\mu}J \in B(S)$ for all $J \in B(S)$ provided $b_{\mu} \in B(S)$ and $V_{\mu} \in B(S)$, where

$$
b_{\mu} = \{b(1,\mu), b(2,\mu), \ldots\}, \ \ V_{\mu} = \{V(1,\mu), V(2,\mu), \ldots\},\
$$

$$
V(i,\mu) = \sum_{j \in S} |a(i,j,\mu)| v(j), \qquad \forall i
$$

• Consider the mapping F

$$
(FJ)(i) = \min_{\mu \in M} (F_{\mu}J)(i), \qquad \forall i
$$

We have $FJ \in B(S)$ for all $J \in B(S)$, provided $b \in B(S)$ and $V \in B(S)$, where

$$
b = \big\{b(1), b(2), \ldots\big\}, \qquad V = \big\{V(1), V(2), \ldots\big\},\
$$

with $b(i) = \max_{\mu \in M} b(i, \mu)$ and $V(i) = \max_{\mu \in M} V(i, \mu)$.

DISCOUNTED DP - UNBOUNDED COST I

• State space $S = \{1, 2, ...\}$, transition probabilities $p_{ij}(u)$, cost $g(i, u)$.

• Weighted sup-norm

$$
||J|| = \max_{i \in S} \frac{|J(i)|}{v_i}
$$

 $|J(t)|$

on $B(S)$: sequences $\{J(i)\}$ such that $||J|| < \infty$.

• Assumptions:

(a)
$$
G = \{G(1), G(2), ...\} \in B(S)
$$
, where

$$
G(i) = \max_{u \in U(i)} |g(i, u)|, \qquad \forall i
$$

(b) $V = \{V(1), V(2), \ldots\} \in B(S)$, where

$$
V(i) = \max_{u \in U(i)} \sum_{j \in S} p_{ij}(u) v_j, \qquad \forall i
$$

(c) There exists an integer $m \geq 1$ and a scalar $\rho \in (0,1)$ such that for every policy π ,

$$
\alpha^m \frac{\sum_{j \in S} P(x_m = j \mid x_0 = i, \pi) v_j}{v_i} \le \rho, \qquad \forall i
$$

DISCOUNTED DP - UNBOUNDED COST II

Example: Let $v_i = i$ for all $i = 1, 2, \ldots$

• Assumption (a) is satisfied if the maximum expected absolute cost per stage at state i grows no faster than linearly with i .

• Assumption (b) states that the maximum expected next state following state i,

$$
\max_{u \in U(i)} E\{j \mid i, u\},\
$$

also grows no faster than linearly with i .

• Assumption (c) is satisfied if

$$
\alpha^m \sum_{j \in S} P(x_m = j \mid x_0 = i, \pi) \, j \le \rho \, i, \qquad \forall \, i
$$

It requires that for all π , the expected value of the state obtained m stages after reaching state i is no more than $\alpha^{-m}\rho i$.

If there is bounded upward expected change of the state starting at i, there exists m sufficiently large so that Assumption (c) is satisfied.

DISCOUNTED DP - UNBOUNDED COST III

• Consider the DP mappings T_{μ} and T,

$$
(T_{\mu}J)(i) = g(i, \mu(i)) + \alpha \sum_{j \in S} p_{ij}(\mu(i)) J(j), \qquad \forall i,
$$

$$
(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j \in S} p_{ij}(u) J(j) \right], \ \forall i
$$

Proposition: Under the earlier assumptions, T and T_{μ} map $B(S)$ into $B(S)$, and are m-stage contraction mappings with modulus ρ .

• The *m*-stage contraction properties can be used to essentially replicate the analysis for the case of bounded cost, and to show the standard results:

- $-$ The value iteration method $J_{k+1} = TJ_k$ converges to the unique solution J^* of Bellman's equation $J = TJ$.
- − The unique solution J[∗] of Bellman's equation is the optimal cost function.
- $-$ A stationary policy μ is optimal if and only if $T_{\mu}J^* = TJ^*$.