
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Deterministic finite-state DP problems

• Backward shortest path algorithm

• Forward shortest path algorithm

• Shortest path examples

• Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

. . .

. . .

. . .

Stage 0 Stage 1 Stage 2 Stage N - 1 Stage N

Initial State
 s

t
Artificial Terminal
Node

Terminal Arcs
with Cost Equal
to Terminal Cost

. . .

• States <==> Nodes

• Controls <==> Arcs

• Control sequences (open-loop) <==> paths
from initial state to terminal states

• ak
ij : Cost of transition from state i ∈ Sk to state

j ∈ Sk+1 at time k (view it as “length” of the arc)

• aN
it : Terminal cost of state i ∈ SN

• Cost of control sequence <==> Cost of the cor-
responding path (view it as “length” of the path)

BACKWARD AND FORWARD DP ALGORITHMS

• DP algorithm:

JN (i) = aN
it , i ∈ SN ,

Jk(i) = min
j∈Sk+1

[
ak

ij+Jk+1(j)
]
, i ∈ Sk, k = 0, . . . , N−1

The optimal cost is J0(s) and is equal to the
length of the shortest path from s to t

• Observation: An optimal path s → t is also an
optimal path t → s in a “reverse” shortest path
problem where the direction of each arc is reversed
and its length is left unchanged

• Forward DP algorithm (= backward DP algo-
rithm for the reverse problem):

J̃N (j) = a0
sj , j ∈ S1,

J̃k(j) = min
i∈SN−k

[
aN−k

ij + J̃k+1(i)
]
, j ∈ SN−k+1

The optimal cost is J̃0(t) = mini∈SN

[
aN

it + J̃1(i)
]

• View J̃k(j) as optimal cost-to-arrive to state j
from initial state s

A NOTE ON FORWARD DP ALGORITHMS

• There is no forward DP algorithm for stochastic
problems

• Mathematically, for stochastic problems, we
cannot restrict ourselves to open-loop sequences,
so the shortest path viewpoint fails

• Conceptually, in the presence of uncertainty,
the concept of “optimal-cost-to-arrive” at a state
xk does not make sense. The reason is that it may
be impossible to guarantee (with prob. 1) that any
given state can be reached

• By contrast, even in stochastic problems, the
concept of “optimal cost-to-go” from any state xk

makes clear sense

GENERIC SHORTEST PATH PROBLEMS

• {1, 2, . . . , N, t}: nodes of a graph (t: the desti-
nation)

• aij : cost of moving from node i to node j

• Find a shortest (minimum cost) path from each
node i to node t

• Assumption: All cycles have nonnegative length.
Then an optimal path need not take more than N
moves

• We formulate the problem as one where we re-
quire exactly N moves but allow degenerate moves
from a node i to itself with cost aii = 0

Jk(i) = optimal cost of getting from i to t in N−k moves

J0(i): Cost of the optimal path from i to t.

• DP algorithm:

Jk(i) = min
j=1,...,N

[
aij+Jk+1(j)

]
, k = 0, 1, . . . , N−2,

with JN−1(i) = ait, i = 1, 2, . . . , N

EXAMPLE

2
7 5

25 5

6 1

3

0 .5
3

1

2

4

0 1 2 3 4

1

2

3

4

5

State i

Stage k

3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

Destination
 5

(a) (b)

JN−1(i) = ait, i = 1, 2, . . . , N,

Jk(i) = min
j=1,...,N

[
aij+Jk+1(j)

]
, k = 0, 1, . . . , N−2.

ESTIMATION / HIDDEN MARKOV MODELS

• Markov chain with transition probabilities pij

• State transitions are hidden from view

• For each transition, we get an (independent)
observation

• r(z; i, j): Prob. the observation takes value z
when the state transition is from i to j

• Trajectory estimation problem: Given the ob-
servation sequence ZN = {z1, z2, . . . , zN}, what is
the “most likely” state transition sequence X̂N =
{x̂0, x̂1, . . . , x̂N} [one that maximizes p(XN | ZN)
over all XN = {x0, x1, . . . , xN}].

. . .

. . .

. . .

s x0 x1 x2 xN - 1 xN t

VITERBI ALGORITHM

• We have
p(XN | ZN) =

p(XN , ZN)
p(ZN)

where p(XN , ZN) and p(ZN) are the unconditional
probabilities of occurrence of (XN , ZN) and ZN

• Maximizing p(XN | ZN) is equivalent with max-
imizing ln(p(XN , ZN))

• We have

p(XN , ZN) = πx0

N∏

k=1

pxk−1xkr(zk;xk−1, xk)

so the problem is equivalent to

minimize − ln(πx0) −
N∑

k=1

ln
(
pxk−1xkr(zk;xk−1, xk)

)

over all possible sequences {x0, x1, . . . , xN}.

• This is a shortest path problem.

GENERAL SHORTEST PATH ALGORITHMS

• There are many nonDP shortest path algo-
rithms. They can all be used to solve deterministic
finite-state problems

• They may be preferable than DP if they avoid
calculating the optimal cost-to-go of EVERY state

• This is essential for problems with HUGE state
spaces. Such problems arise for example in com-
binatorial optimization

1

1 20
20

5

3

5

4

4
15

15

3

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

LABEL CORRECTING METHODS

• Given: Origin s, destination t, lengths aij ≥ 0.

• Idea is to progressively discover shorter paths
from the origin s to every other node i

• Notation:
− di (label of i): Length of the shortest path

found (initially ds = 0, di = ∞ for i &= s)
− UPPER: The label dt of the destination
− OPEN list: Contains nodes that are cur-

rently active in the sense that they are candi-
dates for further examination (initially OPEN={s})

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node i from
OPEN and for each child j of i, do step 2

Step 2 (Node Insertion Test): If di + aij <
min{dj ,UPPER}, set dj = di + aij and set i to
be the parent of j. In addition, if j &= t, place j in
OPEN if it is not already in OPEN, while if j = t,
set UPPER to the new value di + ait of dt

Step 3 (Termination Test): If OPEN is empty,
terminate; else go to step 1

VISUALIZATION/EXPLANATION

• Given: Origin s, destination t, lengths aij ≥ 0

• di (label of i): Length of the shortest path found
thus far (initially ds = 0, di = ∞ for i &= s). The
label di is implicitly associated with an s → i path

• UPPER: The label dt of the destination

• OPEN list: Contains “active” nodes (initially
OPEN={s})

i j

REMOVE

Is di + aij < dj ?
(Is the path s --> i --> j
better than the
current path s --> j ?)

Is di + aij < UPPER ?
(Does the path s --> i --> j
have a chance to be part
of a shorter s --> t path ?)

YES

YES

INSERT

O P E N

Set dj = di + aij

EXAMPLE

ABC ABD ACB ACD ADB ADC

ABCD

AB AC AD

ABDC ACBD ACDB ADBC ADCB

Artificial Terminal Node t

Origin Node sA

1

11

20 20

2020

44

4 4

15
15 5

5

3 3

5

33

15

1

2

3

4

5

6

7

8

9

1 0

Iter. No. Node Exiting OPEN OPEN after Iteration UPPER

0 - 1 ∞
1 1 2, 7,10 ∞
2 2 3, 5, 7, 10 ∞
3 3 4, 5, 7, 10 ∞
4 4 5, 7, 10 43

5 5 6, 7, 10 43

6 6 7, 10 13

7 7 8, 10 13

8 8 9, 10 13

9 9 10 13

10 10 Empty 13

• Note that some nodes never entered OPEN

