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6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• Examples

• Connection with the calculus of variations

• The Hamilton-Jacobi-Bellman equation as a
continuous-time limit of the DP algorithm

• The Hamilton-Jacobi-Bellman equation as a
sufficient condition

• Examples



PROBLEM FORMULATION

• Continuous-time dynamic system:

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given,

where
− x(t) ∈ $n: state vector at time t

− u(t) ∈ U ⊂ $m: control vector at time t

− U : control constraint set
− T : terminal time

• Admissible control trajectories
{
u(t) | t ∈ [0, T ]

}
:

piecewise continuous functions
{
u(t) | t ∈ [0, T ]

}

with u(t) ∈ U for all t ∈ [0, T ]; uniquely determine{
x(t) | t ∈ [0, T ]

}

• Problem: Find an admissible control trajectory{
u(t) | t ∈ [0, T ]

}
and corresponding state trajec-

tory
{
x(t) | t ∈ [0, T ]

}
, that minimizes the cost

h
(
x(T )

)
+

∫ T

0
g
(
x(t), u(t)

)
dt

• f, h, g are assumed continuously differentiable



EXAMPLE I

• Motion control: A unit mass moves on a line
under the influence of a force u

• x(t) =
(
x1(t), x2(t)

)
: position and velocity of

the mass at time t

• Problem: From a given
(
x1(0), x2(0)

)
, bring the

mass “near” a given final position-velocity pair
(x1, x2) at time T in the sense:

minimize
∣∣x1(T ) − x1

∣∣2 +
∣∣x2(T ) − x2

∣∣2

subject to the control constraint

|u(t)| ≤ 1, for all t ∈ [0, T ]

• The problem fits the framework with

ẋ1(t) = x2(t), ẋ2(t) = u(t),

h
(
x(T )

)
=

∣∣x1(T ) − x1

∣∣2 +
∣∣x2(T ) − x2

∣∣2,

g
(
x(t), u(t)

)
= 0, for all t ∈ [0, T ]



EXAMPLE II

• A producer with production rate x(t) at time t
may allocate a portion u(t) of his/her production
rate to reinvestment and 1−u(t) to production of
a storable good. Thus x(t) evolves according to

ẋ(t) = γu(t)x(t),

where γ > 0 is a given constant

• The producer wants to maximize the total amount
of product stored

∫ T

0

(
1 − u(t)

)
x(t)dt

subject to

0 ≤ u(t) ≤ 1, for all t ∈ [0, T ]

• The initial production rate x(0) is a given pos-
itive number



EXAMPLE III (CALCULUS OF VARIATIONS)

Le ngth = Ú
0

T

1 + (u(t))2 d t

a x(t) 

T t0

x(t) = u(t)
.

Given
Point Given

Line

∫ T

0

√
1 +

(
u(t)

)2
dt

• Find a curve from a given point to a given line
that has minimum length

• The problem is

minimize
∫ T

0

√
1 +

(
ẋ(t)

)2
dt

subject to x(0) = α

• Reformulation as an optimal control problem:

minimize
∫ T

0

√
1 +

(
u(t)

)2
dt

subject to ẋ(t) = u(t), x(0) = α



HAMILTON-JACOBI-BELLMAN EQUATION I

• We discretize [0, T ] at times 0, δ, 2δ, . . . , Nδ,
where δ = T/N , and we let

xk = x(kδ), uk = u(kδ), k = 0, 1, . . . , N

• We also discretize the system and cost:

xk+1 = xk+f(xk, uk)·δ, h(xN )+
N−1∑

k=0

g(xk, uk)·δ

• We write the DP algorithm for the discretized
problem

J̃∗(Nδ, x) = h(x),

J̃∗(kδ, x) = min
u∈U

[
g(x, u)·δ+J̃∗

(
(k+1)·δ, x+f(x, u)·δ

)]
.

