6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 19

LECTURE OUTLINE

- Undiscounted problems
- Stochastic shortest path problems (SSP)
- Proper and improper policies
- Analysis and computational methods for SSP
- Pathologies of SSP

UNDISCOUNTED PROBLEMS

- System: $x_{k+1} = f(x_k, u_k, w_k)$
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}$$

• Shorthand notation for DP mappings

$$(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + J(f(x, u, w)) \right\}, \ \forall \ x$$

• For any stationary policy μ

$$(T_{\mu}J)(x) = \mathop{E}_{w} \left\{ g\left(x, \mu(x), w\right) + J\left(f(x, \mu(x), w)\right) \right\}, \ \forall \ x$$

• Neither T nor T_{μ} are contractions in general, but their monotonicity is helpful.

• SSP problems provide a "soft boundary" between the easy finite-state discounted problems and the hard undiscounted problems.

- They share features of both.
- Some of the nice theory is recovered because of the termination state.

SSP THEORY SUMMARY I

• As earlier, we have a cost-free term. state t, a finite number of states $1, \ldots, n$, and finite number of controls, but we will make weaker assumptions.

• Mappings T and T_{μ} (modified to account for termination state t):

$$(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u) J(j) \right], \quad i = 1, \dots, n,$$
$$(T_{\mu}J)(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i)) J(j), \quad i = 1, \dots, n.$$

• **Definition:** A stationary policy μ is called **proper**, if under μ , from every state *i*, there is a positive probability path that leads to *t*.

• **Important fact:** If μ is proper, T_{μ} is contraction with respect to some weighted max norm

$$\max_{i} \frac{1}{v_{i}} |(T_{\mu}J)(i) - (T_{\mu}J')(i)| \leq \rho_{\mu} \max_{i} \frac{1}{v_{i}} |J(i) - J'(i)|$$

• T is similarly a contraction if all μ are proper
(the case discussed in the text, Ch. 7, Vol. I).

SSP THEORY SUMMARY II

• The theory can be pushed one step further. Assume that:

- (a) There exists at least one proper policy
- (b) For each improper μ , $J_{\mu}(i) = \infty$ for some i
- Then T is not necessarily a contraction, but:
 - J^* is the unique solution of Bellman's Equ.
 - $-\mu^*$ is optimal if and only if $T_{\mu^*}J^* = TJ^*$
 - $-\lim_{k\to\infty} (T^k J)(i) = J^*(i)$ for all i
 - Policy iteration terminates with an optimal policy, if started with a proper policy

• **Example:** Deterministic shortest path problem with a single destination t.

- States $\langle = \rangle$ nodes; Controls $\langle = \rangle$ arcs
- Termination state $\langle = \rangle$ the destination
- Assumption (a) $\langle = \rangle$ every node is connected to the destination
- Assumption (b) $\leq >$ all cycle costs > 0

SSP ANALYSIS I

• For a proper policy μ , J_{μ} is the unique fixed point of T_{μ} , and $T^k_{\mu}J \to J_{\mu}$ for all J (holds by the theory of Vol. I, Section 7.2)

• A stationary μ satisfying $J \ge T_{\mu}J$ for some J must be proper - true because

$$J \ge T^{k}_{\mu}J = P^{k}_{\mu}J + \sum_{m=0}^{k-1} P^{m}_{\mu}g_{\mu}$$

and some component of the term on the right blows up if μ is improper (by our assumptions).

• Consequence: T can have at most one fixed point.

Proof: If J and J' are two solutions, select μ and μ' such that $J = TJ = T_{\mu}J$ and $J' = TJ' = T_{\mu'}J'$. By preceding assertion, μ and μ' must be proper, and $J = J_{\mu}$ and $J' = J_{\mu'}$. Also

$$J = T^k J \le T^k_{\mu'} J \to J_{\mu'} = J'$$

Similarly, $J' \leq J$, so J = J'.

SSP ANALYSIS II

• We now show that T has a fixed point, and also that policy iteration converges.

• Generate a sequence $\{\mu_k\}$ by policy iteration starting from a proper policy μ_0 .

