MIT OpenCourseWare http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.231 DYNAMIC PROGRAMMING

LECTURE 9

LECTURE OUTLINE

- DP for imperfect state info
- Sufficient statistics
- Conditional state distribution as a sufficient statistic
- Finite-state systems
- Examples

REVIEW: PROBLEM WITH IMPERFECT STATE INF

• Instead of knowing x_k , we receive observations

$$z_0 = h_0(x_0, v_0), \quad z_k = h_k(x_k, u_{k-1}, v_k), \quad k \ge 0$$

• I_k : information vector available at time k:

$$I_0 = z_0, \ I_k = (z_0, z_1, \dots, z_k, u_0, u_1, \dots, u_{k-1}), \ k \ge 1$$

- Optimization over policies $\pi = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$, where $\mu_k(I_k) \in U_k$, for all I_k and k.
- Find a policy π that minimizes

$$J_{\pi} = \mathop{E}_{\substack{x_0, w_k, v_k \\ k=0, \dots, N-1}} \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(I_k), w_k) \right\}$$

subject to the equations

$$x_{k+1} = f_k(x_k, \mu_k(I_k), w_k), \qquad k \ge 0,$$

$$z_0 = h_0(x_0, v_0), \ z_k = h_k(x_k, \mu_{k-1}(I_{k-1}), v_k), \ k \ge 1$$

DP ALGORITHM

• DP algorithm:

$$J_k(I_k) = \min_{u_k \in U_k} \left[\sum_{x_k, w_k, z_{k+1}} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(I_k, z_{k+1}, u_k) \mid I_k, u_k \right\} \right]$$
for $k = 0, 1, \dots, N - 2$, and for $k = N - 1$,
$$J_{N-1}(I_{N-1}) = \min_{u_{N-1} \in U_{N-1}}$$

$$\begin{bmatrix} E \\ x_{N-1}, w_{N-1} \end{bmatrix} \left\{ g_N \left(f_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) \right) \right\}$$

$$+g_{N-1}(x_{N-1},u_{N-1},w_{N-1}) \mid I_{N-1},u_{N-1}\}$$

• The optimal cost J^* is given by

$$J^* = \mathop{E}_{z_0} \{ J_0(z_0) \}.$$

SUFFICIENT STATISTICS

• Suppose that we can find a function $S_k(I_k)$ such that the right-hand side of the DP algorithm can be written in terms of some function H_k as

$$\min_{u_k \in U_k} H_k(S_k(I_k), u_k).$$

- Such a function S_k is called a *sufficient statistic*.
- An optimal policy obtained by the preceding minimization can be written as

$$\mu_k^*(I_k) = \overline{\mu}_k(S_k(I_k)),$$

where $\overline{\mu}_k$ is an appropriate function.

- Example of a sufficient statistic: $S_k(I_k) = I_k$
- Another important sufficient statistic

$$S_k(I_k) = P_{x_k|I_k}$$

DP ALGORITHM IN TERMS OF $P_{X_K|I_K}$

• It turns out that $P_{x_k|I_k}$ is generated recursively by a dynamic system (estimator) of the form

$$P_{x_{k+1}|I_{k+1}} = \Phi_k(P_{x_k|I_k}, u_k, z_{k+1})$$

for a suitable function Φ_k

• DP algorithm can be written as

$$\overline{J}_{k}(P_{x_{k}|I_{k}}) = \min_{u_{k} \in U_{k}} \left[\sum_{x_{k}, w_{k}, z_{k+1}} \left\{ g_{k}(x_{k}, u_{k}, w_{k}) + \overline{J}_{k+1} \left(\Phi_{k}(P_{x_{k}|I_{k}}, u_{k}, z_{k+1}) \right) \mid I_{k}, u_{k} \right\} \right]$$

EXAMPLE: A SEARCH PROBLEM

- At each period, decide to search or not search a site that may contain a treasure.
- If we search and a treasure is present, we find it with prob. β and remove it from the site.
- Treasure's worth: V. Cost of search: C
- States: treasure present & treasure not present
- Each search can be viewed as an observation of the state
- Denote

 p_k : prob. of treasure present at the start of time k with p_0 given.

