
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 20

LECTURE OUTLINE

• We begin a 6-lecture series on approximate DP
for large/intractable problems (see the detailed
outline posted)

• We will mainly follow Chapter 6, Vol. II of the
text (with supplemental refs)

• In this lecture we classify/overview the main
approaches:

− Rollout/Simulation-based single policy iter-
ation (we will not discuss this further)

− Approximation in value space (approximate
policy iteration, Q-Learning, Bellman error
approach, approximate LP)

− Approximation in policy space (policy para-
metrization, gradient methods)

− Problem approximation (simplification - ag-
gregation - limited lookahead) - we will briefly
discuss this today

APPROXIMATION IN VALUE SPACE

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to SSP and average cost are possible
(but more quirky). We will discuss them later.

• Main idea: Approximate J∗ or Jµ with an ap-
proximation architecture

J∗(i) ≈ J̃(i, r) or Jµ(i) ≈ J̃(i, r)

• Principal example: Subspace approximation

J̃(i, r) = φ(i)′r =
s∑

k=1

φk(i)rk

where φ1, . . . ,φs are basis functions spanning an
s-dimensional subspace of #n

• Key issue: How to optimize r with low/s-dimensi-
onal operations only

• Other than manual/trial-and-error approaches
(e.g/, as in computer chess), the only other ap-
proaches are simulation-based. They are collec-
tively known as “neuro-dynamic programming” or
“reinforcement learning”

APPROX. IN VALUE SPACE - APPROACHES

• Policy evaluation/Policy improvement
− Uses simulation algorithms to approximate

the cost Jµ of the current policy µ

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the optimal costs J∗(i) or the
Q-factors

Q∗(i, u) = g(i, u) + α
n∑

j=1

pij(u)J∗(j)

− Bellman error approach: Find r to

min
r

Ei

{(
J̃(i, r) − (T J̃)(i, r)

)2
}

where Ei{·} is taken with respect to some
distribution

− Approximate LP (discussed earlier - supple-
mented with clever schemes to overcome the
large number of constraints issue)

POLICY EVALUATE/POLICY IMPROVE

• An example

System Simulator

Decision Generator

Cost-to-Go Approximator
Supplies Values J(j,r)

Least-Squares
Optimization

~

J(j,r)~

State iDecision µ(i)
_

-

• The “least squares optimization” may be re-
placed by a different algorithm

POLICY EVALUATE/POLICY IMPROVE I

• Approximate the cost of the current policy by
using a simulation method.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

S: Subspace spanned by basis functions
0

!Jµ

Projection
on S

S: Subspace spanned by basis functions

Tµ("r)

0

"r = !Tµ("r)

Projection
on S

Jµ

Direct Mehod: Projection of cost vector Jµ Indirect method: Solving a projected
form of Bellman’s equation

• Batch and incremental methods

• Regular and optimistic policy iteration

POLICY EVALUATE/POLICY IMPROVE II

• Projected equation methods are preferred and
have rich theory

• TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

• LSPE(λ): A simulation-based form of projected
value iteration

Φrk+1 = ΠTµ(Φrk) + simulation noise

S: Subspace spanned by basis functions

T("rk) = g + #P"rk

0

Value Iterate

Projection
on S

"rk+1

Simulation error

S: Subspace spanned by basis functions

"rk

T("rk) = g + #P"rk

0

"rk+1

Value Iterate

Projection
on S

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE)

"rk

• LSTD(λ): Solves a simulation-based approxi-
mation Φr = Π̂T̂µ(Φr) of the projected equation,
using a linear system solver (e.g., Gaussian elimi-
nation/Matlab)

APPROXIMATION IN POLICY SPACE

• We parameterize the set of policies by a vector
r = (r1, . . . , rs) and we optimize the cost over r.

• In a special case of this approach, the param-
eterization of the policies is indirect, through an
approximate cost function.

− A cost approximation architecture parame-
terized by r, defines a policy dependent on r
via the minimization in Bellman’s equation.

• Discounted problem example:
− Denote by gi(r), i = 1, . . . , n, the one-stage

expected cost starting at state i, and by pij(r)
the transition probabilities.

− Each value of r defines a stationary policy,
with cost starting at state i denoted by Ji(r).

− Use a gradient (or other) method to mini-
mize over r

J̄(r) =
n∑

i=1

q(i)Ji(r),

where
(
q(1), . . . , q(n)

)
is some probability dis-

tribution over the states.

PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem. The sim-
plification is often ad-hoc/problem dependent.

• Aggregation is a (semi-)systematic approach for
problem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by associating multi-
ple states of the original system with each
aggregate state

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of value or pol-
icy iteration method (including simulation-
based methods, such as Q-learning)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Example (Hard Aggregation): We are given a
partition of the state space into subsets of states,
and each subset is viewed as an aggregate state
(each state belongs to one and only one subset).

AGGREGATION/DISAGGREGATION PROBS

• The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices:

• For each original system state i and aggregate
state m, the aggregation probability aim

− This may be roughly interpreted as the “de-
gree of membership of i in the aggregate
state m.”

− In the hard aggregation example, aim = 1 if
state i belongs to aggregate state/subset m.

• For each aggregate state m and original system
state i, the disaggregation probability dmi

− This may be roughly interpreted as the “de-
gree to which i is representative of m.”

− In the hard aggregation example (assuming
all states that belong to aggregate state/subset
m are “equally representative”) dmi = 1/|m|
for each state i that belongs to aggregate
state/subset m, where |m| is the cardinality
(number of states) of m.

AGGREGATION EXAMPLES

• Hard aggregation (each original system state
is associated with one aggregate state):

Original System
States

Aggregate States

1 1/4 1 1/3

pij(u)

Aggregation
Probabilities

Disaggregation
Probabilities m n

i j

• Soft aggregation (each original system state is
associated with multiple aggregate states):

Original System
States

Aggregate States

1/2

1/4
1/3

pij(u)

Aggregation
Probabilities

Disaggregation
Probabilities m n

i j

1/2

1/3

2/3

• Coarse grid (each aggregate state is an original
system state):

Original System
States

Aggregate States

1/2 1 1

pij(u)

Aggregation
Probabilities

Disaggregation
Probabilities m n

i j

1/2
1/3

2/3

AGGREGATE TRANSITION PROBABILITIES

• Let the aggregation and disaggregation proba-
bilities, aim and dmi, and the original transition
probabilities pij(u) be given

• The transition probability from aggregate state
m to aggregate state n under u is

qmn(u) =
∑

i

∑

j

dmipij(u)ajn

and the transition cost is similarly defined.

• This corresponds to a probabilistic process that
can be simulated as follows:

− From aggregate state m, generate original
state i according to dmi.

− Generate a transition from i to j according
to pij(u), with cost g(i, u, j).

− From original state j, generate aggregate state
n according to ajn.

• After solving for the optimal costs Ĵ(m) of the
aggregate problem, the costs of the original prob-
lem are approximated by

J̃(i) =
∑

m

aimĴ(m)

