6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 24

LECTURE OUTLINE

• More on projected equation methods/policy evaluation

- Stochastic shortest path problems
- Average cost problems
- Generalization Two Markov Chain methods

• LSTD-like methods - Use to enhance exploration

REVIEW: PROJECTED BELLMAN EQUATION

• For fixed policy μ to be evaluated, the solution of Bellman's equation J = TJ is approximated by the solution of

$$\Phi r = \Pi T(\Phi r)$$

whose solution is in turn obtained using a simulationbased method such as $LSPE(\lambda)$, $LSTD(\lambda)$, or $TD(\lambda)$.

Indirect method: Solving a projected form of Bellman's equation

• These ideas apply to other (linear) Bellman equations, e.g., for SSP and average cost.

• Key Issue: Construct framework where ΠT [or at least $\Pi T^{(\lambda)}$] is a contraction.

STOCHASTIC SHORTEST PATHS

• Introduce approximation subspace

$$S = \{\Phi r \mid r \in \Re^s\}$$

and for a given proper policy, Bellman's equation and its projected version

$$J = TJ = g + PJ, \qquad \Phi r = \Pi T(\Phi r)$$

Also its λ -version

$$\Phi r = \Pi T^{(\lambda)}(\Phi r), \qquad T^{(\lambda)} = (1 - \lambda) \sum_{t=0}^{\infty} \lambda^t T^{t+1}$$

• **Question:** What should be the norm of projection?

• Speculation based on discounted case: It should be a weighted Euclidean norm with weight vector $\xi = (\xi_1, \ldots, \xi_n)$, where ξ_i should be some type of long-term occupancy probability of state *i* (which can be generated by simulation).

• But what does "long-term occupancy probability of a state" mean in the SSP context?

• How do we generate infinite length trajectories given that termination occurs with prob. 1?

SIMULATION TRAJECTORIES FOR SSP

• We envision simulation of trajectories up to termination, followed by restart at state i with some fixed probabilities $q_0(i) > 0$.

• Then the "long-term occupancy probability of a state" of *i* is proportional to

$$q(i) = \sum_{t=0}^{\infty} q_t(i), \qquad i = 1, \dots, n,$$

where

$$q_t(i) = P(i_t = i), \qquad i = 1, \dots, n, \ t = 0, 1, \dots$$

• We use the projection norm

$$||J||_{q} = \sqrt{\sum_{i=1}^{n} q(i) (J(i))^{2}}$$

[Note that $0 < q(i) < \infty$, but q is not a prob. distribution.]

• We can show that $\Pi T^{(\lambda)}$ is a contraction with respect to $\|\cdot\|_{\xi}$ (see the next slide).

CONTRACTION PROPERTY FOR SSP

• We have
$$q = \sum_{t=0}^{\infty} q_t$$
 so
 $q'P = \sum_{t=0}^{\infty} q'_t P = \sum_{t=1}^{\infty} q'_t = q' - q'_0$
or

UI

$$\sum_{i=1}^{n} q(i)p_{ij} = q(j) - q_0(j), \qquad \forall \ j$$

• To verify that ΠT is a contraction, we show that there exists $\beta < 1$ such that $\|Pz\|_q^2 \leq \beta \|z\|_q^2$ for all $z \in \Re^n$.

• For all $z \in \Re^n$, we have

$$\begin{aligned} \|Pz\|_{q}^{2} &= \sum_{i=1}^{n} q(i) \left(\sum_{j=1}^{n} p_{ij} z_{j}\right)^{2} \leq \sum_{i=1}^{n} q(i) \sum_{j=1}^{n} p_{ij} z_{j}^{2} \\ &= \sum_{j=1}^{n} z_{j}^{2} \sum_{i=1}^{n} q(i) p_{ij} = \sum_{j=1}^{n} (q(j) - q_{0}(j)) z_{j}^{2} \\ &= \|z\|_{q}^{2} - \|z\|_{q_{0}}^{2} \leq \beta \|z\|_{q}^{2} \end{aligned}$$

where

$$\beta = 1 - \min_{j} \frac{q_0(j)}{q(j)}$$

$PVI(\lambda)$ AND $LSPE(\lambda)$ FOR SSP

• We consider $PVI(\lambda)$: $\Phi r_{k+1} = \Pi T^{(\lambda)}(\Phi r_k)$, which can be written as

$$r_{k+1} = \arg\min_{r\in\Re^{s}} \sum_{i=1}^{n} q(i) \left(\phi(i)'r - \phi(i)'r_{k} - \sum_{t=0}^{\infty} \lambda^{t} E\{d_{k}(i_{t}, i_{t+1}) \mid i_{0} = i\} \right)^{2}$$

where $d_k(i_t, i_{t+1})$ are the TDs.

