6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 24

LECTURE OUTLINE

More on projected equation methods/policy evaluation

- Stochastic shortest path problems
- Average cost problems
- Generalization Two Markov Chain methods

• LSTD-like methods - Use to enhance exploration

REVIEW: PROJECTED BELLMAN EQUATION

• For fixed policy μ to be evaluated, the solution of Bellman's equation $J = TJ$ is approximated by the solution of

$$
\Phi r = \Pi T(\Phi r)
$$

whose solution is in turn obtained using a simulationbased method such as $LSPE(\lambda)$, $LSTD(\lambda)$, or $TD(\lambda)$.

Indirect method: Solving a projected form of Bellman's equation

These ideas apply to other (linear) Bellman equations, e.g., for SSP and average cost.

EVALUATE: Construct framework where ΠT [or at least $\Pi T^{(\lambda)}$ is a contraction.

STOCHASTIC SHORTEST PATHS

• Introduce approximation subspace

$$
S = \{ \Phi r \mid r \in \Re^s \}
$$

and for a given proper policy, Bellman's equation and its projected version

$$
J = TJ = g + PJ, \qquad \Phi r = \Pi T(\Phi r)
$$

Also its λ -version

$$
\Phi r = \Pi T^{(\lambda)}(\Phi r), \qquad T^{(\lambda)} = (1 - \lambda) \sum_{t=0}^{\infty} \lambda^t T^{t+1}
$$

• **Question:** What should be the norm of projection?

• **Speculation based on discounted case:** It should be a weighted Euclidean norm with weight vector $\xi = (\xi_1, \ldots, \xi_n)$, where ξ_i should be some type of long-term occupancy probability of state i (which can be generated by simulation).

• But what does "long-term occupancy probability of a state" mean in the SSP context?

• How do we generate infinite length trajectories given that termination occurs with prob. 1?

SIMULATION TRAJECTORIES FOR SSP

We envision simulation of trajectories up to termination, followed by restart at state i with some fixed probabilities $q_0(i) > 0$.

• Then the "long-term occupancy probability of a state" of i is proportional to

$$
q(i) = \sum_{t=0}^{\infty} q_t(i), \qquad i = 1, \ldots, n,
$$

where

$$
q_t(i) = P(i_t = i),
$$
 $i = 1,...,n, t = 0,1,...$

• We use the projection norm

$$
||J||_q = \sqrt{\sum_{i=1}^n q(i) (J(i))^2}
$$

[Note that $0 < q(i) < \infty$, but q is not a prob. distribution.]

• We can show that $\Pi T^{(\lambda)}$ is a contraction with respect to $\|\cdot\|_{\xi}$ (see the next slide).

CONTRACTION PROPERTY FOR SSP

• We have
$$
q = \sum_{t=0}^{\infty} q_t
$$
 so
\n
$$
q'P = \sum_{t=0}^{\infty} q_t'P = \sum_{t=1}^{\infty} q_t' = q' - q'_0
$$

or

$$
\sum_{i=1}^{n} q(i)p_{ij} = q(j) - q_0(j), \qquad \forall j
$$

To verify that ΠT is a contraction, we show that there exists $\beta < 1$ such that $||Pz||_q^2 \leq \beta ||z||_q^2$ for all $z \in \Re^n$.

• For all $z \in \Re^n$, we have

$$
||Pz||_q^2 = \sum_{i=1}^n q(i) \left(\sum_{j=1}^n p_{ij} z_j\right)^2 \le \sum_{i=1}^n q(i) \sum_{j=1}^n p_{ij} z_j^2
$$

=
$$
\sum_{j=1}^n z_j^2 \sum_{i=1}^n q(i) p_{ij} = \sum_{j=1}^n (q(j) - q_0(j)) z_j^2
$$

=
$$
||z||_q^2 - ||z||_{q_0}^2 \le \beta ||z||_q^2
$$

where

$$
\beta = 1 - \min_j \frac{q_0(j)}{q(j)}
$$

PVI(λ **) AND LSPE(** λ **) FOR SSP**

We consider $PVI(\lambda)$: $\Phi r_{k+1} = \Pi T^{(\lambda)}(\Phi r_k)$, which can be written as

$$
r_{k+1} = \arg\min_{r \in \mathfrak{R}^s} \sum_{i=1}^n q(i) \left(\phi(i)'r - \phi(i)'r_k - \sum_{t=0}^\infty \lambda^t E\{d_k(i_t, i_{t+1}) \mid i_0 = i\} \right)^2
$$

where $d_k(i_t, i_{t+1})$ are the TDs.

