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Assistant Professor of Materials Science and Engineering
Thesis Reader

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gerbrand Ceder

Chairman, Departmental Committee on Graduate Students



Theoretical Study on the Band Structure of Bi1−xSbx Thin Films

by

Shuang Tang

Submitted to the Department of Materials Science and Engineering
on February 23, 2012, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

The study on the electronic band structures of Bi1−xSbx thin films is a very interesting
topic. Recall that in bulk Bi1−xSbx, the electronic band structure can be varied as a function
of temperature T, pressure P and stoichiometry. The electronic band structure does not
change with T significantly in the cryogenic temperature range under the atmospherical
presure. The conduction band edge and the valence band edge are very close to each other
at the three L points within the first Brillouin zone such that they are strongly coupled,
and the energy band at the L points is non-parabolic dispersive. At certain conditions, the
conduction band edge and the valence band edge will touch each other at the three L points,
and the dispersion relation at the L points will become linear, which leads to the formation
of three-dimensional Dirac points. By synthesizing Bi1−xSbx thin films, we have two more
parameters to control the band structure, namely film thickness and growth orientation.

We have developed the iterative-two-dimensional-two-band model to study the two-
dimensional L-point non-parabolically dispersive electronic band structure of the Bi1−xSbx
thin films system. The Lax model based on the k ·p model describes the the L-point non-
parabolic dispersion relations very well consistent with experimental results for bulk bis-
muth. Because the band gap is narrow, the number of bands that are needed in the per-
turbation is small. A satisfactory representation over a limited region of k-space has been
archived in terms of the two coupled bands, which means that the Hamiltonian could be
approximately diagonalized, and which gives a very simple form for the Lax model. In
the thin films system, the anylysis is more different due to the non-parabolic quantum con-
finement effect. The L-point band gap is increased in a thin film compared to the L-point
band gap in a bulk system. As the film thickness decreases, the L-point band gap increases.
The L-point band gap and the L-point inverse-effective-mass tensor are coupled together
and are different from the values for the bulk materials. Thus, iterative procedures are
employed for getting the accurate values of the L-point band gap and its corresponding
inverse-effective-mass tensor. The iterative-two-dimensional-two-band model can be gen-
eralized to study other two-dimensional narrow-gap systems, for example lead telluride
thin films and silicon-germanium alloys thin films. The model can also be modified to
study one-dimensional narrow-gap systems such as Bi1−xSbx nanowires.

The electronic band structure of Bi1−xSbx thin films for different growth orientations
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are studied. The results shows that by growing the Bi1−xSbx thin film normal to a low
symmetry crystalline direction other than the trigonal axis, the three-fold symmetry of the
three L points in the bulk Bi1−xSbx can be broken. Specifically, by growing the Bi1−xSbx
thin film along the bisectrix axis, anisotropic single-Dirac-cone can be constructed at the L
point associated with this bisectrix axis.

In similar ways, by choosing proper antimony compositions, growth orientations and
film thicknesses, a large variety of Dirac-cone materials can be constructed based on the
Bi1−xSbx thin films system, including single-Dirac-cone materials with different aisotropies,
bi-Dirac-cone materials, tri-Dirac-cone materials, quasi-Dirac-cone materials and semi-
Dirac-cone materials.

Thesis Supervisor: Mildred S. Dresselhaus
Title: Institute Professor of Electrical Engineering and Physics
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Chapter 1

Introduction

1.1 Background

Nano-science and nano-technology have been one of the most interesting topics for the

last decades. The physics of materials on the nano-scale are different from those on the

marcro-scale, including electronics, magnetics and mechanics, especially when the size of

the materials is reduced to a scale that is compatible with the de Broglie wavelength of the

electrons. The new phenomena in nano-scale materials are due to the quantum confinment

effect that can be described by quantum mechanics, which has opened a brand-new way

for science research and technology applications. Novel devices can be designed based on

the nano-science and nano-technology.

In the modern electronic industry, the scale of the electronic devices is shrinking in

an exponential way every year. The multiple nano-devices based on thin films have been

dominant for the last decade. Thus, the research and the development of thin film science

and engineering are becoming more and more important.
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1.2 Motivation for Studying the Electronic Band Struc-

tures of Bi1−xSbx Thin Films

Recently, bismuth-antimony alloys have been receiving particular attention from researchers,

because this materials system has a number of unique physical properties that can be in-

teresting for both fundamental studies and engineering applications. Bi1−xSbx has tradi-

tionally been considered as a promising materials system for thermoelectric and thermo-

magnetoelectric applications for temperatures below 200 K, especially in the design of

refrigeration devices [2, 3, 4]. The band structure of Bi1−xSbx is sensitive to many param-

eters, such as antimony composition x [5, 6], pressure P [7, 8], external magnetic field B

[9, 10, 11, 12], and temperature T [13]. Bi1−xSbx alloys can also be potentially used to de-

sign detectors for pressure measurements and mV-meters. Solid Bi1−xSbx alloys can also

be found in different phases, including a gapless phase where the non-parabolic electronic

dispersion relation makes a Dirac point at the L point [7, 14, 1, 15, 16, 17]. This state is of

special significance to scientific researchers working on various quantum properties, such

as the quantum Hall effect, the behaviors of relativistic fermions and so on. The small ef-

fective carrier masses and the high mobilities of carriers under certain conditions has also

made the Bi1−xSbx a candidate for quantum computation [18, 19]. Recently, many studies

have been carried out on the properties of the Dirac cone and of the photon-like fermions

in few-layer graphene systems [20, 21, 22, 23, 24]. Similar studies may also be carried out

for Bi1−xSbx alloys systems that are near the region of the gapless Dirac-point state.

The electronic band structure of bulk Bi1−xSbx has been widely studied. Jain et al. ex-

amined the temperature dependence of the band structure in the range of 4.2-300 K [13].

Golin et al. later proposed an empirical model for the relative energies of the band branches

at some of the high symmetry points for bulk Bi1−xSbx [6]. Subsequently, the thermoelec-

tric properties of the bulk alloys have been studied [2, 25, 26]. In 1993, Hicks and Dressel-

haus suggested that low-dimensional materials could have a remarkably enhanced figure of

merit ZT [27, 28], and since that time many researchers have moved in this direction. Ther-

moelectric properties of Bi1−xSbx nanowires have been studied by Dresselhaus and other

co-workers [29, 30, 31, 32]. So far, it has been found that we can control the band struc-
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tures of Bi1−xSbx nanowires through both the composition of the alloy, and the radius of the

nanowires [29, 31, 33, 34, 35]. The phase diagram for Bi1−xSbx nanowires grown along

the trigonal axis has been predicted [30]. However, neither theoretical nor experimental

work has yet been done systematically in describing the two-dimensional electronic band

structure for a Bi1−xSbx thin film as a function of the crystallographic parameters, such as

film thickness and growth orientation. Recently, a phase transition to a near-gapless state,

which implies a Dirac cone for the functional form of the electronic dispersion relation of

carriers in bulk Bi1−xSbx, has been observed [18]. However, making a gapless state and ob-

serving Dirac fermions in low-dimensional Bi1−xSbx systems is still a challenge of current

interest.

1.3 Thesis Outline

In Chapter 2, the electronic band structure and the crystal structure of Bi1−xSbx alloys

will be introduced, and the original Lax model for studying the non-parabolic dispersion

relation at the L points of bulk bismuth will be reviewed. The iterative-two-dimensional-

two-band model will be then developed, which is our basic methodology for this thesis.

