
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• Discounted problems - Approximate policy eval-
uation/policy improvement

• Direct approach - Least squares

• Batch and incremental gradient methods

• Implementation using TD

• Optimistic policy iteration

• Exploration issues

THEORETICAL BASIS

• If policies are approximately evaluated using an
approximation architecture:

max
i

|J̃(i, rk) − Jµk(i)| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max
i

|(Tµk+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ε, k = 0, 1, . . .

• Error Bound: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

max
i

(
Jµk(i) − J∗(i)

)
≤ ε + 2αδ

(1 − α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

SIMULATION-BASED POLICY EVALUATION

• Suppose we can implement in a simulator the
improved policy µ, and want to calculate Jµ by
simulation.

• Generate by simulation sample costs. Then:

Jµ(i) ≈ 1
Mi

Mi∑

m=1

c(i,m)

c(i,m) : mth (noisy) sample cost starting from state i

• Approximating well each Jµ(i) is impractical
for a large state space. Instead, a “compact rep-
resentation” J̃µ(i, r) is used, where r is a tunable
parameter vector.

• Direct approach: Calculate an optimal value r∗

of r by a least squares fit

r∗ = arg min
r

n∑

i=1

Mi∑

m=1

∣∣c(i,m) − J̃µ(i, r)
∣∣2

• Note that this is much easier when the archi-
tecture is linear - but this is not a requirement.

SIMULATION-BASED DIRECT APPROACH

System Simulator

Decision Generator

Cost-to-Go Approximator
Supplies Values J(j,r)

Least-Squares
Optimization

~

J(j,r)~

State iDecision !(i)
_

-

• Simulator: Given a state-control pair (i, u), gen-
erates the next state j using system’s transition
probabilities under policy µ currently evaluated

• Decision generator: Generates the control µ(i)
of the evaluated policy at the current state i

• Cost-to-go approximator: J̃(j, r) used by the
decision generator and corresponding to preceding
policy (already evaluated in preceding iteration)

• Least squares optimizer: Uses cost samples c(i,m)
produced by the simulator and solves a least squares
problem to approximate J̃µ(·, r)

BATCH GRADIENT METHOD I

• Focus on a batch: an N -transition portion
(i0, . . . , iN) of a simulated trajectory

• We view the numbers

N−1∑

t=k

αt−kg
(
it, µ(it), it+1

)
, k = 0, . . . , N − 1,

as cost samples, one per initial state i0, . . . , iN−1

• Least squares problem

min
r

1
2

N−1∑

k=0

(
J̃(ik, r) −

N−1∑

t=k

αt−kg
(
it, µ(it), it+1

)
)2

• Gradient iteration

r := r − γ
N−1∑

k=0

∇J̃(ik, r)

(
J̃(ik, r) −

N−1∑

t=k

αt−kg
(
it, µ(it), it+1

)
)

BATCH GRADIENT METHOD II

• Important tradeoff:
− In order to reduce simulation error and cost

samples for a representatively large subset of
states, we must use a large N

− To keep the work per gradient iteration small,
we must use a small N

• To address the issue of size of N , small batches
may be used and changed after one or more iter-
ations

• Then the method becomes susceptible to sim-
ulation noise - requires a diminishing stepsize for
convergence

• This slows down the convergence (which can
be very slow for a gradient method even without
noise)

• Theoretical convergence is guaranteed (with a
diminishing stepsize) under reasonable conditions,
but in practice this is not much of a guarantee

INCREMENTAL GRADIENT METHOD I

• Again focus on an N -transition portion (i0, . . . , iN)
of a simulated trajectory.

• The batch gradient method processes the N
transitions all at once, and updates r using the
gradient iteration.

• The incremental method updates r a total of N
times, once after each transition.

• After each transition (ik, ik+1) it uses only the
portion of the gradient affected by that transition:

− Evaluate the (single-term) gradient ∇J̃(ik, r)
at the current value of r (call it rk).

− Sum all the terms that involve the transi-
tion (ik, ik+1), and update rk by making a
correction along their sum:

rk+1 =rk − γ

(
∇J̃(ik, rk)J̃(ik, rk)

−
(

k∑

t=0

αk−t∇J̃(it, rt)

)
g
(
ik, µ(ik), ik+1

)
)

INCREMENTAL GRADIENT METHOD II

• After N transitions, all the component gradient
terms of the batch iteration are accumulated.