• μ_1 is proper and $J_{\mu_0} \ge J_{\mu_1}$ since

$$J_{\mu_0} = T_{\mu_0} J_{\mu_0} \ge T J_{\mu_0} = T_{\mu_1} J_{\mu_0} \ge T_{\mu_1}^k J_{\mu_0} \ge J_{\mu_1}$$

• Thus $\{J_{\mu_k}\}$ is nonincreasing, some policy μ will be repeated, with $J_{\mu} = TJ_{\mu}$. So J_{μ} is a fixed point of T.

• Next show $T^k J \to J_{\mu}$ for all J, i.e., value iteration converges to the same limit as policy iteration. (Sketch: True if $J = J_{\mu}$, argue using the properness of μ to show that the terminal cost difference $J - J_{\mu}$ does not matter.)

• To show
$$J_{\mu} = J^*$$
, for any $\pi = \{\mu_0, \mu_1, \ldots\}$

$$T_{\mu_0}\cdots T_{\mu_{k-1}}J_0 \ge T^k J_0,$$

where $J_0 \equiv 0$. Take lim sup as $k \to \infty$, to obtain $J_{\pi} \geq J_{\mu}$, so μ is optimal and $J_{\mu} = J^*$.

SSP ANALYSIS III

• If all policies are proper (the assumption of Section 7.1, Vol. I), T_{μ} and T are contractions with respect to a weighted sup norm.

Proof: Consider a new SSP problem where the transition probabilities are the same as in the original, but the transition costs are all equal to -1. Let \hat{J} be the corresponding optimal cost vector. For all μ ,

$$\hat{J}(i) = -1 + \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \hat{J}(j) \le -1 + \sum_{j=1}^{n} p_{ij}(\mu(i)) \hat{J}(j)$$

For $v_i = -\hat{J}(i)$, we have $v_i \ge 1$, and for all μ ,

$$\sum_{j=1}^{n} p_{ij}(\mu(i)) v_j \le v_i - 1 \le \rho v_i, \qquad i = 1, \dots, n,$$

where

$$\rho = \max_{i=1,...,n} \frac{v_i - 1}{v_i} < 1.$$

This implies contraction of T_{μ} and T by the results of the preceding lecture.

PATHOLOGIES I: DETERM. SHORTEST PATHS

• If there is a cycle with cost = 0, Bellman's equation has an infinite number of solutions. Example:

- We have $J^*(1) = J^*(2) = 1$.
- Bellman's equation is

$$J(1) = J(2),$$
 $J(2) = \min[J(1), 1].$

- It has J^* as solution.
- Set of solutions of Bellman's equation:

$$\{J \mid J(1) = J(2) \le 1\}.$$

PATHOLOGIES II: DETERM. SHORTEST PATHS

• If there is a cycle with cost < 0, Bellman's equation has no solution [among functions J with $-\infty < J(i) < \infty$ for all i]. Example:

• We have $J^*(1) = J^*(2) = -\infty$.

• Bellman's equation is

$$J(1) = J(2),$$
 $J(2) = \min[-1 + J(1), 1].$

• There is no solution [among functions J with $-\infty < J(i) < \infty$ for all i].

• Bellman's equation has as solution $J^*(1) = J^*(2) = -\infty$ [within the larger class of functions $J(\cdot)$ that can take the value $-\infty$ for some (or all) states]. This situation can be generalized (see Chapter 3 of Vol. II of the text).

PATHOLOGIES III: THE BLACKMAILER

• Two states, state 1 and the termination state t.

• At state 1, choose a control $u \in (0,1]$ (the blackmail amount demanded) at a cost -u, and move to t with probability u^2 , or stay in 1 with probability $1 - u^2$.

• Every stationary policy is proper, but the control set in not finite.

• For any stationary μ with $\mu(1) = u$, we have

$$J_{\mu}(1) = -u + (1 - u^2)J_{\mu}(1)$$

from which $J_{\mu}(1) = -\frac{1}{u}$

• Thus $J^*(1) = -\infty$, and there is no optimal stationary policy.

• It turns out that a nonstationary policy is optimal: demand $\mu_k(1) = \gamma/(k+1)$ at time k, with $\gamma \in (0, 1/2)$. (Blackmailer requests diminishing amounts over time, which add to ∞ ; the probability of the victim's refusal diminishes at a much faster rate.)