6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 18

LECTURE OUTLINE

- One-step lookahead and rollout for discounted problems
- Approximate policy iteration: Infinite state space
- Contraction mappings in DP
- Discounted problems: Countable state space with unbounded costs

ONE-STEP LOOKAHEAD POLICIES

• At state *i* use the control $\overline{\mu}(i)$ that attains the minimum in

$$\min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right],$$

where \tilde{J} is some approximation to J^* .

• Assume that $\hat{J} \leq \tilde{J} + \delta e$, for some δ , where

$$\hat{J}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right], \qquad \forall i.$$

Then

$$J_{\overline{\mu}} \leq \hat{J} + \frac{\alpha\delta}{1-\alpha}e \leq \tilde{J} + \frac{\delta}{1-\alpha}e.$$

• Assume that $J^* - \epsilon e \leq \tilde{J} \leq J^* + \epsilon e$, for some ϵ . Then

$$J_{\overline{\mu}} \le J^* + \frac{2\alpha\epsilon}{1-\alpha}e.$$

APPLICATION TO ROLLOUT POLICIES

• Let μ_1, \ldots, μ_M be stationary policies, and let

$$\tilde{J}(i) = \min\{J_{\mu_1(i)}, \dots, J_{\mu_M(i)}\}, \quad \forall i.$$

• Then, for all i, and $m = 1, \ldots, M$, we have

$$\hat{J}(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}(j) \right]$$
$$\leq \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j=1}^{n} p_{ij}(u) \tilde{J}_{\mu_m}(j) \right]$$
$$\leq J_{\mu_m}(i)$$

• Taking minimum over m,

$$\hat{J}(i) \leq \tilde{J}(i), \qquad \forall \ i.$$

• Using the preceding slide result with $\delta = 0$,

$$J_{\overline{\mu}}(i) \le \tilde{J}(i) = \min\{J_{\mu_1(i)}, \dots, J_{\mu_M(i)}\}, \qquad \forall i,$$

i.e., the rollout policy $\overline{\mu}$ improves over each μ_m .

APPROXIMATE POLICY ITERATION

• Suppose that the policy evaluation is approximate, according to,

$$\max_{x} |J_k(x) - J_{\mu^k}(x)| \le \delta, \qquad k = 0, 1, \dots$$

and policy improvement is approximate, according to,

$$\max_{x} |(T_{\mu^{k+1}}J_k)(x) - (TJ_k)(x)| \le \epsilon, \qquad k = 0, 1, \dots$$

where δ and ϵ are some positive scalars.

• **Error Bound:** The sequence $\{\mu^k\}$ generated by approximate policy iteration satisfies

$$\limsup_{k \to \infty} \max_{x \in S} \left(J_{\mu^k}(x) - J^*(x) \right) \le \frac{\epsilon + 2\alpha\delta}{(1 - \alpha)^2}$$

• Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu k}$ oscillate within a neighborhood of J^* .

CONTRACTION MAPPINGS

• Given a real vector space Y with a norm $\|\cdot\|$ (i.e., $\|y\| \ge 0$ for all $y \in Y$, $\|y\| = 0$ if and only if y = 0, and $\|y + z\| \le \|y\| + \|z\|$ for all $y, z \in Y$)

• A function $F: Y \mapsto Y$ is said to be a *contraction* mapping if for some $\rho \in (0, 1)$, we have

$$||F(y) - F(z)|| \le \rho ||y - z||,$$
 for all $y, z \in Y.$

 ρ is called the modulus of contraction of F.

• For m > 1, we say that F is an *m*-stage contraction if F^m is a contraction.

• Important example: Let S be a set (e.g., state space in DP), $v : S \mapsto \Re$ be a positive-valued function. Let B(S) be the set of all functions J : $S \mapsto \Re$ such that J(s)/v(s) is bounded over s.

• We define a norm on B(S), called the *weighted* sup-norm, by

$$||J|| = \max_{s \in S} \frac{|J(s)|}{v(s)}.$$

• Important special case: The discounted problem mappings T and T_{μ} [for $v(s) \equiv 1, \rho = \alpha$].

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If $F : B(S) \mapsto B(S)$ is a contraction with modulus $\rho \in (0,1)$, then there exists a unique $J^* \in B(S)$ such that

$$J^* = FJ^*.$$

Furthermore, if J is any function in B(S), then $\{F^kJ\}$ converges to J^* and we have

 $||F^k J - J^*|| \le \rho^k ||J - J^*||, \qquad k = 1, 2, \dots$

• Similar result if F is an m-stage contraction mapping.

• This is a special case of a general result for contraction mappings $F : Y \mapsto Y$ over normed vector spaces Y that are *complete*: every sequence $\{y_k\}$ that is Cauchy (satisfies $||y_m - y_n|| \to 0$ as $m, n \to \infty$) converges.

• The space B(S) is complete (see the text for a proof).