Chapter 3 shows how to construct anisotropic single-Dirac-cones in the Bi1−xSbx thin

film system, based on the iterative-two-dimensional-two-band model that is developed in

Chapter 2, The anisotropy, the linear E(k) and the massive fermion group velocity v(k)

will be discussed.

Chapter 4 further extends the topic of constructing Dirac-cone materials. It is shown

how to construct a large variety of Dirac-cone materials, including single-Dirac-cone ma-

terials, bi-Dirac-cone materials, tri-Dirac-cone materials, quasi-Dirac-cone materials and

semi-Dirac-cone materials.

Lastly, the conclusions of this thesis and the future research suggestions are presented

in Chapter 5.

16



Chapter 2

The Development of the

Iterative-Two-Dimensional-Two-Band

Model for the 2D Bi1−xSbx Thin Film

System

2.1 Introduction

The electronic band structure of Bi1−xSbx is of special interest, and is more complicated

than normal semiconductors for analysis. For bulk Bi1−xSbx, there are multiple kinds of

carrier pockets in its first Brillouin zone at the T point, the three L points and the six H

points. The conduction band and the valence band are so close to each other in energy at the

L points that they are strongly coupled. Therefore, the dispersion relations at the L points

are non-parabolical due to the strong inter-band coupling. In the limit of band touching,

the band structure becomes linearly dispersive at the L points, which leads to the formation

of Dirac points. Lax et al. have proposed the two-band model for bulk bismuth, which de-

scribes the non-parabolic dispersion relations at the three-fold symmetric L points for pure

bulk bismuth [36, 37]. In this chapter, we have developed an iterative-two-dimensional-

two-band model to study the two-dimensional non-parabolic dispersion relations at the L
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points for the Bi1−xSbx thin films starting from the original Lax model. The iterative-two-

dimensional-two-band model I have developed will be also valid for other low-dimensional

non-parabolic dispersive electronic band structures. In this chapter, I first review the crystal

structure and the electronic band structure of bulk Bi1−xSbx, and then review the Lax model

for bulk Bi, and thereafter describe how the iterative-two-dimensional-two-band model is

developed.

2.2 The Crystal Structure and the Electronic Band Struc-

ture of Bulk Bismuth-Antimony Alloys

The elements of both bismuth and antimony are in Column VI of the periodic table. The

crystal structure of pure bismuth, pure antimony and their alloys is rhombohedral, which

has an R3̄m space group symmetry [38]. There are two atoms in each unit cell of the lattice.

This lattice structure can be seen as two distorted face centered cubic (FCC) sub-lattices

inter-penetrating together, where each of the FCC sub-lattices is elonged along the trigonal

axis and the two sub-lattices are displayed along the same trigonal axis, as shown in Fig. 2-

1. A natural Cartesian coordinate system is defined by this rhombohedral structure. The

trigonal axis with C3 symmetry is the Z-axis denoted as [001], the binary axis with C2

symmetry is the X-axis denoted as [100], and the bisectrix axis, which is perpendicular to

both the trigonal axis and the binary axis, is the Y-axis denoted as [100]. Because of the C3

symmetry of the trigonal axis, it is also common for researchers to use a hexagonal notation

to describe different crystalline directions, where the trigonal axis, the binary axis and the

bisectrix axis are denoted, respectively, by [0001] [12̄10] and [101̄0], as shown in Fig. 2-2.

The lattice parameters of bulk Bi1−xSbx change monotonically with antimony composition

x [13]. In terms of the hexagonal cell lattice parameters, a changes linearly with antimony

composition x and obeys the Vegard’s Law. However, the change of lattice parameter c as a

function of antimony composition x deviates from the Vegard’s Law. The lattice parameters

for pure bulk bismuth and pure bulk antimony used in this thesis are listed in Table 2.1
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Z

Y

X

Figure 2-1: The rhombohedral structure of crystals of bismuth, antimony and their alloys
Bi1−xSbx. The trigonal axis (Z-axis), bisectrix axis (Y-axis) and the binary axis (X-axis)
form a natural Cartesian coordinate system.

Table 2.1: Crystal parameters for the unit cell of bismuth and antimony.

rhombohedral cell[39] hexagonal cell[40]
t (Å) α a (Å) c (Å)

antimony 4.5066 57◦6′ 4.307 11.273
bismuth 4.7459 57◦14′ 4.547 11.8616
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Figure 2-2: The hexagonal coordinates of the rhombohedral structure of the Bi1−xSbx crys-
tal.
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Figure 2-3: The various carrier pocktes in the first Brillouin zone for bulk bismuth and bulk
antimony and their alloys

The first Brillouin zone for pure bismuth and the first Brillouin zone for pure antimony

are exhibited in Fig. 2-3. The first Brillouin zone for Bi1−xSbx can be seen as a Brillouin

zone for the FCC lattice compressed along the trigonal axis, because the lattice in real

space is elonged along the trigonal axis relative to the related FCC structure [41]. There

are one T point, three L points and six H points in the first Brillouin zone [13, 9]. The

bottom of the conduction band is located at the L points. The top of the valence band can

be located at the T point, the L points or the H points, depending on antimony composition

x, temperature T, pressure P and stress [5, 6, 7, 8, 9, 10, 11, 12, 13]. It is meaningfull to start

our discussion of the Bi1−xSbx system using the cryogenic physical properties of Bi1−xSbx,

because the band structure does not change significantly as a function of temperature when

T is below the liquid nitrogen boiling point (77 K) under atmospherical pressure [1]. This

assumption significantly simplifies the analysis. In addition, since many experiments have

been carrierd out for bulk bismuth, bulk antimony and bulk Bi1−xSbx alloys at cryogenic

temperatures, the experimental techniques are relatively mature [42, 13, 43, 44, 45, 46, 47].

Thus, I will focus on the cryogenic temperature range under atmospherical pressure in this

thesis, if not otherwise mentioned.

Figure 2-4 shows how the band edges at different high symmetry points changes with

antimony composition x in 3D bulk Bi1−xSbx alloys [1]. When x < 0.07, the valence band

edge at the T point is above the conduction band edge at the L points, and bulk Bi1−xSbx

is a semimetal. When 0.07 < x < 0.09, the valence band edge at the T point is below the
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Figure 2-4: How the band edges changes against antimony composition x at the T point,
the L points and the H points at cryogenic temperatures below 77 K under atmospherical
pressure [1]
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conduction band edge at the L points, but above the valence band edge at the L points,

so that bulk Bi1−xSbx is an indirect-band-gap semiconductor. When 0.09 < x < 0.15, the

valence band edge at the T point and the valence band edge at the H poins are both below

the valence band edge at the L points, and bulk Bi1−xSbx is a direct-band-gap semiconduc-

tor. When 0.15 < x < 0.22, the valence band edge at the H points is above the valence

band edge at the L points, but below the conduction band edge at the L points, so that bulk

Bi1−xSbx becomes an indirect-band-gap semiconductor again. When x > 0.22 the valence

band edge at the H points is above the conduction band edge at the L points, so that bulk

Bi1−xSbx becomes a semimetal. The numerical description of Fig. 2-4 is summarized as

ET,v(x) = 45.5−551.6 · x (2.1)

EH,v(x) = −101.36+525.8 · x (2.2)

EL,c(x) =

 |484.4 · (x−0.042)2 −155.75 · (x−0.042)| (x ≤ 0.17)

4.2136+45.8 · x (x ≥ 0.17)
(2.3)

EL,v(x) = −EL,c(x) , (2.4)

where the energy unit is meV, the values of the energies are given with respect to the L-

point mid-gap energy, and the subscripts c and v stand for the conduction band edges and

the valence band edges, respectively [32].

