6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

- Undiscounted problems
- Stochastic shortest path problems (SSP)
- Proper and improper policies
- Analysis and computational methods for SSP
- Pathologies of SSP

UNDISCOUNTED PROBLEMS

- System: $x_{k+1} = f(x_k, u_k, w_k)$
- Cost of a policy $\pi = {\mu_0, \mu_1, \ldots}$

$$
J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}
$$

• Shorthand notation for DP mappings

$$
(TJ)(x) = \min_{u \in U(x)} E\left\{g(x, u, w) + J(f(x, u, w))\right\}, \forall x
$$

• For any stationary policy μ

$$
(T_{\mu}J)(x) = E_{w} \{g(x, \mu(x), w) + J(f(x, \mu(x), w))\}, \forall x
$$

Neither T nor T_{μ} are contractions in general, but their monotonicity is helpful.

• SSP problems provide a "soft boundary" between the easy finite-state discounted problems and the hard undiscounted problems.

- − They share features of both.
- − Some of the nice theory is recovered because of the termination state.

SSP THEORY SUMMARY I

As earlier, we have a cost-free term. state t , a finite number of states $1, \ldots, n$, and finite number of controls, but we will make weaker assumptions.

Mappings T and T_{μ} (modified to account for termination state t :

$$
(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j) \right], \quad i = 1, ..., n,
$$

$$
(T_{\mu}J)(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i))J(j), \quad i = 1, ..., n.
$$

Definition: A stationary policy μ is called **proper**, if under μ , from every state *i*, there is a positive probability path that leads to t.

Important fact: If μ is proper, T_{μ} is contraction with respect to some weighted max norm

$$
\max_{i} \frac{1}{v_i} |(T_{\mu}J)(i) - (T_{\mu}J')(i)| \le \rho_{\mu} \max_{i} \frac{1}{v_i} |J(i) - J'(i)|
$$

• *T* is similarly a contraction if all μ are proper (the case discussed in the text, Ch. 7, Vol. I).

SSP THEORY SUMMARY II

The theory can be pushed one step further. Assume that:

- (a) There exists at least one proper policy
- (b) For each improper μ , $J_{\mu}(i) = \infty$ for some i
- Then T is not necessarily a contraction, but:
	- J^* is the unique solution of Bellman's Equ.
	- − μ^* is optimal if and only if $T_{\mu^*} J^* = T J^*$
	- $-\lim_{k\to\infty}(T^kJ)(i)=J^*(i)$ for all i
	- − Policy iteration terminates with an optimal policy, if started with a proper policy

• **Example:** Deterministic shortest path problem with a single destination t .

- − States <=> nodes; Controls <=> arcs
- − Termination state <=> the destination
- − Assumption (a) <=> every node is connected to the destination
- − Assumption (b) <=> all cycle costs > 0

SSP ANALYSIS I

• For a proper policy μ , J_{μ} is the unique fixed point of T_{μ} , and $T_{\mu}^{k}J \rightarrow J_{\mu}$ for all J (holds by the theory of Vol. I, Section 7.2)

• A stationary μ satisfying $J \geq T_{\mu}J$ for some J must be proper - true because

$$
J \ge T^k_\mu J = P^k_\mu J + \sum_{m=0}^{k-1} P^m_\mu g_\mu
$$

and some component of the term on the right blows up if μ is improper (by our assumptions).

• Consequence: T can have at most one fixed point.

Proof: If J and J' are two solutions, select μ and μ' such that $J = TJ = T_{\mu}J$ and $J' = TJ' =$ $T_{\mu'}J'$. By preceding assertion, μ and μ' must be proper, and $J = J_{\mu}$ and $J' = J_{\mu'}$. Also

$$
J=T^kJ\leq T^k_{\mu'}J\rightarrow J_{\mu'}=J'
$$

Similarly, $J' \leq J$, so $J = J'$.

SSP ANALYSIS II

• We now show that T has a fixed point, and also that policy iteration converges.

Generate a sequence $\{\mu_k\}$ by policy iteration starting from a proper policy μ_0 .

