6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

- The basic problem
- Principle of optimality
- DP example: Deterministic problem
- DP example: Stochastic problem
- The general DP algorithm
- State augmentation

BASIC PROBLEM

- System $x_{k+1} = f_k(x_k, u_k, w_k), k = 0, \dots, N-1$
- Control constraints $u_k \in U_k(x_k)$
- Probability distribution $P_k(\cdot \mid x_k, u_k)$ of w_k

• Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k maps states x_k into controls $u_k = \mu_k(x_k)$ and is such that $\mu_k(x_k) \in U_k(x_k)$ for all x_k

• Expected cost of π starting at x_0 is

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function

$$J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$$

• Optimal policy π^* is one that satisfies

$$J_{\pi^*}(x_0) = J^*(x_0)$$

PRINCIPLE OF OPTIMALITY

• Let $\pi^* = \{\mu_0^*, \mu_1^*, \dots, \mu_{N-1}^*\}$ be optimal policy

• Consider the "tail subproblem" whereby we are at x_i at time *i* and wish to minimize the "cost-togo" from time *i* to time *N*

$$E\left\{g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

and the "tail policy" $\{\mu_i^*, \mu_{i+1}^*, \dots, \mu_{N-1}^*\}$

	Xj	Tail Subproblem		
0	i		N	

• *Principle of optimality*: The tail policy is optimal for the tail subproblem (optimization of the future does not depend on what we did in the past)

• DP first solves ALL tail subroblems of final stage

• At the generic step, it solves ALL tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length

DETERMINISTIC SCHEDULING EXAMPLE

- Find optimal sequence of operations A, B, C,
- D (A must precede B and C must precede D)

- Start from the last tail subproblem and go backwards
- At each state-time pair, we record the optimal cost-to-go and the optimal decision

STOCHASTIC INVENTORY EXAMPLE

• Tail Subproblems of Length 1:

$$J_{N-1}(x_{N-1}) = \min_{u_{N-1} \ge 0} E_{w_{N-1}} \{ cu_{N-1} + r(x_{N-1} + u_{N-1} - w_{N-1}) \}$$

• Tail Subproblems of Length N - k:

$$J_{k}(x_{k}) = \min_{u_{k} \ge 0} \mathop{E}_{w_{k}} \left\{ cu_{k} + r(x_{k} + u_{k} - w_{k}) + J_{k+1}(x_{k} + u_{k} - w_{k}) \right\}$$

• $J_0(x_0)$ is opt. cost of initial state x_0

DP ALGORITHM

• Start with

$$J_N(x_N) = g_N(x_N),$$

and go backwards using

$$J_k(x_k) = \min_{u_k \in U_k(x_k)} E_{w_k} \{g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k))\}, \quad k = 0, 1, \dots, N-1.$$

• Then $J_0(x_0)$, generated at the last step, is equal to the optimal cost $J^*(x_0)$. Also, the policy

$$\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$$

where $\mu_k^*(x_k)$ minimizes in the right side above for each x_k and k, is optimal

• Justification: Proof by induction that $J_k(x_k)$ is equal to $J_k^*(x_k)$, defined as the optimal cost of the tail subproblem that starts at time k at state x_k

- Note:
 - ALL the tail subproblems are solved (in addition to the original problem)
 - Intensive computational requirements

PROOF OF THE INDUCTION STEP

• Let $\pi_k = \{\mu_k, \mu_{k+1}, \dots, \mu_{N-1}\}$ denote a tail policy from time k onward

• Assume that $J_{k+1}(x_{k+1}) = J_{k+1}^*(x_{k+1})$. Then

$$J_{k}^{*}(x_{k}) = \min_{(\mu_{k},\pi_{k+1})} \sum_{w_{k},\dots,w_{N-1}} \left\{ g_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) \right. \\ \left. + g_{N}(x_{N}) + \sum_{i=k+1}^{N-1} g_{i} \left(x_{i},\mu_{i}(x_{i}),w_{i} \right) \right\} \\ = \min_{\mu_{k}} \sum_{w_{k}} \left\{ g_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) \right. \\ \left. + \min_{\pi_{k+1}} \left[\sum_{w_{k+1},\dots,w_{N-1}} \left\{ g_{N}(x_{N}) + \sum_{i=k+1}^{N-1} g_{i} \left(x_{i},\mu_{i}(x_{i}),w_{i} \right) \right\} \right] \right] \right\} \\ = \min_{\mu_{k}} \sum_{w_{k}} \left\{ g_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) + J_{k+1}^{*} \left(f_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) \right) \right\} \\ = \min_{\mu_{k}} \sum_{w_{k}} \left\{ g_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) + J_{k+1} \left(f_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) \right) \right\} \\ = \min_{u_{k}\in U_{k}(x_{k})} \sum_{w_{k}} \left\{ g_{k} \left(x_{k},u_{k},w_{k} \right) + J_{k+1} \left(f_{k} \left(x_{k},\mu_{k}(x_{k}),w_{k} \right) \right) \right\} \\ = J_{k}(x_{k})$$

LINEAR-QUADRATIC ANALYTICAL EXAMPLE

• System

$$x_{k+1} = (1-a)x_k + au_k, \qquad k = 0, 1,$$

where a is given scalar from the interval (0, 1)

• Cost

$$r(x_2 - T)^2 + u_0^2 + u_1^2$$

where r is given positive scalar

• DP Algorithm:

$$J_2(x_2) = r(x_2 - T)^2$$

$$J_1(x_1) = \min_{u_1} \left[u_1^2 + r \left((1-a)x_1 + au_1 - T \right)^2 \right]$$
$$J_0(x_0) = \min_{u_0} \left[u_0^2 + J_1 \left((1-a)x_0 + au_0 \right) \right]$$

STATE AUGMENTATION

• When assumptions of the basic problem are violated (e.g., disturbances are correlated, cost is nonadditive, etc) reformulate/augment the state

• Example: Time lags

$$x_{k+1} = f_k(x_k, x_{k-1}, u_k, w_k)$$

• Introduce additional state variable $y_k = x_{k-1}$. New system takes the form

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} f_k(x_k, y_k, u_k, w_k) \\ x_k \end{pmatrix}$$

View $\tilde{x}_k = (x_k, y_k)$ as the new state.

• DP algorithm for the reformulated problem:

$$J_k(x_k, x_{k-1}) = \min_{u_k \in U_k(x_k)} E_{w_k} \left\{ g_k(x_k, u_k, w_k) + J_{k+1} \left(f_k(x_k, x_{k-1}, u_k, w_k), x_k \right) \right\}$$