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6.231 DYNAMIC PROGRAMMING

LECTURE 7

LECTURE OUTLINE

• Stopping problems

• Scheduling problems

• Other applications



PURE STOPPING PROBLEMS

• Two possible controls:
− Stop (incur a one-time stopping cost, and

move to cost-free and absorbing stop state)
− Continue [using xk+1 = fk(xk, wk) and in-

curring the cost-per-stage]

• Each policy consists of a partition of the set of
states xk into two regions:

− Stop region, where we stop
− Continue region, where we continue
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EXAMPLE: ASSET SELLING

• A person has an asset, and at k = 0, 1, . . . , N−1
receives a random offer wk

• May accept wk and invest the money at fixed
rate of interest r, or reject wk and wait for wk+1.
Must accept the last offer wN−1

• DP algorithm (xk: current offer, T : stop state):

JN (xN ) =
{

xN if xN "= T ,
0 if xN = T ,

Jk(xk) =

{
max

[
(1 + r)N−kxk, E

{
Jk+1(wk)

}]
if xk != T ,

0 if xk = T .

• Optimal policy;

accept the offer xk if xk > αk,

reject the offer xk if xk < αk,

where

αk =
E

{
Jk+1(wk)

}

(1 + r)N−k
.



FURTHER ANALYSIS
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• Can show that αk ≥ αk+1 for all k

• Proof: Let Vk(xk) = Jk(xk)/(1 + r)N−k for
xk "= T. Then the DP algorithm is VN (xN ) = xN

and

Vk(xk) = max
[
xk, (1 + r)−1 E

w

{
Vk+1(w)

}]
.

We have αk = Ew

{
Vk+1(w)

}
/(1 + r), so it is enough

to show that Vk(x) ≥ Vk+1(x) for all x and k.
Start with VN−1(x) ≥ VN (x) and use the mono-
tonicity property of DP.

• We can also show that αk → a as k → −∞.
Suggests that for an infinite horizon the optimal
policy is stationary.



GENERAL STOPPING PROBLEMS

• At time k, we may stop at cost t(xk) or choose
a control uk ∈ U(xk) and continue

JN (xN ) = t(xN ),

Jk(xk) = min
[
t(xk), min

uk∈U(xk)
E

{
g(xk, uk, wk)

+ Jk+1

(
f(xk, uk, wk)

)}]

• Optimal to stop at time k for states x in the
set

Tk =

{
x

∣∣∣ t(x) ≤ min
u∈U(x)

E
{

g(x, u, w) + Jk+1

(
f(x, u, w)

)}}

• Since JN−1(x) ≤ JN (x), we have Jk(x) ≤
Jk+1(x) for all k, so

T0 ⊂ · · · ⊂ Tk ⊂ Tk+1 ⊂ · · · ⊂ TN−1.

• Interesting case is when all the Tk are equal (to
TN−1, the set where it is better to stop than to go
one step and stop). Can be shown to be true if

f(x, u, w) ∈ TN−1, for all x ∈ TN−1, u ∈ U(x), w.



SCHEDULING PROBLEMS

• Set of tasks to perform, the ordering is subject
to optimal choice.

• Costs depend on the order

• There may be stochastic uncertainty, and prece-
dence and resource availability constraints

• Some of the hardest combinatorial problems
are of this type (e.g., traveling salesman, vehicle
routing, etc.)

• Some special problems admit a simple quasi-
analytical solution method

− Optimal policy has an “index form”, i.e.,
each task has an easily calculable “index”,
and it is optimal to select the task that has
the maximum value of index (multi-armed
bandit problems - to be discussed later)

− Some problems can be solved by an “inter-
change argument”(start with some schedule,
interchange two adjacent tasks, and see what
happens)



EXAMPLE: THE QUIZ PROBLEM

• Given a list of N questions. If question i is an-
swered correctly (given probability pi), we receive
reward Ri; if not the quiz terminates. Choose or-
der of questions to maximize expected reward.

• Let i and j be the kth and (k + 1)st questions
in an optimally ordered list

L = (i0, . . . , ik−1, i, j, ik+2, . . . , iN−1)

E {reward of L} = E
{
reward of {i0, . . . , ik−1}

}

+ pi0 · · · pik−1(piRi + pipjRj)

+ pi0 · · · pik−1pipjE
{
reward of {ik+2, . . . , iN−1}

}

Consider the list with i and j interchanged

L′ = (i0, . . . , ik−1, j, i, ik+2, . . . , iN−1)

Since L is optimal, E{reward of L} ≥ E{reward of L′},
so it follows that piRi + pipjRj ≥ pjRj + pjpiRi

or
piRi/(1 − pi) ≥ pjRj/(1 − pj).



MINIMAX CONTROL

• Consider basic problem with the difference that
the disturbance wk instead of being random, it is
just known to belong to a given set Wk(xk, uk).

• Find policy π that minimizes the cost

Jπ(x0) = max
wk∈Wk(xk,µk(xk))

k=0,1,...,N−1

[
gN (xN )

+
N−1∑

k=0

gk

(
xk, µk(xk), wk

)]

• The DP algorithm takes the form

JN (xN ) = gN (xN ),

Jk(xk) = min
uk∈U(xk)

max
wk∈Wk(xk,uk)

[
gk(xk, uk, wk)

+ Jk+1

(
fk(xk, uk, wk)

)]

(Exercise 1.5 in the text, solution posted on the
www).



UNKNOWN-BUT-BOUNDED CONTROL

• For each k, keep the xk of the controlled system

xk+1 = fk

(
xk, µk(xk), wk

)

inside a given set Xk, the target set at time k.

• This is a minimax control problem, where the
cost at stage k is

gk(xk) =
{

0 if xk ∈ Xk,
1 if xk /∈ Xk.

• We must reach at time k the set

Xk =
{
xk | Jk(xk) = 0

}

in order to be able to maintain the state within
the subsequent target sets.

• Start with XN = XN , and for k = 0, 1, . . . , N −
1,

Xk =
{
xk ∈ Xk | there exists uk ∈ Uk(xk) such that

fk(xk, uk, wk) ∈ Xk+1, for all wk ∈ Wk(xk, uk)
}