• Assume J̃∗ is differentiable and Taylor-expand:

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗(kδ, x) + ∇tJ̃

∗(kδ, x) · δ

+ ∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ)
]

• Cancel J̃∗(kδ, x), divide by δ, and take limit



HAMILTON-JACOBI-BELLMAN EQUATION II

• Let J∗(t, x) be the optimal cost-to-go of the
continuous problem. Assuming the limit is valid

lim
k→∞, δ→0, kδ=t

J̃∗(kδ, x) = J∗(t, x), for all t, x,

we obtain for all t, x,

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]

with the boundary condition J∗(T, x) = h(x)

• This is the Hamilton-Jacobi-Bellman (HJB)
equation – a partial differential equation, which is
satisfied for all time-state pairs (t, x) by the cost-
to-go function J∗(t, x) (assuming J∗ is differen-
tiable and the preceding informal limiting proce-
dure is valid)

• Hard to tell a priori if J∗(t, x) is differentiable

• So we use the HJB Eq. as a verification tool; if
we can solve it for a differentiable J∗(t, x), then:

− J∗ is the optimal-cost-to-go function
− The control µ∗(t, x) that minimizes in the

RHS for each (t, x) defines an optimal con-
trol



VERIFICATION/SUFFICIENCY THEOREM

• Suppose V (t, x) is a solution to the HJB equa-
tion; that is, V is continuously differentiable in t
and x, and is such that for all t, x,

0 = min
u∈U

[
g(x, u) + ∇tV (t, x) + ∇xV (t, x)′f(x, u)

]
,

V (T, x) = h(x), for all x

• Suppose also that µ∗(t, x) attains the minimum
above for all t and x

• Let
{
x∗(t) | t ∈ [0, T ]

}
and u∗(t) = µ∗

(
t, x∗(t)

)
,

t ∈ [0, T ], be the corresponding state and control
trajectories

• Then

V (t, x) = J∗(t, x), for all t, x,

and
{
u∗(t) | t ∈ [0, T ]

}
is optimal



PROOF

Let {(û(t), x̂(t)) | t ∈ [0, T ]} be any admissible
control-state trajectory. We have for all t ∈ [0, T ]

0 ≤ g
(
x̂(t), û(t)

)
+∇tV

(
t, x̂(t)

)
+∇xV

(
t, x̂(t)

)′
f
(
x̂(t), û(t)

)
.

Using the system equation ˙̂x(t) = f
(
x̂(t), û(t)

)
,

the RHS of the above is equal to

g
(
x̂(t), û(t)

)
+

d

dt

(
V (t, x̂(t))

)

Integrating this expression over t ∈ [0, T ],

0 ≤
∫ T

0
g
(
x̂(t), û(t)

)
dt+V

(
T, x̂(T )

)
−V

(
0, x̂(0)

)
.

Using V (T, x) = h(x) and x̂(0) = x(0), we have

V
(
0, x(0)

)
≤ h

(
x̂(T )

)
+

∫ T

0
g
(
x̂(t), û(t)

)
dt.

If we use u∗(t) and x∗(t) in place of û(t) and x̂(t),
the inequalities becomes equalities, and

V
(
0, x(0)

)
= h

(
x∗(T )

)
+

∫ T

0
g
(
x∗(t), u∗(t)

)
dt



EXAMPLE OF THE HJB EQUATION

Consider the scalar system ẋ(t) = u(t), with |u(t)| ≤
1 and cost (1/2)

(
x(T )

)2
. The HJB equation is

0 = min
|u|≤1

[
∇tV (t, x)+∇xV (t, x)u

]
, for all t, x,

with the terminal condition V (T, x) = (1/2)x2

• Evident candidate for optimality: µ∗(t, x) =
−sgn(x). Corresponding cost-to-go

J∗(t, x) =
1
2
(
max

{
0, |x|− (T − t)

})2
.

• We verify that J∗ solves the HJB Eq., and that
u = −sgn(x) attains the min in the RHS. Indeed,

∇tJ∗(t, x) = max
{
0, |x|− (T − t)

}
,

∇xJ∗(t, x) = sgn(x) · max
{
0, |x|− (T − t)

}
.

Substituting, the HJB Eq. becomes

0 = min
|u|≤1

[
1 + sgn(x) · u

]
max

{
0, |x|− (T − t)

}



LINEAR QUADRATIC PROBLEM

Consider the n-dimensional linear system

ẋ(t) = Ax(t) + Bu(t),

and the quadratic cost

x(T )′QT x(T ) +
∫ T

0

(
x(t)′Qx(t) + u(t)′Ru(t)

)
dt

The HJB equation is

0 = min
u∈$m

[
x′Qx+u′Ru+∇tV (t, x)+∇xV (t, x)′(Ax+Bu)

]
,

with the terminal condition V (T, x) = x′QT x. We
try a solution of the form

V (t, x) = x′K(t)x, K(t) : n × n symmetric,

and show that V (t, x) solves the HJB equation if

K̇(t) = −K(t)A−A′K(t)+K(t)BR−1B′K(t)−Q

with the terminal condition K(T ) = QT


