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6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

• DP for imperfect state info

• Sufficient statistics

• Conditional state distribution as a sufficient
statistic

• Finite-state systems

• Examples



EVIEW:PROBLEM WITH IMPERFECT STATE INF

• Instead of knowing xk, we receive observations

z0 = h0(x0, v0), zk = hk(xk, uk−1, vk), k ≥ 0

• Ik: information vector available at time k:

I0 = z0, Ik = (z0, z1, . . . , zk, u0, u1, . . . , uk−1), k ≥ 1

• Optimization over policies π = {µ0, µ1, . . . , µN−1},
where µk(Ik) ∈ Uk, for all Ik and k.

• Find a policy π that minimizes

Jπ = E
x0,wk,vk

k=0,...,N−1

{
gN (xN ) +

N−1∑

k=0

gk

(
xk, µk(Ik), wk

)
}

subject to the equations

xk+1 = fk

(
xk, µk(Ik), wk

)
, k ≥ 0,

z0 = h0(x0, v0), zk = hk

(
xk, µk−1(Ik−1), vk

)
, k ≥ 1

R



DP ALGORITHM

• DP algorithm:

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk)

+ Jk+1(Ik, zk+1, uk) | Ik, uk

}]

for k = 0, 1, . . . , N − 2, and for k = N − 1,

JN−1(IN−1) = min
uN−1∈UN−1[

E
xN−1, wN−1

{
gN

(
fN−1(xN−1, uN−1, wN−1)

)

+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

}
]

• The optimal cost J∗ is given by

J∗ = E
z0

{
J0(z0)

}
.



SUFFICIENT STATISTICS

• Suppose that we can find a function Sk(Ik) such
that the right-hand side of the DP algorithm can
be written in terms of some function Hk as

min
uk∈Uk

Hk

(
Sk(Ik), uk

)
.

• Such a function Sk is called a sufficient statistic.

• An optimal policy obtained by the preceding
minimization can be written as

µ∗
k(Ik) = µk

(
Sk(Ik)

)
,

where µk is an appropriate function.

• Example of a sufficient statistic: Sk(Ik) = Ik

• Another important sufficient statistic

Sk(Ik) = Pxk|Ik



DP ALGORITHM IN TERMS OF PXK |IK

• It turns out that Pxk|Ik
is generated recursively

by a dynamic system (estimator) of the form

Pxk+1|Ik+1
= Φk

(
Pxk|Ik

, uk, zk+1

)

for a suitable function Φk

• DP algorithm can be written as

Jk(Pxk|Ik
) = min

uk∈Uk

[
E

xk,wk,zk+1

{
gk(xk, uk, wk)

+ Jk+1

(
Φk(Pxk|Ik

, uk, zk+1)
)
| Ik, uk

}]

uk xk

Delay

Estimator

uk  - 1

uk  - 1

vk

zk

zk

wk

f k  - 1
Actuator

xk + 1 = fk(xk ,uk ,wk) zk = hk(xk ,uk  - 1,vk)
System Measurement

P x k | Ik

mk



EXAMPLE: A SEARCH PROBLEM

• At each period, decide to search or not search
a site that may contain a treasure.

• If we search and a treasure is present, we find
it with prob. β and remove it from the site.

• Treasure’s worth: V . Cost of search: C

• States: treasure present & treasure not present

• Each search can be viewed as an observation of
the state

• Denote

pk : prob. of treasure present at the start of time k

with p0 given.

• pk evolves at time k according to the equation

pk+1 =






pk if not search,
0 if search and find treasure,

pk(1−β)
pk(1−β)+1−pk

if search and no treasure.



SEARCH PROBLEM (CONTINUED)

• DP algorithm

Jk(pk) = max
[
0, −C + pkβV

+ (1 − pkβ)Jk+1

(
pk(1 − β)

pk(1 − β) + 1 − pk

) ]
,

with JN (pN ) = 0.

• Can be shown by induction that the functions
Jk satisfy

Jk(pk) = 0, for all pk ≤ C

βV

• Furthermore, it is optimal to search at period
k if and only if

pkβV ≥ C

(expected reward from the next search ≥ the cost
of the search)



FINITE-STATE SYSTEMS

• Suppose the system is a finite-state Markov
chain, with states 1, . . . , n.

• Then the conditional probability distribution
Pxk|Ik

is a vector

(
P (xk = 1 | Ik), . . . , P (xk = n | Ik)

)

• The DP algorithm can be executed over the n-
dimensional simplex (state space is not expanding
with increasing k)

• When the control and observation spaces are
also finite sets, it turns out that the cost-to-go
functions Jk in the DP algorithm are piecewise
linear and concave (Exercise 5.7).

• This is conceptually important and also (mod-
erately) useful in practice.



INSTRUCTION EXAMPLE

• Teaching a student some item. Possible states
are L: Item learned, or L: Item not learned.

• Possible decisions: T : Terminate the instruc-
tion, or T : Continue the instruction for one period
and then conduct a test that indicates whether the
student has learned the item.

• The test has two possible outcomes: R: Student
gives a correct answer, or R: Student gives an
incorrect answer.

• Probabilistic structure

L L R

rt

1 1

1 - r1 - t
L RL

• Cost of instruction is I per period

• Cost of terminating instruction; 0 if student has
learned the item, and C > 0 if not.



INSTRUCTION EXAMPLE II

• Let pk: prob. student has learned the item given
the test results so far

pk = P (xk|Ik) = P (xk = L | z0, z1, . . . , zk).

• Using Bayes’ rule we can obtain

pk+1 = Φ(pk, zk+1)

=

{
1−(1−t)(1−pk)

1−(1−t)(1−r)(1−pk) if zk+1 = R,

0 if zk+1 = R.

• DP algorithm:

Jk(pk) = min

[
(1 − pk)C, I + E

zk+1

{
Jk+1

(
Φ(pk, zk+1)

)}]
.

starting with

JN−1(pN−1) = min
[
(1−pN−1)C, I+(1−t)(1−pN−1)C

]
.



INSTRUCTION EXAMPLE III

• Write the DP algorithm as

Jk(pk) = min
[
(1 − pk)C, I + Ak(pk)

]
,

where

Ak(pk) = P (zk+1 = R | Ik)Jk+1

(
Φ(pk, R)

)

+ P (zk+1 = R | Ik)Jk+1

(
Φ(pk, R)

)

• Can show by induction that Ak(p) are piecewise
linear, concave, monotonically decreasing, with

Ak−1(p) ≤ Ak(p) ≤ Ak+1(p), for all p ∈ [0, 1].

0 p

C

I

I + AN - 1(p )

I + AN - 2(p )

I + AN - 3(p )

1a N - 1 a N - 3a N - 2 1 - I
C


