6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

- Discounted problems Approximate policy evaluation/policy improvement
- Direct approach Least squares
- Batch and incremental gradient methods
- Implementation using TD
- Optimistic policy iteration
- Exploration issues

THEORETICAL BASIS

• If policies are approximately evaluated using an approximation architecture:

$$\max_{i} |\tilde{J}(i, r_k) - J_{\mu^k}(i)| \le \delta, \qquad k = 0, 1, \dots$$

• If policy improvement is also approximate,

$$\max_{i} |(T_{\mu^{k+1}}\tilde{J})(i, r_k) - (T\tilde{J})(i, r_k)| \le \epsilon, \qquad k = 0, 1, \dots$$

• Error Bound: The sequence $\{\mu^k\}$ generated by approximate policy iteration satisfies

$$\limsup_{k \to \infty} \max_{i} \left(J_{\mu^{k}}(i) - J^{*}(i) \right) \le \frac{\epsilon + 2\alpha\delta}{(1 - \alpha)^{2}}$$

• Typical practical behavior: The method makes steady progress up to a point and then the iterates $J_{\mu k}$ oscillate within a neighborhood of J^* .

SIMULATION-BASED POLICY EVALUATION

- Suppose we can implement in a simulator the improved policy $\overline{\mu}$, and want to calculate $J_{\overline{\mu}}$ by simulation.
- Generate by simulation sample costs. Then:

$$J_{\overline{\mu}}(i) \approx \frac{1}{M_i} \sum_{m=1}^{M_i} c(i,m)$$

c(i,m): mth (noisy) sample cost starting from state i

• Approximating well each $J_{\overline{\mu}}(i)$ is impractical for a large state space. Instead, a "compact representation" $\tilde{J}_{\overline{\mu}}(i,r)$ is used, where r is a tunable parameter vector.

• Direct approach: Calculate an optimal value r^* of r by a least squares fit

$$r^* = \arg\min_{r} \sum_{i=1}^{n} \sum_{m=1}^{M_i} |c(i,m) - \tilde{J}_{\overline{\mu}}(i,r)|^2$$

• Note that this is much easier when the architecture is linear - but this is not a requirement.

SIMULATION-BASED DIRECT APPROACH

• Simulator: Given a state-control pair (i, u), generates the next state j using system's transition probabilities under policy $\overline{\mu}$ currently evaluated

• Decision generator: Generates the control $\overline{\mu}(i)$ of the evaluated policy at the current state i

• Cost-to-go approximator: $\tilde{J}(j,r)$ used by the decision generator and corresponding to preceding policy (already evaluated in preceding iteration)

• Least squares optimizer: Uses cost samples c(i, m)produced by the simulator and solves a least squares problem to approximate $\tilde{J}_{\overline{\mu}}(\cdot, \overline{r})$

BATCH GRADIENT METHOD I

• Focus on a batch: an N-transition portion (i_0, \ldots, i_N) of a simulated trajectory

• We view the numbers

$$\sum_{t=k}^{N-1} \alpha^{t-k} g(i_t, \overline{\mu}(i_t), i_{t+1}), \qquad k = 0, \dots, N-1,$$

as cost samples, one per initial state i_0, \ldots, i_{N-1}

• Least squares problem

$$\min_{\overline{r}} \frac{1}{2} \sum_{k=0}^{N-1} \left(\tilde{J}(i_k, \overline{r}) - \sum_{t=k}^{N-1} \alpha^{t-k} g(i_t, \overline{\mu}(i_t), i_{t+1}) \right)^2$$

• Gradient iteration

$$\overline{r} := \overline{r} - \gamma \sum_{k=0}^{N-1} \nabla \tilde{J}(i_k, \overline{r}) \\ \left(\tilde{J}(i_k, \overline{r}) - \sum_{t=k}^{N-1} \alpha^{t-k} g(i_t, \overline{\mu}(i_t), i_{t+1}) \right)$$

BATCH GRADIENT METHOD II

- Important tradeoff:
 - In order to reduce simulation error and cost samples for a representatively large subset of states, we must use a large N
 - $-\,$ To keep the work per gradient iteration small, we must use a small N

• To address the issue of size of N, small batches may be used and changed after one or more iterations

• Then the method becomes susceptible to simulation noise - requires a diminishing stepsize for convergence

• This slows down the convergence (which can be very slow for a gradient method even without noise)

• Theoretical convergence is guaranteed (with a diminishing stepsize) under reasonable conditions, but in practice this is not much of a guarantee

INCREMENTAL GRADIENT METHOD I

• Again focus on an N-transition portion (i_0, \ldots, i_N) of a simulated trajectory.

• The batch gradient method processes the N transitions all at once, and updates \overline{r} using the gradient iteration.

• The incremental method updates \overline{r} a total of N times, once after each transition.

• After each transition (i_k, i_{k+1}) it uses only the portion of the gradient affected by that transition:

- Evaluate the (single-term) gradient $\nabla \tilde{J}(i_k, \overline{r})$ at the current value of \overline{r} (call it r_k).
- Sum all the terms that involve the transition (i_k, i_{k+1}) , and update r_k by making a correction along their sum:

$$r_{k+1} = r_k - \gamma \left(\nabla \tilde{J}(i_k, r_k) \tilde{J}(i_k, r_k) - \left(\sum_{t=0}^k \alpha^{k-t} \nabla \tilde{J}(i_t, r_t) \right) g(i_k, \overline{\mu}(i_k), i_{k+1}) \right)$$

INCREMENTAL GRADIENT METHOD II

• After N transitions, all the component gradient terms of the batch iteration are accumulated.