The most interesting phenomenon is that when x < 0.04 the L-point band gap decreases

with antimony composition x, while when x > 0.04 the L-point band gap increases with

antimony composition x. At x = 0.04 the conduction band edge and the valence band edge

exchange their symmetry at the L points, and the L-point band gap EL
g becomes zero, which

leads to the formation of three symmetrical three dimensional Dirac points [7, 14, 1, 15,

16, 17].
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2.3 The Effective Mass Tensors Described in a General

Coordinate System

In the natural Cartesian coordinate system of bulk Bi1−xSbx described in section 2.2, we

take the trigonal axis to be the Z axis, the binary axis to be the X axis and the bisectrix axis

to be the Y axis. Under the X-Y -Z coordinats system, the effective mass tensor for a certain

carrier pocket is generally,

MXY Z =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 , (2.5)

where mi j = m ji. The tensor for the inverse-effective-mass is then

αααXY Z ≡ MXYZ
−1. (2.6)

Now suppose that x-y-z is another coordinate system, the relation between the x-y-z

coordinate system and the X-Y -Z coordinate system can be described by Euler Angles β1,

β2 and β3, as shown in Fig 2-5. We firstly start from the X-Y -Z coordinate system, and

rotate the X-Y -Z axes counter-clockwise by β1 around the Z axis, then we get X ′-Y ′-Z.

Secondly, we rotate the X ′-Y ′-Z coordinates around X ′ counter-clockwise by β2 to get X ′-

Y ′′-z. Thirdly, we rotate X ′-Y ′′-z around Z′ couter-clockwise by β3 to get x-y-z, as indicated

in Fig. 2-5.

The effective mass tensor under the x-y-z coordinate system will then be,

Mxyz = R1R2R3MXY ZR∗
3R∗

2R∗
1 (2.7)

where

R1 =


cos(β1) sin(β1) 0

−sin(β1) cos(β1) 0

0 0 1

 , (2.8)
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Figure 2-5: The relation between the X-Y -Z coordinate system and the x-y-z coordinate
system, described by the Euler angles β1, β2 and β3
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R2 =


1 0 0

0 cos(β2) sin(β2)

0 −sin(β2) cos(β2)

 , (2.9)

and

R3 =


cos(β3) sin(β3) 0

−sin(β3) cos(β3) 0

0 0 1

 . (2.10)

Similarly,

αααxyz = R1R2R3αααXY ZR∗
3R∗

2R∗
1 (2.11)

If not otherwise mentioned, we will describe the problem in a general x-y-z coordinate-

system, and the the subscript ”xyz” will be dropped from this point on throughout this entire

thesis.

In a film system of Bi1−xSbx, it is convenient to define a film coordinate system where

the z axis is along the growth direction, namely normal to the film plane, and the x-y plane

coincides with the film plane, as shown in Fig. 2-6.

2.4 The Lax Model for Bulk Bismuth

For pure bulk bismuth, the bottom of the conduction band is located at the L points and

the top of the valence band is located at the T point. The band structure at the T point

is parabolically dispersive, which is easy to describe by the effective mass approximation.

The band structure at the L point is non-parabolically dispersive. In 1960, Cohen and

Blount suggested that the properties of the conduction band are mainly determined by its

interaction with a single lower level [48]. Using a two-band approximation, the conduction

bands become out of phase of with regard tothe de Haas van Alphen formula, which is

in agreement with the experiments [49]. Subsequently, Lax and Mavroides estabilished a

two-band model for the non-parabolic dispersion relation for the L-point carrier pockets

[36, 37]. The Lax model shows that the Hamiltonian could be approximately diagonalized,
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Figure 2-6: The film coordinates where the z axis is normal to the film plane, and the x-y
plane coincides with the film plane
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which ultimately leads to a very nice and simple form for E(k)

p ·ααα ·p = E(k)(1+
E(k)
Eg

). (2.12)

This formula is in agreement with a lot of subsequent experiments [50, 51]. Its simplicity

and the high accuracy of this formula makes this model have a high impact on development

of this field. The Lax model is based on k ·p perturbation theory [41]. Because the band

gap is narrow, the number of bands that are needed in applying perturbation theory to these

dispersion relation is small. Usually a satisfactory representaion over a limited region of

k-space has been achieved in terms of the two coupled bands.

Suppose the periodic part of the Bloch function for wave vector K = k0 +k near k0 is

un,k(r), where k0 is the wave vector for a high symmetry point in the first Brillouin zone:

[H0 +H ′]un,K(r) = εn(K)un,K(r), (2.13)

where the Hamiltonian H0 at the wave vector k0 is

H0 =
p2

2m
+V (r)+ h̄

k0 ·p
m

, (2.14)

the k-dependent operator is

H ′ = h̄
k ·p
m

, (2.15)

and the energy eigenvalue εn(K) is related to the eigenvalue of Schrödinger’s equation by

εn(K) = En(K)− h̄2 k2

2m
. (2.16)

In k ·p pertubation theory, the wave functions un,K(r) are expanded in terms of band edge

wave functions un,k0(r), and H ′ is the perturbation Hamiltonian. Therefore, the strength

of the band coupling between the two bands depends on off-diagonal entries of the the

momentum matrix. The strongly coupled bands are considered as a nearly degenerate set

of levels in the framework of degenerate perturbation theory, and the bands outside the

nearly degenerate set are considered as a higher order perturbation. The secular equation
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for the two-band model can be assumed to be,∣∣∣∣∣∣ < v|H0 +H ′|v >−ε < v|H ′|c >

< c|H ′|v > < c|H0 +H ′|c >−ε

∣∣∣∣∣∣= 0 , (2.17)

where

< i|H0 +H ′|i >=±
εg

2
+

h̄2k2

2m
+

h̄k
m
·< i|p|i > (2.18)

and i is the band index that can be c or v, which stand for the conduction band and the

valence band, respectively. Solution of this secular equation yields the dispersion relation

for the coupled two bands,

εi(k) =
Ec +Ev

2
± 1

2
[(Ec +Ev)

2 +
h̄2

m2 k ·P2 ·k]
1
2 , (2.19)

where the tensor P2 is defined by the off-diagonal entries of the momentum matrix that

connects the strongly coupled bands,

P2 =< c|p|v >< v|p|c > . (2.20)

2.5 The development of the Iterative-Two-Dimensional-Two-

Band Model

For Bi1−xSbx thin films, the two-dimensional electronic band structure varies also as a

function of film thickness and film growth orientation, which provides considerable flex-

ibility compared to bulk Bi1−xSbx. Furthermore, the quantum confinement effect in the

thin film system is potentially interesting, where its anisotropic properties imply potential

application possibilities.

The energy spectrum near an L-point Dirac cone in a Bi1−xSbx thin film is calculated
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Table 2.2: The effective mass tensor components for bulk Bi1−xSbx alloys at T ≤ 77 K.