• The LSPE(λ) algorithm is a simulation-based approximation. Let $(i_{0,l}, i_{1,l}, \ldots, i_{N_l,l})$ be the *l*th trajectory (with $i_{N_l,l} = 0$), and let r_k be the parameter vector after k trajectories. We set

$$r_{k+1} = \arg\min_{r} \sum_{l=1}^{k+1} \sum_{t=0}^{N_l-1} \left(\phi(i_{t,l})'r - \phi(i_{t,l})'r_k - \sum_{m=t}^{N_l-1} \lambda^{m-t} d_k(i_{m,l}, i_{m+1,l}) \right)^2$$

where

$$d_k(i_{m,l}, i_{m+1,l}) = g(i_{m,l}, i_{m+1,l}) + \phi(i_{m+1,l})'r_k - \phi(i_{m,l})'r_k$$

• Can also update r_k at every transition.

AVERAGE COST PROBLEMS

• Consider a single policy to be evaluated, with single recurrent class, no transient states, and steady-state probability vector $\xi = (\xi_1, \dots, \xi_n)$.

• The average cost, denoted by η , is independent of the initial state

$$\eta = \lim_{N \to \infty} \frac{1}{N} E \left\{ \sum_{k=0}^{N-1} g(x_k, x_{k+1}) \mid x_0 = i \right\}, \quad \forall i$$

• Bellman's equation is J = FJ with

$$FJ = g - \eta e + PJ$$

where e is the unit vector e = (1, ..., 1).

• The projected equation and its λ -version are

$$\Phi r = \Pi F(\Phi r), \qquad \Phi r = \Pi F^{(\lambda)}(\Phi r)$$

• A problem here is that F is not a contraction with respect to any norm (since e = Pe).

• However, $\Pi F^{(\lambda)}$ turns out to be a contraction with respect to $\|\cdot\|_{\xi}$ assuming that *e* does not belong to *S* and $\lambda > 0$ [the case $\lambda = 0$ is exceptional, but can be handled - see the text].

LSPE(λ) FOR AVERAGE COST

- We generate an infinitely long trajectory (i_0, i_1, \ldots) .
- We estimate the average cost η separately: Following each transition (i_k, i_{k+1}) , we set

$$\eta_k = \frac{1}{k+1} \sum_{t=0}^k g(i_t, i_{t+1})$$

• Also following (i_k, i_{k+1}) , we update r_k by

$$r_{k+1} = \arg\min_{r \in \Re^s} \sum_{t=0}^k \left(\phi(i_t)'r - \phi(i_t)'r_k - \sum_{m=t}^k \lambda^{m-t} d_k(m) \right)^2$$

where $d_k(m)$ are the TDs

$$d_k(m) = g(i_m, i_{m+1}) - \eta_m + \phi(i_{m+1})'r_k - \phi(i_m)'r_k$$

• Note that the TDs include the estimate η_m . Since η_m converges to η , for large m it can be viewed as a constant and lumped into the one-stage cost.

GENERALIZATION/UNIFICATION

• Consider approximate solution of x = T(x), where

$$T(x) = Ax + b,$$
 $A \text{ is } n \times n, \quad b \in \Re^n$

by solving the projected equation $y = \Pi T(y)$, where Π is projection on a subspace of basis functions (with respect to some Euclidean norm).

• We will generalize from DP to the case where A is arbitrary, subject only to

 $I - \Pi A$: invertible

- Benefits of generalization:
 - Unification/higher perspective for TD methods in approximate DP
 - An extension to a broad new area of applications, where a DP perspective may be helpful
- Challenge: Dealing with less structure
 - Lack of contraction
 - Absence of a Markov chain

LSTD-LIKE METHOD

• Let Π be projection with respect to

$$\|x\|_{\xi} = \sqrt{\sum_{i=1}^{n} \xi_i x_i^2}$$

where $\xi \in \Re^n$ is a probability distribution with positive components.