A DP-LIKE CONTRACTION MAPPING I

• Let $S = \{1, 2, \ldots\}$, and let $F : B(S) \mapsto B(S)$ be a linear mapping of the form

$$(FJ)(i) = b(i) + \sum_{j \in S} a(i,j) J(j), \qquad \forall i$$

where b(i) and a(i, j) are some scalars. Then F is a contraction with modulus ρ if

$$\frac{\sum_{j \in S} |a(i,j)| v(j)}{v(i)} \le \rho, \qquad \forall i$$

• Let $F: B(S) \mapsto B(S)$ be a mapping of the form

$$(FJ)(i) = \min_{\mu \in M} (F_{\mu}J)(i), \qquad \forall i$$

where M is parameter set, and for each $\mu \in M$, F_{μ} is a contraction mapping from B(S) to B(S)with modulus ρ . Then F is a contraction mapping with modulus ρ .

A DP-LIKE CONTRACTION MAPPING II

• Let $S = \{1, 2, \ldots\}$, let M be a parameter set, and for each $\mu \in M$, let

$$(F_{\mu}J)(i) = b(i,\mu) + \sum_{j \in S} a(i,j,\mu) J(j), \qquad \forall i$$

• We have $F_{\mu}J \in B(S)$ for all $J \in B(S)$ provided $b_{\mu} \in B(S)$ and $V_{\mu} \in B(S)$, where

$$b_{\mu} = \{b(1,\mu), b(2,\mu), \ldots\}, V_{\mu} = \{V(1,\mu), V(2,\mu), \ldots\},\$$

$$V(i,\mu) = \sum_{j \in S} \left| a(i,j,\mu) \right| v(j), \qquad \forall \ i$$

• Consider the mapping F

$$(FJ)(i) = \min_{\mu \in M} (F_{\mu}J)(i), \quad \forall i$$

We have $FJ \in B(S)$ for all $J \in B(S)$, provided $b \in B(S)$ and $V \in B(S)$, where

$$b = \{b(1), b(2), \ldots\}, \qquad V = \{V(1), V(2), \ldots\},\$$

with $b(i) = \max_{\mu \in M} b(i, \mu)$ and $V(i) = \max_{\mu \in M} V(i, \mu)$.

DISCOUNTED DP - UNBOUNDED COST I

• State space $S = \{1, 2, ...\}$, transition probabilities $p_{ij}(u)$, cost g(i, u).

• Weighted sup-norm

$$||J|| = \max_{i \in S} \frac{|J(i)|}{v_i}$$

 $| \tau \langle \cdot \rangle |$

on B(S): sequences $\{J(i)\}$ such that $||J|| < \infty$.

• Assumptions:

(a)
$$G = \{G(1), G(2), \ldots\} \in B(S)$$
, where

$$G(i) = \max_{u \in U(i)} |g(i, u)|, \qquad \forall \ i$$

(b) $V = \{V(1), V(2), \ldots\} \in B(S)$, where

$$V(i) = \max_{u \in U(i)} \sum_{j \in S} p_{ij}(u) v_j, \qquad \forall i$$

(c) There exists an integer $m \ge 1$ and a scalar $\rho \in (0, 1)$ such that for every policy π ,

$$\alpha^m \frac{\sum_{j \in S} P(x_m = j \mid x_0 = i, \pi) v_j}{v_i} \le \rho, \qquad \forall i$$

DISCOUNTED DP - UNBOUNDED COST II

• Example: Let $v_i = i$ for all i = 1, 2, ...

• Assumption (a) is satisfied if the maximum expected absolute cost per stage at state i grows no faster than linearly with i.

• Assumption (b) states that the maximum expected next state following state i,

$$\max_{u \in U(i)} E\{j \mid i, u\},\$$

also grows no faster than linearly with i.

• Assumption (c) is satisfied if

$$\alpha^m \sum_{j \in S} P(x_m = j \mid x_0 = i, \pi) \, j \le \rho \, i, \qquad \forall \, i$$

It requires that for all π , the expected value of the state obtained m stages after reaching state i is no more than $\alpha^{-m}\rho i$.

• If there is bounded upward expected change of the state starting at i, there exists m sufficiently large so that Assumption (c) is satisfied.

DISCOUNTED DP - UNBOUNDED COST III

• Consider the DP mappings T_{μ} and T,

$$(T_{\mu}J)(i) = g(i,\mu(i)) + \alpha \sum_{j \in S} p_{ij}(\mu(i))J(j), \qquad \forall i,$$

$$(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \alpha \sum_{j \in S} p_{ij}(u) J(j) \right], \ \forall i$$

• **Proposition:** Under the earlier assumptions, T and T_{μ} map B(S) into B(S), and are *m*-stage contraction mappings with modulus ρ .

• The *m*-stage contraction properties can be used to essentially replicate the analysis for the case of bounded cost, and to show the standard results:

- The value iteration method $J_{k+1} = TJ_k$ converges to the unique solution J^* of Bellman's equation J = TJ.
- The unique solution J^* of Bellman's equation is the optimal cost function.
- A stationary policy μ is optimal if and only if $T_{\mu}J^* = TJ^*$.