• μ_1 is proper and $J_{\mu_0} \geq J_{\mu_1}$ since

$$
J_{\mu_0} = T_{\mu_0} J_{\mu_0} \ge T J_{\mu_0} = T_{\mu_1} J_{\mu_0} \ge T_{\mu_1}^k J_{\mu_0} \ge J_{\mu_1}
$$

• Thus $\{J_{\mu_k}\}\$ is nonincreasing, some policy μ will be repeated, with $J_{\mu} = T J_{\mu}$. So J_{μ} is a fixed point of T .

Next show $T^kJ \to J_\mu$ for all J, i.e., value iteration converges to the same limit as policy iteration. (Sketch: True if $J = J_{\mu}$, argue using the properness of μ to show that the terminal cost difference $J-J_{\mu}$ does not matter.)

• To show
$$
J_{\mu} = J^*
$$
, for any $\pi = {\mu_0, \mu_1, \ldots}$

$$
T_{\mu_0}\cdots T_{\mu_{k-1}}J_0\geq T^kJ_0,
$$

where $J_0 \equiv 0$. Take lim sup as $k \to \infty$, to obtain $J_{\pi} \geq J_{\mu}$, so μ is optimal and $J_{\mu} = J^*$.

SSP ANALYSIS III

If all policies are proper (the assumption of Section 7.1, Vol. I), T_{μ} and T are contractions with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the transition probabilities are the same as in the original, but the transition costs are all equal to -1 . Let \hat{J} be the corresponding optimal cost vector. For all μ ,

$$
\hat{J}(i) = -1 + \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u)\hat{J}(j) \le -1 + \sum_{j=1}^{n} p_{ij}(\mu(i))\hat{J}(j)
$$

For $v_i = -\hat{J}(i)$, we have $v_i \geq 1$, and for all μ ,

$$
\sum_{j=1}^{n} p_{ij}(\mu(i)) v_j \le v_i - 1 \le \rho v_i, \qquad i = 1, ..., n,
$$

where

$$
\rho = \max_{i=1,...,n} \frac{v_i - 1}{v_i} < 1.
$$

This implies contraction of T_{μ} and T by the results of the preceding lecture.

PATHOLOGIES I: DETERM. SHORTEST PATHS

• If there is a cycle with $cost = 0$, Bellman's equation has an infinite number of solutions. Example:

- We have $J^*(1) = J^*(2) = 1$.
- Bellman's equation is

$$
J(1) = J(2), \qquad J(2) = \min [J(1), 1].
$$

- It has J^* as solution.
- Set of solutions of Bellman's equation:

$$
\big\{ J \mid J(1) = J(2) \le 1 \big\}.
$$

PATHOLOGIES II: DETERM. SHORTEST PATHS

If there is a cycle with cost < 0 , Bellman's equation has no solution [among functions J with $-\infty < J(i) < \infty$ for all *i*]. Example:

- We have $J^*(1) = J^*(2) = -\infty$.
- Bellman's equation is

 $J(1) = J(2), \qquad J(2) = \min[-1 + J(1), 1].$

• There is no solution [among functions J with $-\infty < J(i) < \infty$ for all *i*].

Bellman's equation has as solution $J^*(1)$ = $J[*](2) = -\infty$ [within the larger class of functions $J(\cdot)$ that can take the value $-\infty$ for some (or all) states]. This situation can be generalized (see Chapter 3 of Vol. II of the text).

PATHOLOGIES III: THE BLACKMAILER

• Two states, state 1 and the termination state t .

At state 1, choose a control $u \in (0,1]$ (the blackmail amount demanded) at a cost $-u$, and move to t with probability u^2 , or stay in 1 with probability $1 - u^2$.

• Every stationary policy is proper, but the control set in not finite.

• For any stationary μ with $\mu(1) = u$, we have

$$
J_{\mu}(1) = -u + (1 - u^2)J_{\mu}(1)
$$

from which $J_{\mu}(1) = -\frac{1}{u}$

Thus $J^*(1) = -\infty$, and there is no optimal stationary policy.

• It turns out that a nonstationary policy is optimal: demand $\mu_k(1) = \gamma/(k+1)$ at time k, with $\gamma \in (0, 1/2)$. (Blackmailer requests diminishing amounts over time, which add to ∞ ; the probability of the victim's refusal diminishes at a much faster rate.)