Parameters Notation Value Reference
L-point carrier effective mxx 0.00119 m0
mass tensor components myy 0.263 m0
at the band edge mzz 0.00516 m0 [52]
(bulk bismuth, x=0)a myz 0.0274 m0
T-point hole effective mxx 0.059 m0
mass tensor components myy 0.059 m0 [45]
at the band edge mzz 0.634 m0
H-point hole effective mxx 0.068 m0
mass tensor components myy 0.63 m0 [46]
at the band edge mzz 0.34 m0

myz 0.41 m0

a For other values of x, the mass tensor is modified to account for the dependence of the
non-parabolicity of the band structure at the L-point on the bandgap energy, EL

g .

based on the iterative-two-dimensional-two-band model described below. Here the general

two band model for two strongly coupled bands obeys the relation in Eq. 2.12. We will

from this point onward set h̄ to be 1 for convenience. The two coupled key parameters ααα

and Eg are calculated in an iterative way in our model as

ααα[n] =
E [n−1]

g

E [n]
g

·ααα[n−1]+
1

m0
· (1−

E [n−1]
g

E [n]
g

) · I (2.21)

and

E [n+1]
g = E [n]

g +2 ·
π2α [n]

33
2 · l2

z
, (2.22)

where m0 is the free electron mass, I is the identity matrix, lz is the film thickness and

n denotes the nth step in the iteration. The procedure is repeated until ααα[n] and E [n]
g be-

come self-consistent, and then we get accurate solutions for ααα f ilm(Bi1−xSbx) = ααα[n] and

E f ilm
g (Bi1−xSbx) = E [n]

g for thin film Bi1−xSbx. Because of the approximations

1
m0

· (1−
E [n−1]

g

E [n]
g

) · I ≪
E [n−1]

g

E [n]
g

·ααα[n−1]
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and ∣∣∣E [n+1]
g −E [n]

g

∣∣∣≪ 2 ·
π2α[n]

33
2 · l2

z

that are valid for antimony composition 0 ≤ x ≤ 0.10, Eqs. (2.21) and (2.22) can be further

simplified, which converge to the analytical solution as

ααα f ilm(Bi1−xSbx) =
αααbulk(Bi)

E f ilm
g (Bi1−xSbx)

·Ebulk
g (Bi) (2.23)

and

E f ilm
g (Bi1−xSbx) = Ebulk

g (Bi1−xSbx)+
π2α f ilm

33 (Bi1−xSbx)

l2
z

. (2.24)

The dispersion relation E(k) can then be then solved by the methods used by Ref. [34, 30]

from

E(k)+
E2(k)
E f ilm

g
=

1
2

k∗ · α̃αα ·k+
π2α33

2l2
z

, (2.25)

where α̃i j =αi3α j3/α33−αi j for i, j = 1 and 2, and ααα=ααα f ilm(Bi1−xSbx). The Hamiltonian

for Bi and Bi1−xSbx based on k ·p theory in Eq. 2.12 is equivalent to a Dirac Hamiltonian

with a scaled canonical conjugate momentum [53]. Thus, Eq. (3.1) is also a good approxi-

mation to describe the Dirac cones. The band parameters we use in the present calculations

are values that were measured by cyclotron resonance experiments, which are listed in Ta-

ble 2.2.

2.6 The Extension of the Iterative-Two-Dimensional-Two-

Band Model to a General Non-Parabolic Low-Dimensional

System

There are many other narrow-band materials systems that have strongly coupled bands at

the band edges where the dispersion relations are non-parabolic or even linear, for example

the X-point dispersion relation of Si1−xGex [54] and the L-point dispersion relation of PbTe

[55].
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When these narrow-band materials are synthesized in 2D thin films, the problem to

describe the 2D non-parabolic dispersion relations are in many ways similar as the problem

in Bi1−xSbx thin films, as I describe here in this thesis. Thus, the iterative-two-dimensional-

two-band model can be extended to other narrow-band thin films.

For other low-dimensional systems, as for example, one-dimensional nano-wires, the

iterative procedure between ααα and Eg is similar too. An iterative-one-dimensional-two-

band model can then be similarlly developed [56].
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Chapter 3

Constructing Anisotropic

Single-Dirac-Cones in Bi1−xSbx Thin

Films

3.1 Introduction

Materials with two-dimensional Dirac cones in their electronic band structures have re-

cently attracted considerable attention. Many important novel physical studies have been

carried out on both massless and massive 2D Dirac fermions, including studies of the half-

integer quantum Hall effect [57, 58], the anomalous absence of back scattering, the Klein

paradox effect [59], high temperature superconductivity [60], and unusual microwave re-

sponse effects [20]. The ultrahigh carrier mobility of Dirac fermions in graphene of-

fers new opportunities for a variety of electronics applications [42]. Recently, 2D Dirac

cones observed in topological insulators have identified this class of materials as candi-

dates for quantum computation, spintronics, novel superconductors and thermoelectrics

[61, 62, 63, 64, 65].

Materials with 2D single-Dirac-cones, especially 2D anisotropic single-Dirac-cones,

are of special interest. Simulations with ultracold atoms trapped on optical lattices have

been used to study general 2D single-Dirac-cones [66]. It is believed that graphene su-
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perlattice materials, which are described by anisotropic 2D single-Dirac-cones, could po-

tentially be developed for use in nano-electronic-circuits without requiring the cutting pro-

cesses, and in desktop experiments that simulate high-energy relativistic particles propa-

gating in an anisotropic space [67].

Among all materials candidates that may possibly make anisotropic single-Dirac-cones,

2D Bi1−xSbx thin films are especially attractive. Firstly, it has been proved that the band

structure of three-dimensional bulk Bi1−xSbx can be varied as a function of antimony com-

position x, temperature, pressure and strain, and the Fermi level can be adjusted to change

the electronic properties [13, 5, 6, 10, 43, 12]. Secondly, not only have bulk state Dirac

points been studied in bulk Bi1−xSbx alloys [16, 44, 68], but also the first observation of a

surface state 2D single-Dirac-cone for a topological insulator was made in bulk Bi0.9Sb0.1

[18]. Some 2D experiments on Bi1−xSbx thin films grown normal to the trigonal direction

have already been carried out [69, 70, 71]. However, possible Dirac-cone materials of 2D

Bi1−xSbx thin films have not yet been studied. It is meaningful to start from the cryogenic

physical properties of 2D Bi1−xSbx, because the band structure does not change signifi-

cantly with temperature when T is below the liquid nitrogen boiling point (77 K), which

significantly simplifies the analysis. In addition, since many experiments have been carried

out for bulk Bi and Bi1−xSbx at cryogenic temperatures, the experimental techniques are

relatively mature. Thus, it would be easy to experimentaly realize the theoretical predic-

tions in 2D Bi1−xSbx in this temperature range.

In this chapter, we focus on the cryogenic temperature range. We have systematically

studied how the properties of the 2D L-point single-Dirac-cones in Bi1−xSbx thin films,

such as their anisotropies and linear E(k), change with the film thickness and the growth

orientation. We have also discovered that single-Dirac-cones with different anisotropies

can be constructed in Bi1−xSbx thin films.

