Engineering Systems Doctoral Seminar ESD.83-- Fall 2009

Class 5--October 7, 2009

Faculty: Chris Magee and Joe Sussman

TA: Judy Maro

Guest: Professor David Mindell (STS Program and Engineering Systems Division)

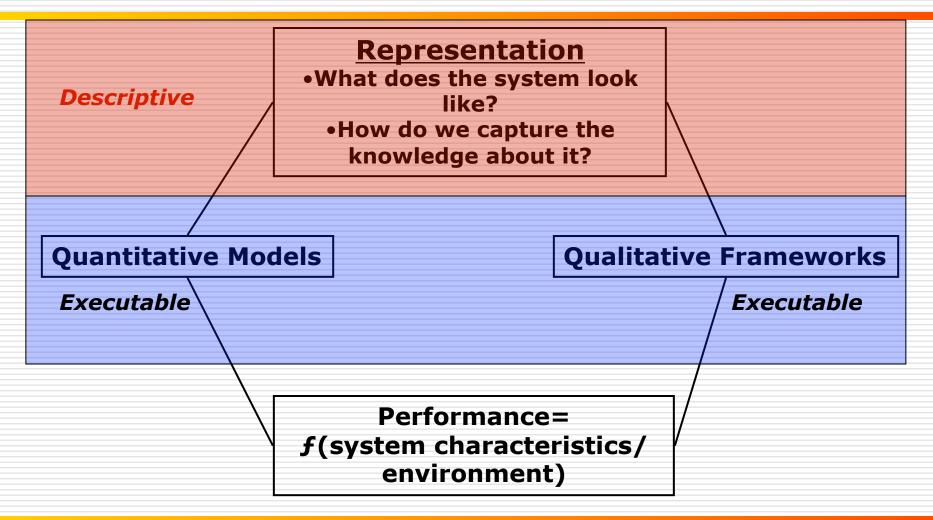
Class 5-- Overview

- Welcome, Overview and Introductions (5 min.)
- Dialogue with Professor Mindell (55min)--Redaction provided by David Ramberg
- ☐ Break (10 minutes)
- Discussion of ESD.83 faculty-provided theme-related papers led by Farzan Sasangohar (30 -40 min)
- Theme and topic integration: Report from the front; Where historical knowledge fits; processes for knowledge generation; Hughes-Rescuing Promethesus (Sussman)

Next Steps -preparation for Class 6- (5 min.)

Theme and topic integration: Class 5 October 7, 2009

- Report from the front-- New York Times, September 27, 2009, "The New Sputnik" by Op-ed columnist Thomas L. Friedman
- "Teaching and Learning Time"
- ☐ Class 6 Plan (Sussman)


"Teaching and Learning Time"

- Where historical knowledge fits
- Processes for knowledge generation
- Rescuing Prometheus by Tom Hughes
- Match-up of Class 5 with
 - Framing questions and
 - Learning objectives

Representations, Models, Frameworks and Performance

The CLIOS Process

- 3-Stage Process for studying and designing complex, large-scale, interconnected, open, socio-technical (CLIOS) systems
- A Christmas Tree--hang appropriate methods from the tree
- System representation separates all organizations (formal or informal) from other system components-- "the institutional sphere" with the rest of the CLIOS System nested within it.
- Concepts: nested complexity, evaluative complexity, dealing with uncertainty....

CLIOS Process

Stage 1:

Representation

-- Descriptive and Normative

Stage 2:

Design, Evaluation, and Selection

-- Normative and Prescriptive

Stage 3:

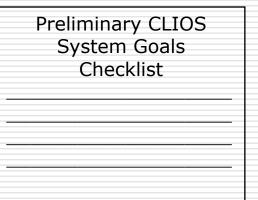
Implementation

-- Prescriptive

NB-- Iterative by nature, throughout

CLIOS Process

Stage	Key Ideas	Outputs
Representation	 Understanding and visualizing the structure and behavior Establishing preliminary goals 	System description, issue identification, goal identification, and structural representation
Design, Evaluation, and Selection	 Refining goals aimed at improvement of the CLIOS System Developing bundles of strategic alternatives 	Identification of performance measures, identification and design of strategic alternatives, and selection of the best performing bundle(s)
Implementation	 Implementing bundles of strategic alternatives Following-through changing and monitoring the performance of the CLIOS System 	Implementation strategy for strategic alternatives in the physical domain and the institutional sphere, actual implementation of alternatives, and post-implementation evaluation



CLIOS System Checklists

Characteristics Checklist

Opportunities/Issues/ Challenges Checklist

Rescuing Prometheus-Thomas Hughes

- □ Four Historical Case Studies
 - SAGE (Semi-automatic Ground Environment)air defense project
 - Atlas Project- first ICBMs
 - Boston's Central Artery/Tunnel Project
 - ARPANET

MIT OpenCourseWare http://ocw.mit.edu

ESD.83 Doctoral Seminar in Engineering Systems Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.