• BIG difference:
− In the incremental method, r is changed while

processing the batch – the (single-term) gra-
dient ∇J̃(it, r) is evaluated at the most re-
cent value of r [after the transition (it, it+1)].

− In the batch version these gradients are eval-
uated at the value of r prevailing at the be-
ginning of the batch.

• Because r is updated at intermediate transi-
tions within a batch (rather than at the end of
the batch), the location of the end of the batch
becomes less relevant.

• Can have very long batches - can have a single
very long simulated trajectory and a single batch.

• The incremental version can be implemented
more flexibly, converges much faster in practice.

• Interesting convergence analysis (beyond our
scope - see Bertsekas and Tsitsiklis, NDP book,
also paper in SIAM J. on Optimization, 2000)

TEMPORAL DIFFERENCES - TD(1)

• A mathematically equivalent implementation of
the incremental method.

• It uses temporal difference (TD for short)

dk = g
(
ik, µ(ik), ik+1

)
+αJ̃(ik+1, r)−J̃(ik, r), k ≤ N−2,

dN−1 = g
(
iN−1, µ(iN−1), iN

)
− J̃(iN−1, r)

• Following the transition (ik, ik+1), set

rk+1 = rk + γkdk

k∑

t=0

αk−t∇J̃(it, rt)

• This algorithm is known as TD(1). In the im-
portant linear case J̃(i, r) = φ(i)′r, it becomes

rk+1 = rk + γkdk

k∑

t=0

αk−tφ(it)

• A variant of TD(1) is TD(λ), λ ∈ [0, 1]. It sets

rk+1 = rk + γkdk

k∑

t=0

(αλ)k−tφ(it)

OPTIMISTIC POLICY ITERATION

• We have assumed so far is that the least squares
optimization must be solved completely for r.

• An alternative, known as optimistic policy iter-
ation, is to solve this problem approximately and
replace policy µ with policy µ after only a few
simulation samples.

• Extreme possibility is to replace µ with µ at the
end of each state transition: After state transition
(ik, ik+1), set

rk+1 = rk + γkdk

k∑

t=0

(αλ)k−t∇J̃(it, rt),

and simulate next transition (ik+1, ik+2) using µ(ik+1),
the control of the new policy.

• For λ = 0, we obtain (the popular) optimistic
TD(0), which has the simple form

rk+1 = rk + γkdk∇J̃(ik, rk)

• Optimistic policy iteration can exhibit fascinat-
ing and counterintuitive behavior (see the NDP
book by Bertsekas and Tsitsiklis, Section 6.4.2).

THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

• This can cause serious errors in the calculation
of the improved control policy µ.

• This is known as inadequate exploration - a par-
ticularly acute difficulty when the randomness em-
bodied in the transition probabilities is “relatively
small” (e.g., a deterministic system).

• One possibility to guarantee adequate explo-
ration: Frequently restart the simulation and en-
sure that the initial states employed form a rich
and representative subset.

• Another possibility is to artificially introduce
some extra randomization in the simulation, by
occasionally generating transitions that use a ran-
domly selected control rather than the one dic-
tated by the policy µ.

APPROXIMATING Q-FACTORS

• The approach described so far for policy eval-
uation requires calculating expected values for all
controls u ∈ U(i) (and knowledge of pij(u)).

• Model-free alternative: Approximate Q-factors

Q̃(i, u, r) ≈
n∑

j=1

pij(u)
(
g(i, u, j) + αJµ(j)

)

and use for policy improvement the minimization

µ(i) = arg min
u∈U(i)

Q̃(i, u, r)

• r is an adjustable parameter vector and Q̃(i, u, r)
is a parametric architecture, such as

Q̃(i, u, r) =
m∑

k=1

rkφk(i, u)

• Can use any method for constructing cost ap-
proximations, e.g., TD(λ).

• Use the Markov chain with states (i, u) - pij(µ(i))
is the transition prob. to (j, µ(i)), 0 to other (j, u′).

• Major concern: Acutely diminished exploration.