• If r^* is the solution of the projected equation, we have $\Phi r^* = \Pi(A\Phi r^* + b)$ or

$$r^{*} = \arg\min_{r \in \Re^{s}} \sum_{i=1}^{n} \xi_{i} \left(\phi(i)'r - \sum_{j=1}^{n} a_{ij}\phi(j)'r^{*} - b_{i} \right)^{2}$$

where $\phi(i)'$ denotes the *i*th row of the matrix Φ .

• Optimality condition/equivalent form:

$$\sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i$$

• The two expected values are approximated by simulation.

SIMULATION MECHANISM

• Row sampling: Generate sequence $\{i_0, i_1, \ldots\}$ according to ξ , i.e., relative frequency of each row i is ξ_i

• Column sampling: Generate $\{(i_0, j_0), (i_1, j_1), ...\}$ according to some transition probability matrix P with

 $p_{ij} > 0$ if $a_{ij} \neq 0$,

i.e., for each *i*, the relative frequency of (i, j) is p_{ij}

• Row sampling may be done using a Markov chain with transition matrix Q (unrelated to P)

• Row sampling may also be done without a Markov chain - just sample rows according to some known distribution ξ (e.g., a uniform)

ROW AND COLUMN SAMPLING

• Row sampling ~ State Sequence Generation in DP. Affects:

- The projection norm.
- Whether ΠA is a contraction.

• Column sampling \sim Transition Sequence Generation in DP.

- Can be totally unrelated to row sampling.
 Affects the sampling/simulation error.
- "Matching" P with |A| is beneficial (has an effect like in importance sampling).

• Independent row and column sampling allows exploration at will! Resolves the exploration problem that is critical in approximate policy iteration.

LSTD-LIKE METHOD

• Optimality condition/equivalent form of projected equation

$$\sum_{i=1}^{n} \xi_i \phi(i) \left(\phi(i) - \sum_{j=1}^{n} a_{ij} \phi(j) \right)' r^* = \sum_{i=1}^{n} \xi_i \phi(i) b_i$$

• The two expected values are approximated by row and column sampling (batch $0 \rightarrow t$).

• We solve the linear equation

$$\sum_{k=0}^{t} \phi(i_k) \left(\phi(i_k) - \frac{a_{i_k j_k}}{p_{i_k j_k}} \phi(j_k) \right)' r_t = \sum_{k=0}^{t} \phi(i_k) b_{i_k}$$

• We have $r_t \to r^*$, regardless of ΠA being a contraction (by law of large numbers; see next slide).

• An LSPE-like method is also possible, but requires that ΠA is a contraction.

• Under the assumption $\sum_{j=1}^{n} |a_{ij}| \leq 1$ for all i, there are conditions that guarantee contraction of ΠA ; see the paper by Bertsekas and Yu, "Projected Equation Methods for Approximate Solution of Large Linear Systems," 2008.

JUSTIFICATION W/ LAW OF LARGE NUMBERS

- We will match terms in the exact optimality condition and the simulation-based version.
- Let $\hat{\xi}_i^t$ be the relative frequency of *i* in row sampling up to time *t*.
- We have

$$\frac{1}{t+1} \sum_{k=0}^{t} \phi(i_k)\phi(i_k)' = \sum_{i=1}^{n} \hat{\xi}_i^t \phi(i)\phi(i)' \approx \sum_{i=1}^{n} \xi_i \phi(i)\phi(i)'$$

$$\frac{1}{t+1} \sum_{k=0}^{t} \phi(i_k) b_{i_k} = \sum_{i=1}^{n} \hat{\xi}_i^t \phi(i) b_i \approx \sum_{i=1}^{n} \xi_i \phi(i) b_i$$

• Let \hat{p}_{ij}^t be the relative frequency of (i, j) in column sampling up to time t.

$$\frac{1}{t+1} \sum_{k=0}^{t} \frac{a_{i_k j_k}}{p_{i_k j_k}} \phi(i_k) \phi(j_k)'$$
$$= \sum_{i=1}^{n} \hat{\xi}_i^t \sum_{j=1}^{n} \hat{p}_{ij}^t \frac{a_{ij}}{p_{ij}} \phi(i) \phi(j)'$$
$$\approx \sum_{i=1}^{n} \xi_i \sum_{j=1}^{n} a_{ij} \phi(i) \phi(j)'$$