3.2 Anisotropic Single-Dirac-Cones in Bi1−xSbx Thin Films

There are three symmetrical L points in the first 3D Brillouin zone of Bi1−xSbx as shown in

Fig. 3-1. In order to get a single-Dirac-cone, we need to grow the Bi1−xSbx thin film normal
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Figure 3-1: The 3-fold degenerate L points and the T point in the first Brillouin zone of
bulk Bi1−xSbx.

to a low symmetry crystalline direction so that we can have a single L-point that differs from

the other two by breaking the 3-fold symmetry occurring in 3D. Moreover, the two quanti-

ties in Eq. 2.22 need to be minimized, namely the bulk-band-gap term Ebulk
g (Bi1−xSbx) and

the quantum-confinement-induced term h2α[0]
33/4 · l2

z for this special single L-point. Thus,

growing a film normal to the bisectrix direction is a good way to do this, where the 3-fold

symmetry is broken and the α33 inverse mass component is near its minimum; this calcu-

lation is discussed below. Minimizing the value of bulk term Ebulk
g (Bi1−xSbx) by varying

temperature T, pressure P and antimony composition x has been discussed in the literature

[5, 6, 7, 8, 9, 10, 11, 12, 13], especially for the case of x=0.04, where Ebulk
g (Bi1−xSbx)

decreases to 0 at cryogenic temperatures under atmospheric pressure. Thin films with the

composition Bi0.96Sb0.04 have already been synthesized in experiments by researchers in

the Ukraine [71], for films grown normal to the trigonal direction. The model that we have

developed in Chapter 2 is valid for all values of antimony composition x (≤ 0.15). How-

ever, for the convenience of experimentalists to use our theoretical predictions, in this chap-

ter, we illustrate simple examples of single-Dirac-cones that can be found in Bi0.96Sb0.04.

More generally, Bi1−xSbx thin films of other antimony compositions x can be modeled in

the similar way.
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Figure 3-2: How the L(1)-point single-Dirac-cone is formed. (a) shows the band structure
of a Bi0.96Sb0.04 thin film grown normal to the bisectrix axis and how the band structure
changes over different film thickness. The green curves show the lowest conduction band
(upper one) and the highest valence band (lower one) at the L(2) and L(3) points. The
blue curves are for the L(1) point valence band and conduction band as a function of film
thickness. The dashed red curve is the highest valence band at the T point. The L(1)-point
band gap remains less than the order of ∼ 1 meV until the film thickness lz is very small.
The L(2) and L(3) points have the same band gap, which is largely opened up. Thus, an
anisotropic single-Dirac-cone is formed at the L(1) point when the film thickness lz is large
enough to retain the L(1)-point mini-gap essentially zero, i.e. less than ∼ 1 meV.(b) shows
the thermal smearing (−∂ f0

∂E ) of the Fermi-Dirac distribution as a function of cryogenic
temperature (top scale). For comparison between (a) and (b), the Fermi level E f is aligned
with E = 0, i.e. the middle point of the L-point band gap. Cases where the Fermi level E f
is at other positions can be discussed in the similar way. Only carriers within smearing will
get excited and contribute to the transport phenomena.
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Figure 3-3: If no doping is added and no gate voltage is applied, the lz dependence of the
intrinsic Fermi levels is shown at 77 K (red curve) and at 4.2 K (blue curve).

Based on our model, a single 2D Dirac cone can be constructed in a Bi0.96Sb0.04 thin

film normal to the bisectrix axis. For this thin film the 3-fold symmetry of the L points

in reciprocal space is broken. According to our calculations, the L(1)-point band gap EL(1)

g

will not exceed ∼ 1 meV until the film is thinner than 80 nm. However, our calculations

in this thesis show that the L(2)- and L(3)-point band gaps EL(2)

g (EL(2)

g = EL(3)

g ) will open

up and increase significantly when the film thickness decreases. When lz = 300 nm, EL(2)

g

is already larger than 7 meV, while EL(1)

g is still smaller than 0.1 meV. This means that a

single-Dirac-cone is formed at the L(1) point as shown in Fig. 3-2(a).

Up to now, we have only discussed the band structure and the dispersion relations at

the L points. Another important aspect is the Fermi level E f , which determines the carrier

density and the transport properties. The Fermi level for a Bi1−xSbx thin film changes

with film thickness, temperature, external gate voltage and impurity doping. For further

discussion of how the Fermi level influences the physical properties of the single-Dirac-

cone, we assume that the Fermi level for a specific Bi1−xSbx thin film can be varied freely

within the range of 0 to 25 meV without destroying the single-Dirac-cone. How the carrier
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Figure 3-4: Carrier concentration of Bi0.96Sb0.04 vs. film thickness lz and Fermi level E f
are shown at (a) 77 K and (b) 4.2 K. The curves are drawn for films differing in thickness
from one another by 10 nm and the carrier concentration is given in terms of the indicated
color code. 38



concentration changes with film thickness and temperature will be discussed later.

The carriers that contribute to transport are the ones that are within the smearing of the

Fermi-Dirac distribution function (−∂ f0
∂E ), where f0 = (1+ exp[(E −E f )/kB ·T ])−1. The

quantity (−∂ f0
∂E ) is very sharp over E at cryogenic temperatures as shown in Fig. 3-2(b),

and has a width in the order of ∼ kB ·T . For comparison to Fig. 3-2(a), we have aligned the

Fermi level in Fig. 3-2(b) with E = 0 to indicate the absence of carrers due to dopants. In

this case, the Fermi level is at the apex of the L(1)-point single-Dirac-cone. Then the Dirac

fermions which contribute to transport will only come from this L(1)-point single-Dirac-

cone, and not from the L(2) or L(3) points, at cryogenic temperatures.

Figure 3-3 shows the Fermi level for intrinsic Bi0.96Sb0.04 films without doping or gate

votage. At cryogenic temperatures, the intrinsic Fermi level starts to drop with film thick-

ness when the film is thinner than ∼40 nm, which reveals the semimetal-semiconductor

transition, where the T -point valence band falls below the L(1)-point conduction band, con-

sistent with the prediction of Fig. 3-2(a).

How the carrier concentration for a Bi0.96Sb0.04 film changes as a function of film thick-

ness and Fermi level is calculated next. Figure 3-4 (a) and (b), respectively, show the total

carrier concentrations for a Bi0.96Sb0.04 film at the liquid nitrogen boiling point (77 K)

and the liquid helium boiling point (4.2 K). The overall carrier concentration is very low

(∼ 1017 cm−3) at 77 K in Fig. 3-4(a) and much lower (∼ 1016 cm−3) at 4.2 K in Fig. 3-4(b).

There are two kinds of Dirac fermions associated with a Dirac cone that researchers are

interested in, the massless Dirac fermions and the massive Dirac fermions. The massless

Dirac fermions are the fermions that are right at the apex of a Dirac cone. Other Dirac

fermions that are at the Dirac cone but not at the apex are massive. In experiments, a Dirac

cone is usually not perfect. A mini-gap often exists which induces a mini-mass at the apex

of the Dirac cone. Such an effect also occurs in single layer graphene [57, 58]. Therefore,

practically, there are two main features that characterize the quality of a Dirac cone, the

mini-mass for the “massless” Dirac fermions occuring at the apex, and the fermion velocity

v(k) as a function of k for the massive Dirac fermions. Because the fermions are linearly

dispersed near a Dirac cone, v(k) should only be a function of the direction of k in Bi1−xSbx

thin films. The anisotropy of the Dirac cone can be characterized by the ratio between the
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maximum and minimum v(k).

The L(1)-point anisotropic single-Dirac-cone in a 300 nm thick Bi1−xSbx thin film

grown normal to the bisectrix axis has a linear E(k) behavior with a very sharp apex [Fig.

3-5(a)]. In this film, kx and ky represent the trigonal axis and the binary axis, respectively.