- BIG difference:
 - In the incremental method, \overline{r} is changed while processing the batch – the (single-term) gradient $\nabla \tilde{J}(i_t, \overline{r})$ is evaluated at the most recent value of \overline{r} [after the transition (i_t, i_{t+1})].
 - In the batch version these gradients are evaluated at the value of \overline{r} prevailing at the beginning of the batch.

• Because \overline{r} is updated at intermediate transitions within a batch (rather than at the end of the batch), the location of the end of the batch becomes less relevant.

• Can have very long batches - can have a single very long simulated trajectory and a single batch.

• The incremental version can be implemented more flexibly, converges much faster in practice.

• Interesting convergence analysis (beyond our scope - see Bertsekas and Tsitsiklis, NDP book, also paper in SIAM J. on Optimization, 2000)

TEMPORAL DIFFERENCES - TD(1)

• A mathematically equivalent implementation of the incremental method.

• It uses *temporal difference* (TD for short)

 $d_k = g(i_k, \overline{\mu}(i_k), i_{k+1}) + \alpha \tilde{J}(i_{k+1}, \overline{r}) - \tilde{J}(i_k, \overline{r}), \ k \le N-2,$ $d_{N-1} = g(i_{N-1}, \overline{\mu}(i_{N-1}), i_N) - \tilde{J}(i_{N-1}, \overline{r})$

• Following the transition (i_k, i_{k+1}) , set

$$r_{k+1} = r_k + \gamma_k d_k \sum_{t=0}^k \alpha^{k-t} \nabla \tilde{J}(i_t, r_t)$$

• This algorithm is known as TD(1). In the important linear case $\tilde{J}(i,r) = \phi(i)'r$, it becomes

$$r_{k+1} = r_k + \gamma_k d_k \sum_{t=0}^k \alpha^{k-t} \phi(i_t)$$

• A variant of TD(1) is $TD(\lambda)$, $\lambda \in [0, 1]$. It sets

$$r_{k+1} = r_k + \gamma_k d_k \sum_{t=0}^k (\alpha \lambda)^{k-t} \phi(i_t)$$

OPTIMISTIC POLICY ITERATION

• We have assumed so far is that the least squares optimization must be solved completely for \overline{r} .

• An alternative, known as *optimistic policy iteration*, is to solve this problem approximately and replace policy μ with policy $\overline{\mu}$ after only a few simulation samples.

• Extreme possibility is to replace μ with $\overline{\mu}$ at the end of each state transition: After state transition (i_k, i_{k+1}) , set

$$r_{k+1} = r_k + \gamma_k d_k \sum_{t=0}^k (\alpha \lambda)^{k-t} \nabla \tilde{J}(i_t, r_t),$$

and simulate next transition (i_{k+1}, i_{k+2}) using $\overline{\mu}(i_{k+1})$, the control of the new policy.

• For $\lambda = 0$, we obtain (the popular) optimistic TD(0), which has the simple form

$$r_{k+1} = r_k + \gamma_k d_k \nabla \tilde{J}(i_k, r_k)$$

• Optimistic policy iteration can exhibit fascinating and counterintuitive behavior (see the NDP book by Bertsekas and Tsitsiklis, Section 6.4.2).

THE ISSUE OF EXPLORATION

• To evaluate a policy μ , we need to generate cost samples using that policy - this biases the simulation by underrepresenting states that are unlikely to occur under μ .

• As a result, the cost-to-go estimates of these underrepresented states may be highly inaccurate.

• This can cause serious errors in the calculation of the improved control policy $\overline{\mu}$.

• This is known as *inadequate exploration* - a particularly acute difficulty when the randomness embodied in the transition probabilities is "relatively small" (e.g., a deterministic system).

• One possibility to guarantee adequate exploration: Frequently restart the simulation and ensure that the initial states employed form a rich and representative subset.

• Another possibility is to artificially introduce some extra randomization in the simulation, by occasionally generating transitions that use a randomly selected control rather than the one dictated by the policy μ .

APPROXIMATING Q-FACTORS

• The approach described so far for policy evaluation requires calculating expected values for all controls $u \in U(i)$ (and knowledge of $p_{ij}(u)$).

• Model-free alternative: Approximate Q-factors

$$\tilde{Q}(i, u, r) \approx \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha J_{\mu}(j) \right)$$

and use for policy improvement the minimization

$$\overline{\mu}(i) = \arg\min_{u \in U(i)} \tilde{Q}(i, u, r)$$

• r is an adjustable parameter vector and $\hat{Q}(i, u, r)$ is a parametric architecture, such as

$$\tilde{Q}(i, u, r) = \sum_{k=1}^{m} r_k \phi_k(i, u)$$

• Can use any method for constructing cost approximations, e.g., $TD(\lambda)$.

• Use the Markov chain with states $(i, u) - p_{ij}(\mu(i))$ is the transition prob. to $(j, \mu(i))$, 0 to other (j, u').

• Major concern: Acutely diminished exploration.