
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• The basic problem

• Principle of optimality

• DP example: Deterministic problem

• DP example: Stochastic problem

• The general DP algorithm

• State augmentation

BASIC PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control constraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{
gN (xN) +

N−1∑

k=0

gk(xk, µk(xk), wk)

}

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)

• Optimal policy π∗ is one that satisfies

Jπ∗(x0) = J∗(x0)

PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be optimal policy

• Consider the “tail subproblem” whereby we are
at xi at time i and wish to minimize the “cost-to-
go” from time i to time N

E

{
gN (xN) +

N−1∑

k=i

gk

(
xk, µk(xk), wk

)
}

and the “tail policy” {µ∗
i , µ

∗
i+1, . . . , µ

∗
N−1}

0 Ni

xi Tail Subproblem

• Principle of optimality : The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

• DP first solves ALL tail subroblems of final
stage

• At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length

DETERMINISTIC SCHEDULING EXAMPLE

• Find optimal sequence of operations A, B, C,
D (A must precede B and C must precede D)

A

C

AB

AC

CDA

ABC

CA

CD

ACD

ACB

CAB

CAD

Initial
State1 0

7 6

2

8
6

6

2

2

9

3

3
3

3

3

3

5

1

5

4
4

3

1

5

4

• Start from the last tail subproblem and go back-
wards

• At each state-time pair, we record the optimal
cost-to-go and the optimal decision

STOCHASTIC INVENTORY EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk + 1 = xk + uk - wk

uk
Cos t of P e riod k

c uk + r (xk + uk - wk)

• Tail Subproblems of Length 1:

JN−1(xN−1) = min
uN−1≥0

E
wN−1

{
cuN−1

+ r(xN−1 + uN−1 − wN−1)
}

• Tail Subproblems of Length N − k:

Jk(xk) = min
uk≥0

E
wk

{
cuk + r(xk + uk − wk)

+ Jk+1(xk + uk − wk)
}

• J0(x0) is opt. cost of initial state x0

DP ALGORITHM

• Start with

JN (xN) = gN (xN),

and go backwards using

Jk(xk) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, uk, wk)

)}
, k = 0, 1, . . . , N − 1.

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ∗
0, . . . , µ

∗
N−1}

where µ∗
k(xk) minimizes in the right side above for

each xk and k, is optimal

• Justification: Proof by induction that Jk(xk) is
equal to J∗

k (xk), defined as the optimal cost of the
tail subproblem that starts at time k at state xk

• Note:
− ALL the tail subproblems are solved (in ad-

dition to the original problem)
− Intensive computational requirements

PROOF OF THE INDUCTION STEP

• Let πk =
{
µk, µk+1, . . . , µN−1

}
denote a tail

policy from time k onward
• Assume that Jk+1(xk+1) = J∗

k+1(xk+1). Then

J∗
k (xk) = min

(µk,πk+1)
E

wk,...,wN−1

{
gk

(
xk, µk(xk), wk

)

+ gN (xN) +

N−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
}

= min
µk

E
wk

{
gk

(
xk, µk(xk), wk

)

+ min
πk+1

[

E
wk+1,...,wN−1

{
gN (xN) +

N−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
}]}

= min
µk

E
wk

{
gk

(
xk, µk(xk), wk

)
+ J∗

k+1

(
fk

(
xk, µk(xk), wk

))}

= min
µk

E
wk

{
gk

(
xk, µk(xk), wk

)
+ Jk+1

(
fk

(
xk, µk(xk), wk

))}

= min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

)}

= Jk(xk)

LINEAR-QUADRATIC ANALYTICAL EXAMPLE

Temperature
 u0

Temperature
 u1

Final
Temperature x2

Initial
Temperature x0 Oven 1 Oven 2x1

• System

xk+1 = (1 − a)xk + auk, k = 0, 1,

where a is given scalar from the interval (0, 1)

• Cost
r(x2 − T)2 + u2

0 + u2
1

where r is given positive scalar

• DP Algorithm:

J2(x2) = r(x2 − T)2

J1(x1) = min
u1

[
u2

1 + r
(
(1 − a)x1 + au1 − T

)2
]

J0(x0) = min
u0

[
u2

0 + J1

(
(1 − a)x0 + au0

)]

STATE AUGMENTATION

• When assumptions of the basic problem are
violated (e.g., disturbances are correlated, cost is
nonadditive, etc) reformulate/augment the state

• Example: Time lags

xk+1 = fk(xk, xk−1, uk, wk)

• Introduce additional state variable yk = xk−1.
New system takes the form

(
xk+1

yk+1

)
=

(
fk(xk, yk, uk, wk)

xk

)

View x̃k = (xk, yk) as the new state.

• DP algorithm for the reformulated problem:

Jk(xk, xk−1) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, xk−1, uk, wk), xk

)}