EL(1)

g for this Dirac cone is smaller than 0.1 meV, and the effective mass at the apex of

the Dirac cone is ∼ 10−5m0, which can be considered as essentially gapless and massless.

We have also calculated the v(k) relation of the Dirac fermions for different values of mo-

mentum [Fig. 3-5(b)]. For the anisotropy of this single-Dirac-cone, it can be seen that the

maximum and minimum of v(k) are 1.6 · clight/300 (along kx) and 1.1 · clight/300, (along

ky), respectively, which differs by a factor of ∼1.5, where clight is the speed of light.

The contribution of the L(1)-point single-Dirac-cone fermions to the transport properties

is much greater than that contributed by the parabolically dispersed fermions at the T point.

In bulk Bi and Bi1−xSbx at cryogenic temperatures, it has been shown both theoretically and

experimentally that the transport properties are dominated by the L-point carriers, which

have ultra-high electron and hole mobilities [47, 72, 73], because of the ultra-large carrier

group velocities of the L(1) point carriers ( ∼ 10−2 ·clight). This is not difficult to understand

and can be explained in a very simple manner. For example, the electronic conductivity of

the carriers for a specific carrier pocket is

σi j = e2DE f · vi ·∑
l
(τE f ) jl · vl, (3.1)

where τE f and DE f are, respectively, the anisotropic relaxation time tensor and the density

of states for carriers of this specific carrier pocket at the Fermi level E f , and i , j and l

denote components of the various vector and tensor quantities. We take the principal axis

along kx as an example, i.e. i = j = x and σxx = e2DE f (τE f )xx · v2
x . In Bi and Bi1−xSbx, the

relaxation time (τE f )xx = λxxv−1
x , where λxx is the mean free path and λxx ∝ D−1

E f
. Thus,

we have σxx ∝ vx(E f ), where vx(E f ) is the carrier group kx direction velocity component

for this specific carrier pocket at the Fermi level E f . For the L(1)-point single-Dirac-cone,

v[Dirac]
x(E f )

∼ 10−2 · clight , while for the T -point parabolic pocket, v[T ]x(E f )
∼ 103 m/s, thereby

explaining why σ [Dirac]
xx ≫ σ [T ]

xx .
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Figure 3-5: Different anisotropic single-Dirac-cones in different Bi0.96Sb0.04 thin films:
(a) and (b) describe a sharp-apex L(1)-point anisotropic single-Dirac-cone in a 300 nm
thick Bi0.96Sb0.04 film grown normal to the bisectrix axis. For convenience, the origin of
momentum k is chosen to be at the L(1) point. (c) and (d) describe an L(1)-point anisotropic
single-Dirac-cone where the T -point carrier-pocket is totally below the L(1)-point Dirac
cone, in a 40 nm thick Bi0.96Sb0.04 film grown normal to the bisectrix axis. (e) and (f)
describe a highly anisotropic single-Dirac-cone in a 300 nm thick Bi0.96Sb0.04 film grown
normal to the [606̄1] crystalline direction. (a), (c) and (e) show the dispersion relations of
these single-Dirac-cones. (b), (d) and (f) show the group velocities v of Dirac fermions
over different momenta k. (c)-(d) are not significantly different from (a)-(b), but (e)-(f) are
obviously more anisotropic than (a)-(b) and (c)-(d).
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Moreover, the T -point parabolically dispersed carrier pocket can also be moved fur-

ther down in energy below the L(1)-point single-Dirac-cone, in a 2D Bi0.96Sb0.04 thin film,

which is not achieved in bulk Bi0.96Sb0.04. When the film thickness decreases, the top

point of the T -point valence band decreases in energy much faster than the L(1)-point va-

lence band as shown in Fig. 3-2(a). When the film thickness is less than 40 nm, the T -point

valence band is totally below the bottom of the L(1)-point conduction band, indicating a

semimetal-semiconductor transition The effective mass at the apex of this single-Dirac-

cone is ∼ 10−4m0, which is still essentially massless. The corresponding Dirac cone is

plotted in Fig. 3-5(c), as well as the velocity vs. momentum relation v(k) for the massive

Dirac fermions as in Fig. 3-5(d). The linearity and the anisotropy of the Dirac cone is not

notably influenced by film thickness for a film of lz = 40 nm, as can be seen by comparing

Figs. 3-5(c) and (d) to Figs. 3-5(a) and (b), respectively, showing that very thin films are

needed to show quantum confinement (below 40 nm).

In some applications, e.g. in nano-electronic-circuit design, a higher anisotropy of the

Dirac cone could be required. For a Bi0.96Sb0.04 thin film, the L(1)-point E(k) has a smaller

mini-mass at the apex but a lower anisotropy if the film is grown normal to the bisectrix

axis, while the L(1)-point E(k) has a larger mini-mass at the apex but a higher anisotropy

if the film is grown normal to the trigonal axis. This gives us an idea that a film grown

normal to a crystalline direction between the trigonal axis and the bisectrix axis, would

have both a small mini-mass and a high anisotropy. As an example, we illustrate in Fig. 3-

5(e) and (f) a film grown normal to a low-symmetrical crystalline direction n̂, where n̂ is

in the binary plane, making an angle of 14◦ to the bisectrix axis and 76◦ to the trigonal

axis. In the hexagonal notation system for the rhombohedral Bi1−xSbx, the trigonal axis

is [0001] and the bisectrix axis is [101̄0]. Thus, n̂ can be denoted as [606̄1]. Here n̂ is

just a randomly chosen crystalline direction within the trigonal-bisectrix plane to be an

example, other crystalline directions can be discussed in the similar way. Figure 3-5(e)

and (f) illustrate a 300 nm thick film grown normal to n̂, where ky is still along the binary

axis, while kx is in the direction perpendicular to both the binary axis and n̂. Then EL(1)

g

for this Dirac cone [Fig. 3-5(e)] is smaller than 0.46 meV, and the mini-mass at the apex

of the Dirac cone is still negligible (∼ 10−4m0). The anisotropy for this single-Dirac-cone
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[Fig. 3-5(e)] is much higher. The maximum and minimum values of v(k) for the massive

Dirac fermions are 1.65 · clight/300 and 0.55 · clight/300, respectively, which differ by a

factor of ∼3 [Fig. 3-5(f)].

The technology for experimental implementations of the Bi1−xSbx thin films we de-

scribed above is foreseeable. Single crystal bismuth and Bi1−xSbx thin films grown normal

to the trigonal axis have been synthesized [71], and so have single crystal Bi and Bi1−xSbx

nanowires grown along various crystalline directions [33, 74, 75, 76, 77, 78, 79, 80, 81, 35].

The cryogenic measurement of transport, optical and magnetic properties of bulk bismuth

and Bi1−xSbx have also been developed to a very high level of sophistication over decades

of effort [13, 42, 43, 44, 45, 46, 47].

