6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

- Examples of stochastic DP problems
- Linear-quadratic problems
- Inventory control

LINEAR-QUADRATIC PROBLEMS

- System: $x_{k+1} = A_k x_k + B_k u_k + w_k$
- Quadratic cost

$$
\underset{k=0,1,...,N-1}{E} \left\{ x_N' Q_N x_N + \sum_{k=0}^{N-1} (x_k' Q_k x_k + u_k' R_k u_k) \right\}
$$

where $Q_k \geq 0$ and $R_k > 0$ (in the positive (semi)definite sense).

- w_k are independent and zero mean
- DP algorithm:

 $J_N(x_N) = x'_N Q_N x_N,$

 $J_k(x_k) = \min$ u_k $E\left\{x_k^{\prime}Q_kx_k+u_k^{\prime}R_ku_k\right\}$

$$
+ J_{k+1}(A_k x_k + B_k u_k + w_k) \big\}
$$

• Key facts:

 $-J_k(x_k)$ is quadratic

− Optimal policy $\{\mu_0^*, \ldots, \mu_{N-1}^*\}$ is linear:

$$
\mu_k^*(x_k) = L_k x_k
$$

Similar treatment of a number of variants

DERIVATION

• By induction verify that

 $\mu_k^*(x_k) = L_k x_k, \qquad J_k(x_k) = x'_k K_k x_k + \text{constant},$

where L_k are matrices given by

$$
L_k = -(B'_k K_{k+1} B_k + R_k)^{-1} B'_k K_{k+1} A_k,
$$

and where K_k are symmetric positive semidefinite matrices given by

$$
K_N=Q_N,
$$

$$
K_k = A'_k (K_{k+1} - K_{k+1} B_k (B'_k K_{k+1} B_k + R_k)^{-1} B'_k K_{k+1}) A_k + Q_k.
$$

This is called the *discrete-time Riccati equation*.

Just like DP, it starts at the terminal time N and proceeds backwards.

• Certainty equivalence holds (optimal policy is the same as when w_k is replaced by its expected value $E\{w_k\} = 0$.

ASYMPTOTIC BEHAVIOR OF RICCATI EQUATION

• Assume time-independent system and cost per stage, and some technical assumptions: controlability of (A, B) and observability of (A, C) where $Q = C'C$

• The Riccati equation converges $\lim_{k\to-\infty} K_k =$ K , where K is pos. definite, and is the unique (within the class of pos. semidefinite matrices) solution of the algebraic Riccati equation

$$
K = A'(K - KB(B'KB + R)^{-1}B'K)A + Q
$$

• The corresponding steady-state controller $\mu^*(x) =$ Lx , where

$$
L = -(B'KB + R)^{-1}B'KA,
$$

is stable in the sense that the matrix $(A + BL)$ of the closed-loop system

$$
x_{k+1} = (A + BL)x_k + w_k
$$

satisfies $\lim_{k\to\infty} (A + BL)^k = 0.$

GRAPHICAL PROOF FOR SCALAR SYSTEMS

Riccati equation (with $P_k = K_{N-k}$):

$$
P_{k+1} = A^2 \left(P_k - \frac{B^2 P_k^2}{B^2 P_k + R} \right) + Q,
$$

or $P_{k+1} = F(P_k)$, where

$$
F(P) = \frac{A^2RP}{B^2P + R} + Q.
$$

• Note the two steady-state solutions, satisfying $P = F(P)$, of which only one is positive.

RANDOM SYSTEM MATRICES

• Suppose that ${A_0, B_0}, \ldots, {A_{N-1}, B_{N-1}}$ are not known but rather are independent random matrices that are also independent of the w_k

• DP algorithm is

$$
J_N(x_N) = x'_N Q_N x_N,
$$

$$
J_k(x_k) = \min_{u_k} E_{w_k, A_k, B_k} \{ x'_k Q_k x_k + u'_k R_k u_k + J_{k+1}(A_k x_k + B_k u_k + w_k) \}
$$

• Optimal policy $\mu_k^*(x_k) = L_k x_k$, where

$$
L_k = -\big(R_k + E\{B'_kK_{k+1}B_k\}\big)^{-1}E\{B'_kK_{k+1}A_k\},\
$$

and where the matrices K_k are given by

$$
K_N=Q_N,
$$

$$
K_k = E\{A'_k K_{k+1} A_k\} - E\{A'_k K_{k+1} B_k\}
$$

$$
(R_k + E\{B'_k K_{k+1} B_k\})^{-1} E\{B'_k K_{k+1} A_k\} + Q_k
$$

PROPERTIES

- Certainty equivalence may not hold
- Riccati equation may not converge to a steadystate

We have $P_{k+1} = \tilde{F}(P_k)$, where

$$
\tilde{F}(P) = \frac{E\{A^2\}RP}{E\{B^2\}P + R} + Q + \frac{TP^2}{E\{B^2\}P + R},
$$
\n
$$
T = E\{A^2\}E\{B^2\} - (E\{A\})^2 (E\{B\})^2
$$

INVENTORY CONTROL

 x_k : stock, u_k : inventory purchased, w_k : demand

$$
x_{k+1} = x_k + u_k - w_k, \qquad k = 0, 1, \dots, N-1
$$

• Minimize

$$
E\left\{\sum_{k=0}^{N-1} \left(cu_k + r(x_k + u_k - w_k)\right)\right\}
$$

where, for some $p > 0$ and $h > 0$,

$$
r(x) = p \max(0, -x) + h \max(0, x)
$$

• DP algorithm:

$$
J_N(x_N)=0,
$$

 $J_k(x_k) = \min$ $u_k \geq 0$ $\left[cu_k+H(x_k+u_k)+E\left\{ J_{k+1}(x_k+u_k-w_k)\right\} \right],$ where $H(x + u) = E{r(x + u - w)}.$

OPTIMAL POLICY

• DP algorithm can be written as

$$
J_N(x_N)=0,
$$

$$
J_k(x_k) = \min_{u_k \geq 0} G_k(x_k + u_k) - cx_k,
$$

where

$$
G_k(y) = cy + H(y) + E\{J_{k+1}(y - w)\}.
$$

• If G_k is convex and $\lim_{|x| \to \infty} G_k(x) \to \infty$, we have

$$
\mu_k^*(x_k) = \begin{cases} S_k - x_k & \text{if } x_k < S_k, \\ 0 & \text{if } x_k \ge S_k, \end{cases}
$$

where S_k minimizes $G_k(y)$.

• This is shown, assuming that $c < p$, by showing that J_k is convex for all k , and

$$
\lim_{|x| \to \infty} J_k(x) \to \infty
$$

JUSTIFICATION

Graphical inductive proof that J_k is convex.

