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6.231 DYNAMIC PROGRAMMING

LECTURE 22

LECTURE OUTLINE

• Discounted problems - Approximate policy eval-
uation/policy improvement

• Indirect approach - The projected equation

• Contraction properties - Error bounds

• PVI (Projected Value Iteration)

• LSPE (Least Squares Policy Evaluation)

• Tetris - A case study



POLICY EVALUATION/POLICY IMPROVEMENT

Approximate Policy
Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Linear cost function approximation

J̃(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′.

• Policy “improvement”

µ(i) = arg min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αφ(j)′r

)

• Indirect methods find Φr by solving a projected
equation.



WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖v =

√√√√
n∑

i=1

vi

(
J(i)

)2
,

where v is a vector of positive weights v1, . . . , vn.

• Let Π denote the projection operation onto

S = {Φr | r ∈ $s}

with respect to this norm, i.e., for any J ∈ $n,

ΠJ = ΦrJ

where
rJ = arg min

r∈#s
‖J − Φr‖v

• Π and rJ can be written explicitly:

Π = Φ(Φ′V Φ)−1Φ′V, rJ = (Φ′V Φ)−1Φ′V J,

where V is the diagonal matrix with vi, i = 1, . . . , n,
along the diagonal.



THE PROJECTED BELLMAN EQUATION

• For a fixed policy µ to be evaluated, consider
the corresponding mapping T :

(TJ)(i) =
n∑

i=1

pij
(
g(i, j)+αJ(j)

)
, i = 1, . . . , n,

or more compactly,

TJ = g + αPJ

• The solution Jµ of Bellman’s equation J = TJ
is approximated by the solution of

Φr = ΠT (Φr)

S: Subspace spanned by basis functions

T(!r)

0

!r = "T(!r)

Projection
on S

Indirect method: Solving a projected 
form of Bellman!s equation



KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠT a
contraction, so ΠT has unique fixed point?

• Assuming ΠT has unique fixed point Φr∗, how
close is Φr∗ to Jµ?

• Assumption: P has a single recurrent class
and no transient states, i.e., it has steady-state
probabilities that are positive

ξj = lim
N→∞

1
N

N∑

k=1

P (ik = j | i0 = i) > 0, j = 1, . . . , n

• Proposition: ΠT is contraction of modulus
α with respect to the weighted Euclidean norm
‖ · ‖ξ, where ξ = (ξ1, . . . , ξn) is the steady-state
probability vector. The unique fixed point Φr∗ of
ΠT satisfies

‖Jµ − Φr∗‖ξ ≤ 1√
1 − α2

‖Jµ −ΠJµ‖ξ



ANALYSIS

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖v. For all J ∈
$n, J ∈ S, the Pythagorean Theorem holds:

‖J − J‖2
v = ‖J −ΠJ‖2

v + ‖ΠJ − J‖2
v

• Proof: Geometrically, (J − ΠJ) and (ΠJ − J)
are orthogonal in the scaled geometry of the norm
‖ · ‖v, where two vectors x, y ∈ $n are orthogonal
if

∑n
i=1 vixiyi = 0. Expand the quadratic in the

RHS below:

‖J − J‖2
v = ‖(J −ΠJ) + (ΠJ − J)‖2

v

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖v ≤ ‖J − J̄‖v, for all J, J̄ ∈ $n.

To see this, note that

∥∥Π(J − J)
∥∥2

v
≤

∥∥Π(J − J)
∥∥2

v
+

∥∥(I −Π)(J − J)
∥∥2

v

= ‖J − J‖2
v



PROOF OF CONTRACTION PROPERTY

• Lemma: We have

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ $n

• Proof of lemma: Let pij be the components of
P . For all z ∈ $n, we have

‖Pz‖2
ξ =

n∑

i=1

ξi




n∑

j=1

pijzj




2

≤
n∑

i=1

ξi

n∑

j=1

pijz2
j

=
n∑

j=1

n∑

i=1

ξipijz2
j =

n∑

j=1

ξjz2
j = ‖z‖2

ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n
i=1 ξipij =

ξj of the steady-state probabilities.
• Using the lemma, the nonexpansiveness of Π,
and the definition TJ = g + αPJ , we have

‖ΠTJ−ΠT J̄‖ξ ≤ ‖TJ−T J̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ $n. Hence T is a contraction of
modulus α.



PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤ 1√
1 − α2

‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2
ξ = ‖Jµ −ΠJµ‖2

ξ +
∥∥ΠJµ − Φr∗

∥∥2

ξ

= ‖Jµ −ΠJµ‖2
ξ +

∥∥ΠTJµ −ΠT (Φr∗)
∥∥2

ξ

≤ ‖Jµ −ΠJµ‖2
ξ + α2‖Jµ − Φr∗‖2

ξ ,

where the first equality uses the Pythagorean The-
orem, the second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point of ΠT ,
and the inequality uses the contraction property
of ΠT . From this relation, the result follows.

• Note: The factor 1/
√

1 − α2 in the RHS can
be replaced by a factor that is smaller and com-
putable. See
H. Yu and D. P. Bertsekas, “New Error Bounds
for Approximations from Projected Linear Equa-
tions,” Report LIDS-P-2797, MIT, July 2008.



PROJECTED VALUE ITERATION (PVI)

• Given the projection property of ΠT , we may
consider the PVI method

Φrk+1 = ΠT (Φrk)

S: Subspace spanned by basis functions

!rk

T(!rk) = g + "P!rk

0

!rk+1

Value Iterate

Projection
on S

• Question: Can we implement PVI using simu-
lation, without the need for n-dimensional linear
algebra calculations?

• LSPE (Least Squares Policy Evaluation) is a
simulation-based implementation of PVI.



LSPE - SIMULATION-BASED PVI

• PVI, i.e., Φrk+1 = ΠT (Φrk) can be written as

rk+1 = arg min
r∈#s

∥∥Φr − T (Φrk)
∥∥2

ξ
,

from which by setting the gradient to 0,
(

n∑

i=1

ξi φ(i)φ(i)′

)
rk+1 =

(
n∑

i=1

ξi φ(i)

n∑

j=1

pij

(
g(i, j) + αφ(j)′rk

)

• For LSPE we generate an infinite trajectory
(i0, i1, . . .) and update rk after transition (ik, ik+1)
(

k∑

t=0

φ(it)φ(it)
′

)
rk+1 =

(
k∑

t=0

φ(it)
(
g(it, it+1) + αφ(it+1)′rk

)
)

• LSPE can equivalently be written as
(

n∑

i=1

ξ̂i,k φ(i)φ(i)′

)
rk+1 =

( n∑

i=1

ξ̂i,k φ(i)

n∑

j=1

p̂ij,k

(
g(i, j) + αφ(j)′rk

))
,

where ξ̂i,k, p̂ij,k: empirical frequencies of state i
and transition (i, j), based on (i0, . . . , ik+1).



LSPE INTERPRETATION

• LSPE can be written as PVI with sim. error:

Φrk+1 = ΠT (Φrk) + ek

where ek diminishes to 0 as the empirical frequen-
cies ξ̂i,k and p̂ij,k approach ξ and pij .

S: Subspace spanned by basis functions

T(!rk) = g + "P!rk

0

Value Iterate

Projection
on S

!rk+1

Simulation error

S: Subspace spanned by basis functions

!rk

T(!rk) = g + "P!rk

0

!rk+1

Value Iterate

Projection
on S

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE)

!rk

• Convergence proof is simple: Use the law of
large numbers.

• Optimistic LSPE: Changes policy prior to con-
vergence - behavior can be very complicated.



EXAMPLE: TETRIS I

            

• The state consists of the board position i, and
the shape of the current falling block (astronomi-
cally large number of states).

• It can be shown that all policies are proper!!

• Use a linear approximation architecture with
feature extraction

J̃(i, r) =
s∑

m=1

φm(i)rm,

where r = (r1, . . . , rs) is the parameter vector and
φm(i) is the value of mth feature associated w/ i.



EXAMPLE: TETRIS II

• Approximate policy iteration was implemented
with the following features:

− The height of each column of the wall
− The difference of heights of adjacent columns
− The maximum height over all wall columns
− The number of “holes” on the wall
− The number 1 (provides a constant offset)

• Playing data was collected for a fixed value
of the parameter vector r (and the corresponding
policy); the policy was approximately evaluated
by choosing r to match the playing data in some
least-squares sense.

• LSPE (its SSP version) was used for approxi-
mate policy evaluation.

• Both regular and optimistic versions were used.

• See: Bertsekas and Ioffe, “Temporal Differences-
Based Policy Iteration and Applications in Neuro-
Dynamic Programming,” LIDS Report, 1996. Also
the NDP book.