3.3 Conclusion

In conclusion, based on the iterative-two-dimensional-two-band we have developed in

Chapter 2, we have made a prediction that anisotropic single-Dirac-cones can be con-

structed in Bi1−xSbx thin films. Some critical cases of L(1)-point single-Dirac-cones are

illustrated as examples. Novel physical phenomena associated with massless and massive

Dirac fermions that have been previously reported in other materials systems could hope-

fully also be observed in Bi1−xSbx thin films. Because the Bi1−xSbx thin film system has

special features as we discussed above, we can also expect to observe new physical phe-

nomena that have never been observed in other systems.
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Chapter 4

Constructing a Large Variety of

Dirac-Cone Materials in the Bi1−xSbx

Thin Film System

4.1 Introduction

In an electronic band structure, if the dispersion relation E(k) can be described by a linear

function as E = v · k, where v is the velocity matrix and k is the lattice momentum, the

point where E → 0 is called a Dirac point. In a two-dimensional system, a 2D projec-

tion of a Dirac point is called a Dirac cone. A single-, bi- or tri-Dirac cone system has

one, two or three different Dirac cones that are degenerate in energy in its first Brillouin

zone. For example, a single sheet graphene has two degenerate isotropic Dirac cones at

Points K and K′ in its first Brillouin zone, so it is considered as a bi-Dirac-cone system.

Dirac fermions can be immune to localization effects and can propagate without scattering

over large distances on the order of micrometers [82], which is essentially important to

electronic applications. Dirac-cone materials are considered as promising materials for the

next generation of electronic industry. In this chapter, we show how to construct a large

variety of Dirac-cone materials, including bi-Dirac-cone materials, tri-Dirac-cone materi-

als, quasi-Dirac-cone materials and semi-Dirac-cone materials, based on the Bi1−xSbx thin
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film system, we will still use the Bi0.96Sb0.04 thin films at cryogenic temperatures under

atmospherical pressure in giving examples of the different types of Dirac cones that can be

made.

4.2 Constructing a Large Variety of Dirac-Cone Materials

According to Eqs. 2.12 and 3.1, when Eg → 0 at an L point, the electronic dispersion

relation becomes a perfect Dirac cone, where the energy E is exactly proportional to the

lattice momentum k measured from that L point. When Eg becomes large enough, the

linearity of the dispersion relation becomes an approximation, and the Dirac cone becomes

a quasi-Dirac cone. If α̃11 ≫ α̃22 with a finite Eg, so that E ∝ kx and E ∝ k2
y , we call it a

semi-Dirac cone. In a semi-Dirac cone, the fermions are relativistically dispersive in one

direction (kx), and classically dispersive in another direction (ky).

We propose that single-, bi- and tri-Dirac-cone materials can be constructed from Bi1−xSbx

thin films, by proper synthesis conditions to control the relative symmetries of the three L

points. Bi1−xSbx thin films grown along the bisectrix axis can be single-Dirac-cone ma-

terials, as illustrated in Fig. 4-1(a), where the 3-fold degeneracy of the L(1), L(2) and L(3)

points is broken. The value of the film-direction-inverse-mass-component α f ilm
33 (Bi1−xSbx)

is much smaller for the L(1) point than the corresponding values for the L(2) and L(3) points.

The L(1)-point gap E(1)
g is negligibly small due to the small value of α f ilm

33 (Bi1−xSbx), where

a Dirac cone is formed, as shown in Fig. 4-1(a). However, the L(2)- and L(3)- point band

gaps E(2)
g and E(3)

g are much larger, which implies that effectively a single-Dirac-cone at

the L(1) point is constructed. Here we are taking advantage of both the extreme anisotropy

of Bi1−xSbx and the quantum confinement effect of thin films. The quantum confinement

effects for the L(1)-point carriers differs remarkably from those for the L(2)- and L(3)-point

carriers due to the anisotropy of the L-point pockets. Figure 4-1(b) shows that a Bi1−xSbx

thin film grown along the binary axis can be a bi-Dirac-cone material, where the L(1)-point

band gap E(1)
g is much larger than the L(2)- and L(3)- point band gaps E(2)

g and E(3)
g . Thus,

E(2)
g and E(3)

g remain small enough to make two degenerate Dirac cones (quasi-Dirac cones)

at the L(2) and the L(3) points. In Fig. 4-1(c), the film is grown along the trigonal axis, so
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Figure 4-1: An illustration of (a) single-, (b) bi- and (c) tri-Dirac-cone Bi1−xSbx thin films
grown along the (a) bisectrix, (b) binary and (c) trigonal axes, respectively. For the cross-
sectional view of each cone, k is chosen such that ∇kE(k) has its minimum along that
direction of k. The illustration is based on the example of Bi1−xSbx thin films with lz = 100
nm, x = 0.04, P = 1 atm and T ≤ 77 K, under which the L points of bulk Bi1−xSbx have a
zero-gap. The scenario is similar for other conditions. In (a), a single-Dirac-cone is formed
at the L(1) point, while the L(2)- and L(3)- point band gaps are opened up. In (b), two
degenerate quasi-Dirac cones are formed at the L(2) and L(3) points, while the L(1)-point
band gap is much larger, which leads to a bi-quasi-Dirac-cone material. The band gap at
the L(2) and L(3) points can be less than 1 meV if a sample of lz = 200 nm is chosen, which
leads to exact Dirac cones for L(1). In (c), the L(1)-, L(2)- and L(3)- point band gaps are all
the same, and the three quasi-Dirac cones are degenerate in energy.
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Figure 4-2: The anisotropy coefficient γ vs. film growth orientation. The value of γ for a
specific film growth orientation is shown by the radius and the color, using the color scale
on the left. γ can be as large as ∼14 for films grown along the trigonal axis, and as small
as ∼2 for films grown along the bisectrix axis.

that the 3-fold symmetry for the three L points is retained. The three Dirac cones (quasi-

Dirac cones) at the L(1), L(2) and L(3) points are degenerate in energy, which makes this film

a tri-Dirac-cone material. By definition, an exact Dirac cone has Eg = 0. However, Eg = 0

Dirac cones are seldom achieved experimentally, so it is practical to consider Eg ≤ kBT

as a criterion for an exact Dirac cone. In the temperature range below 77 K that we are

considering in this thesis, the thermal smearing of kBT corresponds to ∼ 7 meV. For the

criterion of a quasi-Dirac cone, we can use kBT ≤ Eg ≤ Eg(Bi)bulk, where Eg(Bi)bulk ≃ 14

meV. Thus, we consider the three Dirac cones in Fig. 4-1(c), as quasi-Dirac cones, which

are plotted for the case of lz = 100 nm and Eg ≃ 10 meV. If exact Dirac cones are needed,

a larger film thickness can be chosen, e.g. lz = 200 nm, which satisfies Eg ≤ kBT .

We now show how to construct anisotropic Dirac cones with different shapes for the

wave vector as a function of cone angle. To characterize the anisotropy of a Dirac cone, we
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Figure 4-3: The velocity v is shown for the L(1)-point Dirac fermions vs. transport direction
for Bi1−xSbx thin films grown along the (b) trigonal, (c) bisectrix and (d) binary axes. (b)-
(c) are drawn based on an example sample with lz = 300 nm and x = 0.04.
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define an anisotropy coefficient

γ =
|vmax|
|vmin|

, (4.1)

where vmax and vmin are the maximum and minimum in-film carrier group velocities for a

Dirac cone that is defined as v(k) =∇kE(k). For a perfect Dirac cone, v is a function of the

direction of the lattice momentum k measured from that L point only and is independent

of the magnitude of k. For an imperfect Dirac cone or a quasi-Dirac cone, this magnitude

invariance is exact only when k is large, and becomes an approximation around the apex

when k is small.

