6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

- Deterministic finite-state DP problems
- Backward shortest path algorithm
- Forward shortest path algorithm
- Shortest path examples
- Alternative shortest path algorithms

DETERMINISTIC FINITE-STATE PROBLEM

States $\leq \equiv \geq$ Nodes

 $\text{Controls} \leq = \geq \text{Arcs}$

Control sequences (open-loop) $\leq =>$ paths from initial state to terminal states

• a_{ij}^k : Cost of transition from state $i \in S_k$ to state $j \in S_{k+1}$ at time k (view it as "length" of the arc)

• a_{it}^N : Terminal cost of state $i \in S_N$

• Cost of control sequence $\leq =>$ Cost of the corresponding path (view it as "length" of the path)

BACKWARD AND FORWARD DP ALGORITHMS

• DP algorithm:

 $J_N(i) = a_{it}^N, \ \ i \in S_N,$

 $J_k(i) = \min_{i \in \mathcal{C}}$ $j \in S_{k+1}$ $[a_{ij}^k + J_{k+1}(j)], i \in S_k, k = 0, ..., N-1$

The optimal cost is $J_0(s)$ and is equal to the length of the shortest path from s to t

Observation: An optimal path $s \to t$ is also an optimal path $t \rightarrow s$ in a "reverse" shortest path problem where the direction of each arc is reversed and its length is left unchanged

Forward DP algorithm $(=$ backward DP algorithm for the reverse problem):

$$
\tilde{J}_N(j) = a_{sj}^0, \ \ j \in S_1,
$$

 $\widetilde{J}_k(j) = \min_{1 \leq j \leq k}$ $i\in S_{N-k}$ $[a_{ij}^{N-k} + \tilde{J}_{k+1}(i)], \ \ j \in S_{N-k+1}$

The optimal cost is $\tilde{J}_0(t) = \min_{i \in S_N} \left[a_{it}^N + \tilde{J}_1(i) \right]$

• View $\tilde{J}_k(j)$ as *optimal cost-to-arrive* to state j from initial state s

A NOTE ON FORWARD DP ALGORITHMS

• There is no forward DP algorithm for stochastic problems

• Mathematically, for stochastic problems, we cannot restrict ourselves to open-loop sequences, so the shortest path viewpoint fails

• Conceptually, in the presence of uncertainty, the concept of "optimal-cost-to-arrive" at a state x_k does not make sense. The reason is that it may be impossible to guarantee (with prob. 1) that any given state can be reached

• By contrast, even in stochastic problems, the concept of "optimal cost-to-go" from any state x_k makes clear sense

GENERIC SHORTEST PATH PROBLEMS

• $\{1, 2, \ldots, N, t\}$: nodes of a graph (*t*: the *desti*nation)

• a_{ij} : cost of moving from node *i* to node *j*

• Find a shortest (minimum cost) path from each node *i* to node *t*

• Assumption: All cycles have nonnegative length. Then an optimal path need not take more than N moves

• We formulate the problem as one where we require exactly N moves but allow degenerate moves from a node *i* to itself with cost $a_{ii} = 0$

 $J_k(i) =$ optimal cost of getting from i to t in $N-k$ moves

 $J_0(i)$: Cost of the optimal path from i to t.

• DP algorithm:

 $J_k(i) = \min_{i=1}^{\infty}$ $j{=}1,...,N$ $[a_{ij}+J_{k+1}(j)], \qquad k = 0, 1, ..., N-2,$

with $J_{N-1}(i) = a_{it}, i = 1, 2, ..., N$

EXAMPLE

$$
J_{N-1}(i) = a_{it}, \qquad i = 1, 2, ..., N,
$$

$$
J_k(i) = \min_{j=1,...,N} [a_{ij} + J_{k+1}(j)], \qquad k = 0, 1, ..., N-2.
$$

ESTIMATION / HIDDEN MARKOV MODELS

- Markov chain with transition probabilities p_{ij}
- State transitions are hidden from view
- For each transition, we get an (independent) observation

 $r(z; i, j)$: Prob. the observation takes value z when the state transition is from i to j

• Trajectory estimation problem: Given the observation sequence $Z_N = \{z_1, z_2, \ldots, z_N\}$, what is the "most likely" state transition sequence $\hat{X}_N =$ $\{\hat{x}_0, \hat{x}_1, \dots, \hat{x}_N\}$ [one that maximizes $p(X_N | Z_N)$ over all $X_N = \{x_0, x_1, \ldots, x_N\}$.

VITERBI ALGORITHM

• We have $p(X_N \mid Z_N) =$ $p(X_N,Z_N)$ $p(Z_N)$

where $p(X_N, Z_N)$ and $p(Z_N)$ are the unconditional probabilities of occurrence of (X_N, Z_N) and Z_N

• Maximizing $p(X_N | Z_N)$ is equivalent with maximizing $\ln(p(X_N, Z_N))$

• We have

$$
p(X_N, Z_N) = \pi_{x_0} \prod_{k=1}^N p_{x_{k-1}x_k} r(z_k; x_{k-1}, x_k)
$$

so the problem is equivalent to

minimize
$$
-\ln(\pi_{x_0}) - \sum_{k=1}^{N} \ln(p_{x_{k-1}x_k}r(z_k;x_{k-1},x_k))
$$

over all possible sequences $\{x_0, x_1, \ldots, x_N\}$.

This is a shortest path problem.

GENERAL SHORTEST PATH ALGORITHMS

There are many nonDP shortest path algorithms. They can all be used to solve deterministic finite-state problems

They may be preferable than DP if they avoid calculating the optimal cost-to-go of EVERY state

This is essential for problems with HUGE state spaces. Such problems arise for example in combinatorial optimization

Artificial Terminal Node t

LABEL CORRECTING METHODS

• Given: Origin s, destination t, lengths $a_{ij} \geq 0$.

Idea is to progressively discover shorter paths from the origin s to every other node i

- Notation:
	- d_i (label of i): Length of the shortest path found (initially $d_s = 0, d_i = \infty$ for $i \neq s$)
	- $-$ UPPER: The label d_t of the destination
	- − OPEN list: Contains nodes that are currently active in the sense that they are candidates for further examination (initially $\text{OPEN}=\{s\})$

Label Correcting Algorithm

Step 1 (Node Removal): Remove a node *i* from OPEN and for each child j of i , do step 2

Step 2 (Node Insertion Test): If $d_i + a_{ij} <$ $\min\{d_j, \text{UPPER}\}\$, set $d_j = d_i + a_{ij}$ and set i to be the parent of j. In addition, if $j \neq t$, place j in OPEN if it is not already in OPEN, while if $j = t$, set UPPER to the new value $d_i + a_{it}$ of d_t

Step 3 (Termination Test): If OPEN is empty, terminate; else go to step 1

VISUALIZATION/EXPLANATION

Given: Origin s, destination t, lengths $a_{ij} \geq 0$

• d_i (label of i): Length of the shortest path found thus far (initially $d_s = 0$, $d_i = \infty$ for $i \neq s$). The label d_i is implicitly associated with an $s \to i$ path

- UPPER: The label d_t of the destination
- OPEN list: Contains "active" nodes (initially $OPEN=\{s\})$

EXAMPLE

Artificial Terminal Node t

• Note that some nodes never entered OPEN