The $LSPE(\lambda)$ algorithm is a simulation-based approximation. Let $(i_{0,l}, i_{1,l},\ldots, i_{N_l,l})$ be the *l*th trajectory (with $i_{N_l,l} = 0$), and let r_k be the parameter vector after k trajectories. We set

$$
r_{k+1} = \arg\min_{r} \sum_{l=1}^{k+1} \sum_{t=0}^{N_l-1} \left(\phi(i_{t,l})'r - \phi(i_{t,l})'r_k - \sum_{m=t}^{N_l-1} \lambda^{m-t} d_k(i_{m,l}, i_{m+1,l}) \right)^2
$$

where

$$
d_k(i_{m,l}, i_{m+1,l}) = g(i_{m,l}, i_{m+1,l}) + \phi(i_{m+1,l})'r_k - \phi(i_{m,l})'r_k
$$

Can also update r_k at every transition.

AVERAGE COST PROBLEMS

Consider a single policy to be evaluated, with single recurrent class, no transient states, and steadystate probability vector $\xi = (\xi_1, \ldots, \xi_n)$.

• The average cost, denoted by η , is independent of the initial state

$$
\eta = \lim_{N \to \infty} \frac{1}{N} E \left\{ \sum_{k=0}^{N-1} g(x_k, x_{k+1}) \middle| x_0 = i \right\}, \quad \forall i
$$

Bellman's equation is $J = FJ$ with

$$
FJ = g - \eta e + PJ
$$

where *e* is the unit vector $e = (1, \ldots, 1)$.

• The projected equation and its λ -version are

$$
\Phi r = \Pi F(\Phi r), \qquad \Phi r = \Pi F^{(\lambda)}(\Phi r)
$$

A problem here is that F is not a contraction with respect to any norm (since $e = Pe$).

However, $\Pi F^{(\lambda)}$ turns out to be a contraction with respect to $\|\cdot\|_{\xi}$ assuming that e does not belong to S and $\lambda > 0$ [the case $\lambda = 0$ is exceptional, but can be handled - see the text].

LSPE(λ**) FOR AVERAGE COST**

- We generate an infinitely long trajectory (i_0, i_1, \ldots) .
- We estimate the average cost η separately: Following each transition (i_k, i_{k+1}) , we set

$$
\eta_k = \frac{1}{k+1} \sum_{t=0}^{k} g(i_t, i_{t+1})
$$

Also following (i_k, i_{k+1}) , we update r_k by

$$
r_{k+1} = \arg\min_{r \in \mathbb{R}^s} \sum_{t=0}^k \left(\phi(i_t)'r - \phi(i_t)'r_k - \sum_{m=t}^k \lambda^{m-t} d_k(m) \right)^2
$$

where $d_k(m)$ are the TDs

$$
d_k(m) = g(i_m, i_{m+1}) - \eta_m + \phi(i_{m+1})'r_k - \phi(i_m)'r_k
$$

Note that the TDs include the estimate η_m . Since η_m converges to η , for large m it can be viewed as a constant and lumped into the onestage cost.

GENERALIZATION/UNIFICATION

Consider approximate solution of $x = T(x)$, where

$$
T(x) = Ax + b, \qquad A \text{ is } n \times n, \quad b \in \Re^n
$$

by solving the projected equation $y = \Pi T(y)$, where Π is projection on a subspace of basis functions (with respect to some Euclidean norm).

• We will generalize from DP to the case where A is arbitrary, subject only to

 $I-\Pi A$: invertible

- Benefits of generalization:
	- − Unification/higher perspective for TD methods in approximate DP
	- − An extension to a broad new area of applications, where a DP perspective may be helpful
- Challenge: Dealing with less structure
	- − Lack of contraction
	- − Absence of a Markov chain

LSTD-LIKE METHOD

• Let Π be projection with respect to

$$
||x||_{\xi} = \sqrt{\sum_{i=1}^{n} \xi_i x_i^2}
$$

where $\xi \in \mathbb{R}^n$ is a probability distribution with positive components.