Figure 4-2 and 4-3 give us an important guide on how to construct anisotropic L(1)-

point Dirac cones. In Fig. 4-2, the anisotropy coefficient γ for the L(1)-point Dirac cone as

a function of film growth orientation is shown. For a film grown along the bisectrix axis, γ

has its minimum value γmin = ∼2, where the carrier velocity v(k) for the L(1)-point Dirac

cone varies only by a small amount with the direction of k, as shown in Fig. 4-3(a). For a

film grown along the binary axis, γ =∼10, where v(k) varies more with the direction of k

as shown in Fig. 4-3(b), compared to Fig. 4-3(a). For a film grown along the trigonal axis,

γ has its maximum of γmax = ∼14, where v varies significantly with the direction of k, as

shown in Fig. 4-3(c).

Researchers have tried to realize semi-Dirac cones in oxide layers [83, 84], where

the fermions are relativistic in one direction and classical in its orthogonal direction. In

the present work, we have found that it is possible to construct semi-Dirac cones in the

Bi1−xSbx thin film system. According to Eqs. 2.12 and 3.1, for an in-film direction k̂,

where k̂ is a unit directional vector of k in the in-film lattice momentum space, whether

the dispersion relation is linear or parabolic depends on the L-point band gap Eg, and the

α̃αα projection along that direction of k̂, defined by α̃k̂ = k̂∗ · α̃αα · k̂, where α̃αα is given by Eq.

(3.1). When Eg is small and α̃k̂ is large, the energy becomes linearly dispersed along k̂;

when Eg is large and α̃k̂ is small, the energy becomes parabolically dispersed along k̂. To

construct a semi-Dirac cone, we need to find a proper L-point band gap Eg and anisotropy

γ , such that Eg/α̃max is small and Eg/αmin is large. In this case, the electronic energy

is linearly dispersed along the α̃max direction and parabolically dispersed along the αmin
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Figure 4-4: Illustration of a schematic view of the L(1)-point band gap vs. film growth
orientation and film thickness. The radius, the direction and the color represent the film
thickness, the film growth orientation and the L(1)-point band gap, respectively. The illus-
tration takes x = 0.04 as an example. For other antimony compositions, film thickness and
film growth orientation dependence for the L(1)-point band gap should be similar, which is
illustrated in Fig. 4-5.
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direction. Here α̃max and α̃min are the maximum and minimum values of α̃k̂, which corre-

spond to the principal axes of the 2D tensor α̃αα. The L-point band gap varies as a function

of the film thickness lz, the growth orientation and antimony composition x, as shown by

the calculated results given in Fig. 4-4 and 4-5. To construct a semi-Dirac cone, we need

to find a growth direction that ensures a significant anisotropy, and a large enough value

of Eg which ensures that E(k) becomes parabolically dispersed along the α̃min direction.

However, the Eg should not be too large, because of the necessity that the linear dispersion

relation along the α̃max direction is maintained. These requirements can all be achieved

by choosing the proper antimony composition x, film thickness lz and growth orientation

as shown in Figs. 4-4 and 4-5. From Figs. 4-1, 4-2 and 4-3, we know that the L(1)-point

Dirac cone has a maximum k-vector anisotropy, when the growth orientation is near the

trigonal axis. We also see that the thin film becomes a single-Dirac-cone material when the

growth direction is near the bisectrix axis. Thus, a good strategy to construct a semi-Dirac

cone is to choose a growth orientation between the trigonal and the bisectrix axis, in the

trigonal-bisectrix plane. An example of a semi-Dirac cone is shown in Fig. 4-6, where the

example sample is grown along a direction that is 40◦ from the trigonal axis, 50◦ from the

bisectrix axis, and perpendicular to the binary axis. Thus, a large antimony composition

(e.g. x ≈ 0.10) and a small film thickness (e.g. lz ≈ 100 nm) is preferred to make the Eg

large, and x = 0.10 and lz = 100 nm are chosen for this example sample.

4.3 Conclusion

In conclusion, we have proposed the growth of Bi1−xSbx thin films, which for selected

concentrations of Sb and different directions to the film normal allows different Dirac-cone

materials to be constructed. We have shown how to construct single-, bi- and tri-Dirac-cone

materials, as shown in Fig. 4-1, as well as quasi- and semi-Dirac-cone materials, as shown

in Fig. 4-1(c) and Fig. 4-6, respectively.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this thesis, an iterative-two-dimensional-two-band model for studying the electronic

band structure of Bi1−xSbx thin films has been developed. Based on this iterative-two-

dimensional-two-band model, we predict that a large variety of Dirac-cone materials can be

constructed, including the anisotropic single-Dirac-cone materials with differet anisotropies,

the bi-Dirac-cone materials, the tri-Dirac-cone materials, the quasi-Dirac-cone materials

and the semi-Dirac-cone materials.

The iterative-two-dimensional-two-band model for Bi1−xSbx thin films starts from the

basic Lax model for bulk bismuth. We have extended this model to describe a two-

dimensional thin film system of Bi1−xSbx. The L-point band gap and the inverse-effective-

mass tensor are evaluated by utilizing the iteration techniques. We also have introduced the

Euler-angle rotation system to describe a general growth orientation. This whole method-

ology can also be extended to study other two-dimensional narrow-band materials systems,

where there are strongly coupled bands at the band edges and where the dispersion rela-

tions are non-parabolic or linear, for example, the X-point dispersion relation of Si1−xGex,

the L-point dispersion relation of PbTe. By small modifications, this model can also be

extended to describe other low-dimensional narrow-band systems, such as nanowires.

Based on the iterative-two-dimensional-two-band model we have developed, we have

also studied how to construct anisotropic single-Dirac-cone materials. We have found that
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by growing the Bi1−xSbx thin film normal to a low symmetry direction, we can have a sin-

gle L-point that differs from the other two by breaking the 3-fold symmetry occurring in the

three-dimensional case. The two quantities, the bulk-band-gap term Ebulk
g (Bi1−xSbx) and

the quantum-confinement-induced term h2α[0]
33/4 · l2

z for this special single L-point are min-

imized. We have predicted how to construct anisotropic single-Dirac-cones with different

anisotropies in the Bi1−xSbx thin film system using the same formulae.

We have also studied how to construct a large variety of Dirac-cone materials in the

Bi1−xSbx thin film system, including bi-Dirac-cone materials, tri-Dirac-cone materials,

quasi-Dirac-cone materials and semi-Dirac-cone materials.

The work in this thesis have been written up for publications [85, 86, 87]. The work

has been supported by Solid State Solar Thermal Energy Conversion Center on room-

temperature thermoelectrics of Energy Frontier Research Centers Program, U.S. Depart-

ment of Energy and then Air Force Office of Scientific Research, MURI Grant on cryogenic-

temperature thermoelectrics, because the Bi1−xSbx thin films materials system can be used

best at cryogenic temperatures.

5.2 Suggestions for Future Studies

From the work we have done in this thesis, a lot of future studies could be potentially

done. Firstly, the transport of Bi1−xSbx thin films with different antimony composition

x, growth orientation and film thickness can be studied. The optimization condition where

the figure of merit ZT for cryogenic thermoelectrics and cooling device design can now be

studied.

Secondly, the study methodology we use in this thesis can be used to study other

narrow-band thin films systems, for example the silicon-germanium alloys thin films, the

lead telluride thin films.

Thirdly, the model can be extended to the one-dimensional system and Bi1−xSbx nanowires

can be studied in a similar way. Levin et al [56] have already carried out some work on

Bi1−xSbx nanowires using this model.
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