• p_k evolves at time k according to the equation

$$p_{k+1} = \begin{cases} p_k & \text{if not search,} \\ 0 & \text{if search and find treasure,} \\ \frac{p_k(1-\beta)}{p_k(1-\beta)+1-p_k} & \text{if search and no treasure.} \end{cases}$$

SEARCH PROBLEM (CONTINUED)

• DP algorithm

$$\overline{J}_k(p_k) = \max \left[0, -C + p_k \beta V + (1 - p_k \beta) \overline{J}_{k+1} \left(\frac{p_k (1 - \beta)}{p_k (1 - \beta) + 1 - p_k} \right) \right],$$

with $\overline{J}_N(p_N) = 0$.

• Can be shown by induction that the functions \overline{J}_k satisfy

$$\overline{J}_k(p_k) = 0, \quad \text{for all } p_k \le \frac{C}{\beta V}$$

• Furthermore, it is optimal to search at period k if and only if

$$p_k \beta V \ge C$$

(expected reward from the next search \geq the cost of the search)

FINITE-STATE SYSTEMS

- Suppose the system is a finite-state Markov chain, with states $1, \ldots, n$.
- Then the conditional probability distribution $P_{x_k|I_k}$ is a vector

$$(P(x_k = 1 \mid I_k), \dots, P(x_k = n \mid I_k))$$

- The DP algorithm can be executed over the n-dimensional simplex (state space is not expanding with increasing k)
- When the control and observation spaces are also finite sets, it turns out that the cost-to-go functions \overline{J}_k in the DP algorithm are piecewise linear and concave (Exercise 5.7).
- This is conceptually important and also (moderately) useful in practice.

INSTRUCTION EXAMPLE

- Teaching a student some item. Possible states are L: Item learned, or \overline{L} : Item not learned.
- Possible decisions: T: Terminate the instruction, or \overline{T} : Continue the instruction for one period and then conduct a test that indicates whether the student has learned the item.
- The test has two possible outcomes: R: Student gives a correct answer, or \overline{R} : Student gives an incorrect answer.
- Probabilistic structure

- Cost of instruction is I per period
- Cost of terminating instruction; 0 if student has learned the item, and C > 0 if not.

INSTRUCTION EXAMPLE II

• Let p_k : prob. student has learned the item given the test results so far

$$p_k = P(x_k|I_k) = P(x_k = L \mid z_0, z_1, \dots, z_k).$$

• Using Bayes' rule we can obtain

$$p_{k+1} = \Phi(p_k, z_{k+1})$$

$$= \begin{cases} \frac{1 - (1-t)(1-p_k)}{1 - (1-t)(1-r)(1-p_k)} & \text{if } z_{k+1} = R, \\ 0 & \text{if } z_{k+1} = \overline{R}. \end{cases}$$

• DP algorithm:

$$\overline{J}_k(p_k) = \min \left[(1 - p_k)C, I + \mathop{E}_{z_{k+1}} \left\{ \overline{J}_{k+1} \left(\Phi(p_k, z_{k+1}) \right) \right\} \right].$$

starting with

$$\overline{J}_{N-1}(p_{N-1}) = \min \left[(1-p_{N-1})C, I+(1-t)(1-p_{N-1})C \right].$$

INSTRUCTION EXAMPLE III

• Write the DP algorithm as

$$\overline{J}_k(p_k) = \min[(1 - p_k)C, I + A_k(p_k)],$$

where

$$A_k(p_k) = P(z_{k+1} = R \mid I_k) \overline{J}_{k+1} (\Phi(p_k, R))$$
$$+ P(z_{k+1} = \overline{R} \mid I_k) \overline{J}_{k+1} (\Phi(p_k, \overline{R}))$$

• Can show by induction that $A_k(p)$ are piecewise linear, concave, monotonically decreasing, with

$$A_{k-1}(p) \le A_k(p) \le A_{k+1}(p)$$
, for all $p \in [0, 1]$.