If r^* is the solution of the projected equation, we have $\Phi r^* = \Pi (A \Phi r^* + b)$ or

$$
r^* = \arg\min_{r \in \Re^s} \sum_{i=1}^n \xi_i \left(\phi(i)^r r - \sum_{j=1}^n a_{ij} \phi(j)^r r^* - b_i \right)^2
$$

where $\phi(i)'$ denotes the *i*th row of the matrix Φ .

• Optimality condition/equivalent form:

$$
\sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i
$$

The two expected values are approximated by simulation.

SIMULATION MECHANISM

Row sampling: Generate sequence $\{i_0, i_1, \ldots\}$ according to ξ , i.e., relative frequency of each row i is ξ_i

• Column sampling: Generate $\{(i_0, j_0), (i_1, j_1), \ldots\}$ according to some transition probability matrix P with

 $p_{ij} > 0$ if $a_{ij} \neq 0$,

i.e., for each i, the relative frequency of (i, j) is p_{ij}

• Row sampling may be done using a Markov chain with transition matrix Q (unrelated to P)

• Row sampling may also be done without a Markov chain - just sample rows according to some known distribution ξ (e.g., a uniform)

ROW AND COLUMN SAMPLING

• Row sampling ∼ State Sequence Generation in DP. Affects:

- − The projection norm.
- $-$ Whether ΠA is a contraction.

• Column sampling ∼ Transition Sequence Generation in DP.

- − Can be totally unrelated to row sampling. Affects the sampling/simulation error.
- − "Matching" P with |A| is beneficial (has an effect like in importance sampling).

Independent row and column sampling allows exploration at will! Resolves the exploration problem that is critical in approximate policy iteration.

LSTD-LIKE METHOD

• Optimality condition/equivalent form of projected equation

$$
\sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i
$$

The two expected values are approximated by row and column sampling (batch $0 \rightarrow t$).

• We solve the linear equation

$$
\sum_{k=0}^{t} \phi(i_k) \left(\phi(i_k) - \frac{a_{i_k j_k}}{p_{i_k j_k}} \phi(j_k) \right)' r_t = \sum_{k=0}^{t} \phi(i_k) b_{i_k}
$$

• We have $r_t \to r^*$, regardless of ΠA being a contraction (by law of large numbers; see next slide).

• An LSPE-like method is also possible, but requires that ΠA is a contraction.

• Under the assumption $\sum_{j=1}^n |a_{ij}| \le 1$ for all *i*, there are conditions that guarantee contraction of ΠA; see the paper by Bertsekas and Yu,"Projected Equation Methods for Approximate Solution of Large Linear Systems," 2008.

JUSTIFICATION W/ LAW OF LARGE NUMBERS

- We will match terms in the exact optimality condition and the simulation-based version.
- Let $\hat{\xi}_i^i$ i _i be the relative frequency of i in row sampling up to time t .
- We have

$$
\frac{1}{t+1} \sum_{k=0}^{t} \phi(i_k) \phi(i_k)' = \sum_{i=1}^{n} \hat{\xi}_i^t \phi(i) \phi(i)' \approx \sum_{i=1}^{n} \xi_i \phi(i) \phi(i)'
$$

$$
\frac{1}{t+1} \sum_{k=0}^{t} \phi(i_k) b_{i_k} = \sum_{i=1}^{n} \hat{\xi}_i^t \phi(i) b_i \approx \sum_{i=1}^{n} \xi_i \phi(i) b_i
$$

• Let \hat{p}_{ij}^t be the relative frequency of (i, j) in column sampling up to time t .

$$
\frac{1}{t+1} \sum_{k=0}^{t} \frac{a_{i_k j_k}}{p_{i_k j_k}} \phi(i_k) \phi(j_k)'
$$
\n
$$
= \sum_{i=1}^{n} \hat{\xi}_i^t \sum_{j=1}^{n} \hat{p}_{ij}^t \frac{a_{ij}}{p_{ij}} \phi(i) \phi(j)'
$$
\n
$$
\approx \sum_{i=1}^{n} \xi_i \sum_{j=1}^{n} a_{ij} \phi(i) \phi(j)'
$$